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The rate and security of quantum communications between users placed at arbitrary points of a
quantum communication network depend on the structure of the network, on its extension and on the
nature of the communication channels. In this work we propose a strategy for the optimization of
trusted-relays based networks that intertwines classical network approaches and quantum
information theory. Specifically, by suitably defining a quantum communication efficiency functional,
we identify the optimal quantum communication connections through the network by balancing
security and the quantum communication rate. The optimized network is then constructed as the
network of the maximal quantum communication efficiency connections and its performance is
evaluated by studying the scaling of average properties as functions of the number of nodes and of the
network spatial extension.

Quantum communication networks1 enable the realization of tasks beyond
the reach of classical communication systems. Examples are uncondition-
ally secure quantum key distribution2,3 (QKD), quantum teleportation4,
clock-synchronization5, distributed quantum computing6, tomention just a
few. Characterizing and optimizing quantum communication networks
have a crucial relevance for the development of quantum cryptography
applications7 and hold the potential to advance our understanding of fun-
damental quantum phenomena8, such as entanglement percolation9 or the
emergence of non-local quantum correlations10–12.

The performance of quantum networks is determined by the nature of
the quantum communication channels and protocols13,14 and by the overall
network topology. The optimization of quantum communication networks
involves therefore the closing of security loopholes and themitigation of the
effect of losses through the development of quantum communication
protocols, such as for example the measurement device independent
QKD15–17 and the twin-field QKD18 protocols. But it is also pursued by
optimizing the allocation of quantum resources for quantum sensing19 and
for distributed quantum computing20 or by engineering optimal routing
strategies21–25, taking into account the peculiar features of the network ele-
ments and the network architecture.

In the ideal case the ultimate properties of network elements, such as
the quantum communication links, are dictated by the laws of quantum
mechanics, enforcing their security but also imposing intrinsic bounds26,27

on the rate of quantum information transmission. Specifically, the funda-
mental limit of repeaterless quantum communication found by Pirandola,
Laurenza, Ottaviani and Banchi28, known as PLOB bound, prevents to

achieve simultaneously high rates and long distances in transferring
quantum states and distributing entanglement or secret quantum keys
through a quantum link.

The global features of quantum communication networks are strongly
dependent on the spatial distribution of the users. Recent theoretical works
developed a random network approach to large-scale quantum commu-
nication networks based on optical fibers29 or satellite links30 and analyzed
their connectivity, nodes distance and the presence of small world
features29,30.

In thisworkwe employ the tools of classical network science to devise a
strategy of optimization of quantum communication networks. PLOB
bound can be indeed circumvented by means of intermediate repeaters13,
either of quantum31 or classical nature (trusted nodes32,33), that help the
communication between distant parties. With few notable exceptions34,
most field tests of metropolitan-scale quantum networks to date are based
on point-to-point architecture and they involve trusted nodes, see
refs. 35–39. Trusted nodes in general lower the security of the network32,40,41.
Consequently, in designing aQKDnetwork the question naturally arises on
what is the optimal way to connect a given set ofQKDusers, to fulfill a given
rate/security target, assuming that all trusted nodes have a certain prob-
ability p of being leaky. Here we address this optimization problem by
introducing a quantum communication efficiency functional, that balances
the quantum security and the quantumcommunication rate for each pair of
users in the network. Note that in a classical network leakage can occur not
only at nodes where the signal is amplified, but also along the connections
between nodes: adding amplifiers therefore improves the capacitance
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without necessarily reducing the security level. For this reason in classical
networks there is no tradeoff between capacitance and security, which is
instead inherent in QKD networks. We develop an algorithm that max-
imizes the quantum communication efficiency and constructs the optimal
network, that we refer to as maximal quantum communication efficiency
network. We then investigate, for a random distribution of users in the
plane, the average properties of these optimal networks. Their performance
is evaluated by studying the scaling of average properties as a function of the
number of nodes and of the network extension. While the quantum com-
munication rate is linked to geometrical properties, such as the average
distance between users, the security depends on the topology. The optimi-
zation algorithm therefore goes beyond standard dynamic programming
methods, such as theDijkstra algorithm42, that were previously employed in
the context of quantum repeater network optimization21.

