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Fourier Quantum Process Tomography
Check for updates
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Thecharacterizationof aquantumdevice is a crucial step in thedevelopment of quantumexperiments.
This is accomplished via Quantum Process Tomography, which combines the outcomes of different
projective measurements to deliver a possible reconstruction of the underlying process. The
tomography is typically performed by processing an overcomplete set of measurements and
extracting the process matrix from maximum-likelihood estimation. Here, we introduce Fourier
QuantumProcess Tomography, a techniquewhich requires a reduced number ofmeasurements, and
benchmark its performance against the standard maximum-likelihood approach. Fourier Quantum
Process Tomography is based on measuring probability distributions in two conjugate spaces for
different state preparations and projections. Exploiting the concept of phase retrieval, our scheme
achieves a complete and robust characterization of the setup by processing a near-minimal set of
measurements. We experimentally test the technique on different space-dependent polarization
transformations, reporting average fidelities higher than 90% and significant computational
advantage.

The functionalities of a black-box quantum device can be assessed via
Quantum Process Tomography (QPT) techniques. These techniques pre-
scribe a set of experimental measurements to identify the unknown para-
meters of theunderlyingprocessmatrix1.QPT is routinely performedacross
various quantum architectures, ranging from nuclearmagnetic resonances2

to cold atoms3, trapped ions4,5, superconducting circuits6,7 and photonic
setups8–18.

In principle, one could extract the analytical relations between the
operator parameters and the outcomes of suitable projective
measurements19. However, this proves to be often incompatible with rea-
listic experimental noise, typically yielding nonphysical reconstructions.
This inconvenience can be overcome by formulating the process tomo-
graphy as an optimization problem, as first proposed for the tomography of
quantum states20.

In this framework, themost elementary scenario is the characterization
of an SU(2) gate Û acting on a two-level quantum system (qubit). Polar-
ization of photons provides a natural way of encoding qubits, with Û
implemented via one or multiple birefringent waveplates. Accordingly, the
characterization of devices acting on light polarization can be accomplished
via QPT21.

Here, we address the more challenging scenario of characterizing
optical SU(2) gates that are dependent on some d-dimensional degree of
freedom, hereafter referred to as lattice. We introduce a technique, named
Fourier Quantum Process Tomography (FQPT), that allows retrieving all
the parameters of theunknown transformationbyprocessing only three sets
of projective measurements collected in 2 conjugate planes. This method

applies to SU(2 × d) transformations, which can be decomposed in a 2 × 2
block-diagonal form.

FQPT is validated experimentally on complex polarization transfor-
mations realized via liquid-crystal metasurfaces (LCMSs) patterned with
high spatial frequencies22, and its performance is compared with a standard
maximum-likelihood (ML) approach. In this experiment, the measure-
ments can be conveniently chosen to be performed in two conjugate planes,
namely the near and far field, wherein the light distributions are directly
connected via a Fourier transform. If the near field is associated with an
intermediate plane or two intermediate planes are selected, then the Fourier
transform is replaced by a paraxial Fresnel propagator23. FQPT can also be
implemented in other platforms. For instance, integrated photonic
technologies24 can support additional chips specifically implementing the
QuantumFourier Transform (QFT) algorithm25–27. At the same time, SU(2)
operations could be implemented either in the polarization28–30 or path
encoding. In the latter case, thewaveguide arraywould simulate a composite
lattice. Similar schemes have also been reported in several non-photonic
platforms31–33.

Results
Theory
A qubit rotation of an angle 2E around the axis n = (n1, n2, n3), with
0 ≤ E < π and ∣n∣ = 1, is described by an SU(2) operator:

Û ¼ e�iEn�σ ¼ cosðEÞσ0 � i sinðEÞðn � σÞ; ð1Þ
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where σ0 is the 2 × 2 identity matrix and σ = (σ1, σ2, σ3) is the vector of the
three Pauli matrices.

The characterization of an optical SU(2) gate is typically performed by
processing an overcomplete set of 16 projective measurements of the form:

Iab ¼ ∣hbjÛjai∣2; ð2Þ

where ∣ai and ∣bi are extracted from the three sets of states forming the
mutually unbiased bases (MUB) of SU(2)1,8,10. The process tomography of
the gate is then accomplished via anML approach, i.e., byminimizing a cost
function expressing the distance between the experimental outcomes Iexpab
and the corresponding theoretical predictions Ithab

10,21. Assuming Gaussian
statistics, ML is equivalent to minimizing the cost function given by the
mean squared error20:

L ¼
X
ab

Iexpab � Ithab
� �2

: ð3Þ

This approach may become unfavorably time-consuming and less
accurate in the case of transformations acting on high-dimensional Hilbert
spaces. Here, we consider the case of unitaries, which depend on some
additional parameter, e.g., a spatial variable or a lattice position. More
precisely, we assume the parametersE, n1, n2, n3 to be functions of r, where r
can be any set of either discrete or continuous variables. In this current
study, we assume position r as a continuous variable. However, the discrete
case can be obtained by replacing integrals with summations, i.e.,
∫ f(x) dx→∑x f(x).

The unknown unitary process acts on quantum states whose Hilbert
space is the tensor product of a qubit spaceHi, associated with an internal
degree of freedom, and a high-dimensional space Hr , associated with the
lattice.

We consider an input state uniformly distributed along r, with an
internal state prepared as one of theMUB states ∣ai. ∣ai is assumed to be the
positive eigenvector of σ1, σ2 or σ3. The unknown unitary U(r) acts on this
state, and then a projection onto the same internal state is performed. The
probability distribution along r is IaaðrÞ ¼ jhajUðrÞjaij2. Reconstructing
the unitary requires also knowing the phase of 〈a∣U(r)∣a〉. This can be done
via interferometric measurements or phase retrieval techniques. Here, we
focus on the second approach, since it can be easily implemented in a large
variety of platforms. To this end, another measurement is performed to
retrieve the probability distribution~IaaðkÞ in the reciprocal space of r. This is
enabled by a QFT of the final state:

~IaaðkÞ ¼
Z

d2r ah ∣UðrÞ∣aieik�r
����

����
2

: ð4Þ

The choice of the Fourier basis is particularly convenient, as one can
extract the wave function phase in each plane from the two probability
distributions by applying phase retrieval techniques. Indeed, these rely on
the existence of a unique phase distribution compatible with measured
amplitudes in two conjugate spaces (up to global phase shifts). We speci-
fically employed the Gerchberg-Saxton (GS) algorithm34. In particular, we
can retrieve the amplitude AaðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
IaaðrÞ

p
and the phase

αaðrÞ ¼ argðhajUðrÞjaiÞ. However, the latter is determined up to an
unknown constant ξa. The amplitude and phase are related to the process
parameters according to:

hajUðrÞjai ¼ AaðrÞeiαaðrÞþiξa

¼ cos EðrÞ � i naðrÞ sin EðrÞ;
ð5Þ

where a = 1, 2, 3, depending on which Pauli matrix is considered
ðσa∣ai ¼ ∣aiÞ. Thus, we obtain:

EðrÞ ¼ arccos AaðrÞ cosðαaðrÞ þ ξaÞ
� �

; ð6aÞ

naðrÞ ¼ �AaðrÞ
sinðαaðrÞ þ ξaÞ

sin EðrÞ : ð6bÞ

Equations (6a) and (6b) show that the extracted parameters dependon the
global phase shifts ξa, which cannot be estimated from the phase retrieval
method. Indeed, any phase that differs from αa(r) by a constant global shift
yields the same measured amplitude in the direct and reciprocal space.
Considering the ambiguity due to the global phase shift, we list all the
possible energy modulations