Results
Communication efficiency of quantum networks
In its simplest realization aQKDnetwork consists of a set ofN users (nodes)
that can send and receive quantumbits along a set of physical links. Herewe
assume that users are points located in a square of side L, as shown in Fig. 1.
As physical connections we consider lossy bosonic links. In this case, fol-
lowing ref. 28, the QKD rate of a link, e, connecting two users located at the
points xa and xb can be quantified by its quantum capacitance q(e) fulfilling
the PLOB relation

qðeÞ ¼ �log2½ð1� e�dab=λ0 Þ�: ð1Þ

where dab = ∣xa− xb∣ is the Euclidean distance between the users and λ0 is a
characteristic decay length. For optical fibers the attenuation in the C tele-
com band is of the order of 0.2 db/Km yielding λ0 ~ 22 Km. Note that, since
the link capacitance provides an estimate of the number of qubits sent per
use of the channel, Eq. (1) sets to 15 km the distance at which a single qubit
per use can be sent using a standard optical fiber connection. The quantum
capacitance of a channel can be increased by means of repeaters. In parti-
cular, connecting theusersa andb throughapath featuringm trustednodes,

the capacitance of the channel13 is given by

qðfa ! bgÞ ¼ min
e2fa!bg

qðeÞ: ð2Þ

As an example let us consider users a and b shown in Fig. 1a and let us
assume that all other users can act as trusted nodes. We show two possible
ways to connect a and b: a direct link or a path passing through three trusted
nodes. In the first case the quantum capacitance is given by q(eab) while in
the second case the capacitance is q(ecd) > q(eab).

Such an increased capacitance is however associated to a potential
vulnerability to attacks, since in most practical situations, an intermediate
node can only be partially trusted, as discussed e.g. in ref. 41. All links are
instead assumed to be unconditionally secure. To quantify this aspect we
assume that every trusted node has a certain probability p of beingmalicious
and we define the security of a path, s({a→ b}) as the probability of finding
only non-malicious trusted nodes along the path, i.e.

sðfa ! bgÞ � ð1� pÞ‘fa!bg�1 ð3Þ

where ℓ{a→b} is the topological length of the path. This definition
yields s = 1 for a path having topological length ℓ = 1, i.e., no inter-
mediate trusted nodes. Furthermore, it correctly gives s = 0 when
p = 1 and s = 1 for p = 0.

Within themodel defined by Eqs. (2) and (3), capacitance and security
in general compete, i.e., longer paths may have larger capacitance but at the
price of lower security. To describe this trade-off we define the commu-
nication efficiency ϵα({a→ b}) of a path

ϵαðfa ! bgÞ ¼ ð1� αÞqðfa ! bgÞ þ α log sðfa ! bgÞ ð4Þ

where α∈ [0, 1] is a user-tunable control parameter which gives more
importance either to capacitance (α = 0) or to security (α = 1). For simplicity
the communication efficiency is defined using the logarithm of the security
that is proportional to the path length.

Fig. 1 | The optimal path between two nodes. a Distribution of N = 20 points in a
square of size L representing the users of aQKDnetwork. The colored lines represent
possible paths between users a and b. bMaximum spanning tree for N = 40 nodes.
Here and in the following panels the red edges represent the optimal path between

user a and user b. Nodes are colored according to their degree. c–fMaximal
QuantumCommunication Efficiency networks G�

α , obtained using our optimization
algorithm, for N = 40, L = λ0 and α = 0, 0.2, 0.3, 1.
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Given thepositions of users in space andassuming that adirect link can
be placed between any two of them, so that the network of all possible links
G0 is a fully connected (FC) graph, there is an exponentially large number of
possible paths between two nodes, a and b. For a given α, an optimal path
{a→b}* is defined as a path having maximal communication efficiency
among all possible paths

fa ! bg� ¼ argmaxfϵαðfa ! bgÞg: ð5Þ

Clearly, in the limit α→ 0, the optimal path maximizes the capacitance, by
going through many, physically close, intermediate nodes. In the limit
α→ 1 the optimal path maximizes security and is thus the direct link
between the twonodes. The global communication efficiencyof a networkG
is defined as the average, over all node pairs, of the communication effi-
ciency of the optimal paths defined over the network

Eα½G� ¼
1

NðN � 1Þ
X
a;b

ϵαðfa ! bg�Þ: ð6Þ

It is important to remark that in general there can be more than a single
optimal path between two nodes. As an example in Fig. 1a we show two
optimal paths between the nodes a and b passing through the node k and k0,
respectively. The two paths have the same communication efficiency since
they have the same topological length, ℓ = 4, and the same capacitance
Q = q(ecd), being ecd the longest edge in both paths.

Network optimization
Given a set of N users, N , distributed in a square of size L, and a tradeoff
parameter α, our goal is to find a network connecting the N users having
maximal communication efficiency andminimal number of links. To reach
this goal we start by determining an optimal path for each pair of users. This
is achieved by means of an algorithm described in detail in the Methods
section. Once an optimal path is identified for each pair, we define the
optimal network, G�

α � ðN ; E�
αÞ, as the graph union of the optimal paths,

that is the network with node setN and edge set E�
α given by

E�
α ¼

[
ab
fa ! bg�: ð7Þ

This network has themaximumquantum communication efficiency, i.e. no
other network G0 � ðN ; E0Þ can have larger communication efficiency, i.e.,

E½G0�≤ E½G�
α� ð8Þ

under the assumption of single-path13,41 routing. Forα = 0optimal networks
maximize the capacitance. In this case, an efficient optimization algorithm
was proposed by Pollack43. As discussed in ref. 44, beside maximizing
network capacitance, Pollack’s algorithm minimizes the number of links
yielding as optimal network themaximumspanning tree (MST) connecting
the N users (Fig. 1b).

The method developed in this work builds on Pollack’s algorithm to
construct the optimalnetworkG�

α asprescribedbyEq. (7). Figure 1c–f shows

instances of G�
α for different values of α. As one can see, it interpolates

between the fully connected network, realized for α = 1, and amuch sparser
network for α→ 0. We note that for α→ 0, G�

α does not necessarily reduce
to theMST.This is related to the fact that, aswe explained above, the optimal
paths are non-unique. In principle, for generic α one could complement our
algorithm with further optimization techniques to reduce the number of
links of G�

α while preserving maximum communication efficiency. This
further development is deferred to future work.

Maximal quantum communication efficiency networks
For concreteness, in this subsection we assume a completely random dis-
tribution of users in the square of size L. As highlighted above, optimal
networks maximize the quantum communication efficiency functional
defined by Eq. (6). Their structure and performance depend sensitively on
the user-defined parameterα and on the distance-loss ratio, L/λ0, that set the
optimization regime.To showhow thesemaximal quantumcommunication
efficiency (MQCE) networks change across the different regimes, in Fig. 2
we plot their average capacitance,

Q� ¼ 1
NðN � 1Þ

X
ab

qðfa ! bg�Þ; ð9Þ

and average topological length,

L� ¼ 1
NðN � 1Þ

X
ab

‘fa!bg� ð10Þ

as a function of α for different values of L/λ0 ranging from the case of weak
losses (L/λ0 = 0.1) to the case of strong losses (L/λ0 = 10).

Let us consider first the case of weak losses, L/λ0≪ 1, where the dis-
tance between any pair of users is, by construction, much smaller than the
decay length λ0; in this case we distinguish three regimes.

(i) For values of α larger than a threshold value αcwe observeL� ¼ 1,
corresponding to all optimal paths having ‘fa!bg� ¼ 1. In this regime G�

α
coincideswith the fully connected network.Moreover, since the structure of
G�
α does not change with α, the average capacitance is constant, Q* =QFC

(seeMethods for its evaluation). The critical value αc is the lowest value of α
such that, for every pair of users a, b in the system, it is more efficient to
connect them through the direct link rather thanusing a trustednode c. This
happens as long as the gain in communication efficiency due to increased
capacitance, is smaller than the loss of communication efficiency associated
to the introduction of an intermediate node, equal to α logð1� pÞ, yielding
(see Methods for details)

αc ¼ ½1� logð1� pÞ��1: ð11Þ

(ii)On the left of this threshold valueweobserve the existenceof a “step”, i.e.,
an interval ofα values overwhichL� is practically constant and equal to 2. In
this interval all optimal paths have 1 intermediate node.Asαdecreases other
steps appear, corresponding toMQCE networks featuring all optimal paths
having topological length L� ¼ 3 (second step) and L� ¼ 4 (third step).

Fig. 2 | Average properties of optimal networks. Average capacitance and path
length, Q* and L� , of the MQCE networks as a function of α for p = 1− 1/e≃ 0.63.
N= 256 (circles), N = 512 (triangles), N = 1024 (diamonds), N = 2048 (squares). a L/

λ0 = 0.1,bL/λ0 = 1, cL/λ0 = 3,dL/λ0 = 10.Averages over 100 realizations forN = 256 and
N= 512, and over 10 realizations forN = 1024 andN = 2048.Dashed lines correspond to
the values of α0!1

c (red), α1!2
c (green) and α2!3

c (purple) evaluated using Eq. (12).
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The stepsbecome sharper in the largeN limitwhere a simple calculation (see
Methods) shows that paths having m intermediate nodes become more
efficient than those with m− 1 intermediate ones for

αm�1!m
c ¼ ½1� ΔðmÞ logð1� pÞ��1; ð12Þ

where

ΔðmÞ ¼ logð2Þ
logðmþ 1Þ � logðmÞ : ð13Þ

Note that α0!1
c coincides with the αc defined above. The predictions

α0!1
c ¼ 0:5,α1!2

c ≈0:369 andα2!3
c ≈0:293 are in very good agreementwith

the positions of the steps for p = 1− 1/e, appearing in Fig. 2a.
(iii) As α tends to 0, MQCE networks increasingly resemble the

maximum spanning tree. In this limit the average topological length of
optimal paths tends to increase as a power-law with N (see Methods).

Let us now consider the opposite case of strong losses, L≫ λ0. In this
limit the phenomenology is different andmore difficult to interpret because,
whilemost distances aremuch larger thanλ0, still somepairs of users are at a
distance smaller than the decay length. These pairs are responsible for the
observation thatL� > 1 as soonasαgets smaller than the thresholdvalue still
givenbyEq. (11) (seeFig. 2c, d).At variancewith theprevious case, forα < αc
the average topological length of the optimal pathsL� grows rapidly as α is
reduced, showing no steps at integer values. Moreover, there exist a value α
such that for α < α, L� and Q* vary much less and assume values close to
those of the MST network (see Methods).

A partially quantitative understanding of the nature of the different
regimes can be achieved by considering how the properties of the optimal
path linking a generic pair of users, a and b, change, as a function of their
distance dab and of α, in the limit N→∞. In Fig. 3a we highlight with
different colors the regions corresponding to different topological lengths of
the optimal path between a and b. Boundaries shown in Fig. 3a are calcu-
latedanalytically (seeMethods). For large valuesofα security dominates and
the optimal path is, for any dab/λ0, the direct connection.When α is reduced
the optimal path has a different behavior depending on the ratio dab/λ0. For
small dab/λ0, when α is reduced it becomes more efficient to go through
indirect paths going throughm = 1, 2, 3,…, intermediate trusted nodes and
so on, which are equally spaced along the line connecting a and b. For larger
dab/λ0, the gain in capacitance provided by a single intermediate trusted
node is not sufficient to compensate the loss in security and, as α is reduced,
the first transition occurs between the direct link and a path going through
m > 1 trusted nodes. This first transition is followed, as in the previous case,
by a one by one increase in the number of intermediate nodes as smaller α

values are considered. For dab/λ0≫ 1, m grows linearly with dab and the
position of the first transition scales as 1/dab.

The phenomenology for the whole network shown in Fig. 2 results
from the superposition of the behavior just depicted for all user pairs whose
distances are distributed according to Eq. (18) (seeMethods). Specifically, if
L≪ λ0 all pairs belong to the small distances regime of Fig. 3a. As a con-
sequence they all undergo the same transitions for the same values of α, thus
generating the steps observed in Fig. 2a. ForL≫ λ0 instead,most pairs are at
distances larger than the decay length, but a few are still at distances much
smaller than λ0. Therefore, depending on the exact value of dab/λ0, each user
pair undergoes different transitions for different values of α. All these
transitions get “mixed”, thus explaining the lack of steps in this case and a
smooth growth of the observables between αc and α (see Fig. 2d).

By balancing security and quantum capacitance,MQCE networks yield
the optimal strategy to connectN users for quantumcommunications and, at
the same time, they represent a customizablebenchmarking tool forquantum
communication networks. To illustrate the performance ofMQCEnetworks
we start by comparing their quantum capacitance to that of FC networks. As
one can see in Fig. 3b, the outcome depends sensitively on the ratio L/λ0. For
L/λ0≪ 1 a limited increase of the average capacitance with respect to the FC
network is observed. For values of L of the order of λ0 the improved per-
formanceof theMQCEnetworkbecomesmore significant. In this rangeofL/
λ0 values, the most important improvement concerns the minimum capa-
citance. While for FC networks some links have a strongly degraded capa-
citance, several orders of magnitude smaller than the average Q*, in the
optimized network minQ is only slightly smaller than the average, thus
guaranteeing that communication is possible among any pairs of users. For
very large values of L/λ0 the MQCE network tends to coincide with the FC
one, as the weight of capacitance in the quantum communication efficiency
functional becomes extremely small. In this regime the average capacitance
Q* is essentially the same in the two networks and decays as ðL=λ0Þ�2. In
Fig. 3b we also note that in MQCE networks the minimum capacity reaches
the threshold of one target bit per use of the channel,Qmin ¼ 1, for values of
L/λ0 about one order of magnitude larger than in standard FC networks. For
fixed values of λ0, this implies that MQCE networks can provide the mini-
mum quantum communication rate standard across much wider regions of
space. Specifically, for the parameters in Fig. 3b, the maximum value of L to
haveat least1 targetbit transferredbetweenanyuserof thenetworkgoes from
≈0.5λ0 (in theFCnetwork) to≈5λ0 in theMQCEnetwork.Anatural question
arises concerning how the the security requirement affects the maximal
achievable rate. To clarify this point in Fig. 3c we plot the average capacitance
ofMQCEnetworks,Q* as a function of the average topological lengthL�, for
different values of the ratio L/λ0. It turns out that it is sufficient to allowL� to
grow from 1 (FC network) to 3 or 4 to ensure a considerable increase in the
average capacitance, even one order of magnitude for large L/λ0.

Fig. 3 | The phase diagram and the behavior of the average capacitance.
aTransitions between the different regimes for p = 1− 1/e andN→∞, representing
the number of intermediate nodes in the optimal path for a pair of nodes at distance
dab as a function of dab and α. Note that the curve separating the “direct link region”
from the other regions has slope discontinuities corresponding to the dashed vertical

lines. b Behavior of the average capacitance Q*, and of the minimum capacitance
Qmin as a function of L/λ0 with α = 0.1, p = 0.1, N = 100 for the MQCE network, the
FC network (computed analytically, see Methods). c Plot of the average capacitance
of theMQCE network as a function of the average topological length for p = 1− 1/e,
N = 512 (dotted lines), N = 1024 (solid lines) and various values of L/λ0.
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It is interesting also to analyze the structural features of thenetworks that
theoptimizationalgorithmgenerates. InFig. 4we report thedependenceonα
of the link density of the optimized network, ρ = 〈k〉/(N− 1), which is cor-
related with the cost to build the infrastructure. In all cases the density
interpolates between a maximally dense network, the FC, (for α > αc) and a
much sparser network (for α→ 0). Asmentioned above, our algorithm does
not exactly reproduce, in the limit α→ 0, the MST (which has density 2/N).
The scaling of ρ vsN, which exhibits a decayN−ω, with an effective exponent
toω≈ 0.83 implies that the optimizednetworkhas anaveragedegree growing
sublinearly with N. For large values of α the densities tend to converge to a
finite limit, indicating that the networks are dense. For small but finite α
values the initial decay with N appears analogous to the α = 0 case, there is
some evidence that for any α > 0 the density tends to a constant.

Additional informationon theoptimizednetwork is providedbyFig. 5,
where the average length of optimal paths L� is plotted as a function of the
number of users. For small values of L/λ0 and relatively large values of α < αc
it is clear that L� goes to a constant in the large-N limit (see Fig. 5a). This
mirrors the presence of steps in Fig. 2. For smaller values of α and larger
values of L/λ0 the average optimal path length exhibits an initial power-law
growth with N followed by a smooth crossover to a constant value.

Theoptimalnetwork canbe also characterizedbymeasuring aquantity
analogous to the betweenness usually considered in network analysis. The
betweenness45 of a node is the number of shortest paths among all pairs of
nodes in the network that go through that node. For our purposes it is useful
to define a modified betweenness where, instead of topological shortest
paths, optimal paths are considered. Such a quantity provides a measure of
the relevance of users, i.e., how crucial is their presence (and how damaging
their removal). Nodes with high betweenness have, just because of their
position in the topology, a high impacton the security of the network. InFig.
6 we plot the histogram of the number of nodes having a given modified
betweenness for various α. For α > αc the optimal network is fully connected

and the values of the betweenness are all zero.Whenαbecomes smaller than
αc a homogeneous distribution appears. As α is progressively reduced the
distribution getsmore heterogeneous, becoming extremely broad forα→ 0.
In such a case some nodes are particularly crucial and the network is overall
highly vulnerable to external attacks.

Discussion
The realization of large-scale quantum communication networks is a task of
crucial relevance for quantum cryptography and quantum computing
applications. Existing quantum network implementations employ inter-
mediate trusted nodes as a practical and efficient means to connect remote
users, thereby overcoming the limitations imposed by rate/distance bounds.
Relying on trusted nodes, however, carries the inherent risk associated with
the probability of encounteringmalicious nodes. Given these constraints, in
this work we addressed the problem of designing optimal quantum com-
munication networks connecting a set of users randomly distributed in a
square of size L. For each pair of users, we determined the optimal path
connecting them bymaximizing the quantum communication efficiency of
the path andwe constructed the optimal network, calledmaximal quantum
communication efficiency network as the graph union of the optimal paths.
MQCE networks therefore provide the optimal balance between security
and quantum communication rate and they interpolate betweenMaximum
Spanning Trees and Fully Connected networks, representing, respectively,
the topologies having maximum quantum capacitance and maximum
security. We carefully analyzed the performance of the MQCE networks
showing that the optimization can largely increase the average capacitance
while keeping high levels of security.We also analyzed structural properties
ofMQCEnetworksbymeansofnumerical andanalyticalmethods, showing
how the tradeoff between capacitance and security affects their topological
properties. Our work proposes a systematic and scalable approach for
quantum communication network optimization that relies on the

Fig. 4 | The link density of the optimal networks. aDensity ρ as a function of α, for
p = 1− 1/e and two values of L/λ0 Averages over 100 realizations for
N = 128(squares), N = 256(circles), and over 10 realizations for N = 512(trian-
gles),N = 1024(diamonds). Dashed lines correspond to the values of α0!1

c (red),

α1!2
c (green) and α2!3

c (purple) evaluated using Eq. (12). b Dependence of the
density onN for L/λ0 = 0.1. The dashed line shows the scaling 1/N. cDependence of
the density on N for L/λ0 = 10.

Fig. 5 | Size dependence of the average length of
optimal paths.Plot ofL� vsN for several values of α,
p = 1− 1/e, a L/λ0 = 0.1, b L/λ0 = 10.
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construction of a network model and the corresponding quantum com-
munication efficiency functional. So far we considered simple networks
featuring only trusted nodes and lossy bosonic links but our work lays the
basis for the study of general quantum communication networks.

We expect the performance of MQCE networks to be sig-
nificantly affected by the spatial distribution of points; for simplicity
we assumed a uniform distribution but it would be interesting to
consider other possibilities. A further crucial assumption under-
pinning our work is that of single-path routing; more powerful
routing strategies, where systems are transmitted in parallel through
different quantum communication channels have been proposed to
improve the capacitance13,46 or the security41. In these situations, an
extension of our algorithm may provide a way to combine the two
approaches to fullfill simultaneously well-defined capacitance and
security requirements. The degeneracy of the optimal path could then
acquire further practical relevance. Eventually, our method could be
extended to different quantum key distribution schemes such as
entanglement-based quantum key distribution47–49. In conclusion, we
stress that our freely available code (https://github.com/
lorenzocirigliano/quantum-networks-optimization) can be
straightforwardly used to design optimal quantum communication
networks for given location of users.

Methods
Optimization algorithm
The task of constructing MQCE networks cannot be addressed using
dynamic programming methods such as Dijkstra’s42, Prim’s50 or Pollack’s43

algorithms. Specifically, because of the inherently nonlocal nature of the
problemarising from the interplay of topological and geometric terms in the
communication efficiency functional, if the optimal path between a and b
goes through node c nothing guarantees that the subpath between a and c,
belonging to a ! bf g�, yields also the optimal path between a and c.
Consequently, we have to resort to alternative approaches to tackle this
problem. In ref. 43 Pollack presents, among others, a matrix-based algo-
rithm for solving themaximumcapacity route problem,which is equivalent
for us to finding the maximum capacitance between any pair of users.
Starting from a matrix whose element Qð0Þ

jk is the capacitance of the link
between node j and k given by Eq. (1) andQð0Þ

jj ¼ 1, an iterative procedure
is defined. The elements of Q(m) at step m are defined by

QðmÞ
jk ¼ max

‘
min Qð0Þ

j‘ ;Q
ðm�1Þ
‘k

� �h i
ð14Þ

where ℓ = 1,… ,N. In this way the element QðmÞ
jk is the maximum capaci-

tance of paths between j and k going through atmostm intermediate nodes.
Iterating, the process, convergence is reached at most whenm+ 1 =N− 1.
Individual elements of Q(m) provide at convergence the maximum capaci-
tance between all node pairs. We modify Pollack’s original algorithm as

follows. Given α, at each iterationm we evaluate the quantity

ϵjk ¼ ð1� αÞQðmÞ
jk þ αm logð1� pÞ: ð15Þ

This is the maximal communication efficiency of paths between j and k of
length atmostm+ 1. Asm is increased, the first term in Eq. (15) grows and
tends to a constant,while the second isnegative and is linear inm.Hence, for
each pair (j, k), ϵjk reaches a maximum as a function of m for a value m�

jk.
Note that m* needs not to be the same for all pairs. The communication
efficiency of the optimal path between j and k is thus

ϵðfj ! kg�Þ ¼ ð1� αÞQðm�
jkÞ

jk þ α logð1� pÞm�
jk: ð16Þ

This procedure gives the communication efficiency of the optimal paths
between any two users. In order to construct one of these (in principle

many) paths we proceed as follows. The capacitanceQ
ðm�

jkÞ
jk associated to the

optimal path between j and k necessarily appears in the initialmatrixQ(0), as

elementQð0Þ
ln . All entries ofQ are assumed to be different. This indicates that

the optimal path between j and k necessarily goes through the link between l
and n, which, indeed, determines the capacitance of the optimal path.
Starting from the matrix Q(0) we construct the unweighted graph A con-
taining an edge between all node pairs such that the corresponding element

in Q(0) is larger than Qð0Þ
ln . In this graph A we find the optimal path as the

topological shortest path going from j to k with the constraint that it goes
through the link (l, n). Clearly, although the link between l and n is uniquely
determined there are oftenmany alternative shortest paths going through it;
this gives rise to a large number of degenerate optimal paths.

The efficiency of the fully connected network
To calculate the efficiency of a fully connected network, which coincides with
its capacitance, we need the probability distribution for the distance between
any pair of points in a square of size L. This quantity coincides with the
distribution of distances between two points randomly distributed in the
square, which is a special case of the distribution for a generic rectangular
substrate derived in ref. 51. Note that the quantity N does not play any role.
Consideringnodesdistributed ina squareof sideL, thedistancedistribution is

gðdÞ ¼ 1
L
f

d
L

� �
ð17Þ

where

f ðzÞ ¼ 2z
π � 4z þ z2 0≤ z ≤ 1

4 arcsin 1=z
� �� ð2þ πÞ þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
� z2 1≤ z ≤

ffiffiffi
2

p
:

(

ð18Þ

Fig. 6 | The impact of individual nodes on security
is heterogeneous. Distribution of the number of
nodes having a given modified betweenness for
N = 64, p = 1− 1/e, L/λ0 = 0.1 (a), L/λ0 = 10 (b), and
several values of α.
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Given this distribution, the value of the capacitance averaged over all node
pairs is then:

QFC ¼ � 1
ln 2

Z 1

0
dz f ðzÞ lnð1� e�z=~λÞ; ð19Þ

where ~λ ¼ λ0=L. In the limit L≪ λ0 one can safely approximate
e�z=~λ≈1� z=~λ, hence

QFC ¼ �hlnðz=~λÞi
ln 2

: ð20Þ

In the limit L≫ λ0 instead, taking

lnð1� e�d=λ0 Þ≈� e�z=~λ; ð21Þ

we can write

QFC≈
1
ln 2

Z 1

0
dzf ðzÞe�z=~λ: ð22Þ

Since for small z we have f(z) ≈ 2πz, then

QFC≈
2π
ln 2

λ0
L

� �2

: ð23Þ

In this regime, the value ofQFC is determined by the contribution of the few
links shorter than λ0, which have a large capacitance.

Optimization regimes for a single pair
We considerN→∞. In this limit we can always assume that for any pair of
users at distance dab, there are m (∀m) equally spaced intermediate users
along the line joining a and b, so that the distance between nearest neigh-
boring nodes is dab/(m+ 1). The efficiency of the path going through m
intermediate nodes (including the direct link, which is the case m = 0) is
therefore:

EðmÞ ¼ �ð1� αÞlog2ð1� e�dab=½ðmþ1Þλ0�Þ þ α logð1� pÞm: ð24Þ

For sufficiently largeα it ismore efficient to use the direct link,m = 0. As α is
reduced it becomes more efficient to use indirect paths, with m > 0.

For dab < λ0, if one plots E(m) vs α for m = 0, 1, 2, 3,… one observes
that the intersections of the lines for m > 0 with the line for the direct link
(m = 0) occur for decreasing α asm is increased. As a consequence, starting
fromα = 1, at a givenα0!1

c � αc it becomesmore efficient to follow thepath
of length 2 (i.e., with m = 1 intermediate nodes) rather than the direct link
(withm = 0). Analogously, for a smaller α1!2

c the path of length 3 becomes
more efficient than the path of length 2 and so on.Hencewe observe a series
of transitions, where it becomes more efficient to use paths with m inter-
mediate nodes with respect to paths with m− 1 nodes, with increasing
m = 1, 2, 3,… The location αm�1!m

c of the m-th transition is given by the
condition

EðmÞ ¼ Eðm� 1Þ; ð25Þ

which, in the limitdab→ 0, yieldsEq. (12).These transitions are indicatedby
the solid lines in Fig. 3a. For dab≫ λ0 instead, the intersection of E(m) with
E(0) (efficiency of the direct link) occurs at a value of α that grows initially
with m, up to a value m. After this value the position of the intersection
decreases with m. This means that, instead of having a transition from the
direct link to apathwithone trustednode, forα ¼ α0!m there is a transition
from the direct link to a path going throughm> 1 intermediate nodes. This
first transition is followed by other transitions of the same kind as before, in
which the number of intermediate nodes is increased by 1, αm�1!m

c for

m >mþ 1. The value of m is found by determining α0!m
c using the con-

dition

EðmÞ ¼ Eð0Þ; ð26Þ

and checking, for a given dab/λ0, which of theα0!m
c is the largest. In the limit

of large dab/λ0,m gets large as well; in other words, starting from α = 1 one
jumps from the direct link to a path of larger and larger topological length,
but this happens for smaller and smaller values of α0!m

c , vanishing as 1/dab.
Figure 3a represents the scenario just described.

Optimization regimes for the whole network
The previous discussion (and Fig. 3a) consider a single pair, with given
distance dab, and is exact in the limit N→∞. The phenomenology of the
whole system of size L is the superposition of what happens for each pair in
the systemwhere distances, spanning the range 0 < dab<

ffiffiffi
2

p
L are distributed

according to Eq. (18). For L/λ0→ 0 all distances dab are necessarily much
smaller than λ0. In the expression for E(m) one can expand the exponential
to first order and the values αm�1!m

c obtained by solving the equation
E(m) = E(m− 1) do not depend on dab. Hence the transitions for all pairs
occur exactly for the same values of α, given by Eq. (12). Thus the average
optimal path length L exhibits, as a function of α, steps which are, in the
limit L/λ0→ 0, perfectly sharp (Fig. 2a).

For generic L/λ0, distances dab are distributed over the range between 0
and

ffiffiffi
2

p
L. For the smallest of them the scenario just depicted applies and

transitions occur for the values written in Eq. (12). But for any finite L≪ λ0
there are corrections to the values of Eq. (12), shown by the decreasing
behavior of the curves in Fig. 3a). This explainswhy, for 0 < L≪ λ0, steps are
not perfectly sharp but broadened (even for N→∞): the transitions from
m− 1→m intermediate nodes occur, for the various pairs, at slightly dif-
ferent values of α. Asm grows the transitions are closer (see the denser lines
in Fig. 3a); the broadening becomes stronger so that steps of high orderm
cannot be clearly identified.

For L/λ0 not infinitesimally small but still smaller than 1, an estimate of
the average position of the steps is obtained byusing the condition (25), after
setting dab = 〈dab〉 ≈ 0.52L51. The values obtained, which are a decreasing
function of L, explain why the positions of the observable steps in Fig. 2b, c,
which for L/λ0→ 0 are given by Eq. (12), decrease as L grows. At the same
time the increase of L leads to an increased “mixing” of the transitions. As a
consequence, the steps get less sharp and the concept of step progressively
loses meaning.

For large L/λ0, the connection between the regimes for a single pair
and the overall behavior of the system is more involved. Indeed, if L/
λ0≫ 1 despite the fact that for the overwhelming majority of pairs dab/
λ0≫ 1 there are always some pairs of users whose distance is dab≪ λ0.
For them, the optimal path involves a numberm of intermediate nodes
growing one at a time for the values of α given by Eq. (12). This explains
why, for any L, one observesL > 0 as soon as α < αc ¼ ½1� logð1� pÞ��1

(see Fig. 2d). However, for L≫ λ0 the overwhelming majority of dis-
tances are much larger than λ0 and the length of the optimal path is
described by the right part of Fig. 3a. For a given α < αc the optimal path
for these pairs involvesm intermediate nodes, withm assuming a range
of values depending on the precise value of dab/λ0. For this reason the
average length of optimal paths L does not assume integer values but
instead it changes continuously with α, thus explaining the lack of steps
in this case. This “mixing” involves all distances up to the largest one in
the system, dmax ¼

ffiffiffi
2

p
L, for which the transition to optimal paths

longer than 1 occurs for the smallest α value.We can therefore estimate
that for α < α0!m

c ðdmaxÞ all pairs are connected by topologically long
paths and the network is essentially a MST. This leads to the identifi-
cation of the threshold α observed in Fig. 2d as

α≈ α0!m
c ðd ¼

ffiffiffi
2

p
LÞ∼ 1=L: ð27Þ
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Capacitance of the Maximum Spanning Tree
The length of the longest link (i.e. the link with lowest capacitance) in an
Euclidean MST is given by52

max de ’ L

ffiffiffiffiffiffiffiffiffiffiffi
logN
πN

r
; N≫ 1:

Assuming that the majority of the optimal paths pass through the link with
minimum capacitance, we can estimate QMST as the capacitance of such a
link. Hence we have

QMST ’ �log2 1� exp
L
λ0

ffiffiffiffiffiffiffiffiffiffiffi
logN
πN

r !" #
; ð28Þ

which is in good agreement with the results in Fig. 2 for L≪ λ0 and is
increasingly accurate as N grows also in the other cases.

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
The code used for this study is available in GitHub (https://github.com/
lorenzocirigliano/quantum-networks-optimization). At the same link is
available the code for designing the optimal network for arbitrary spatial
location of users.
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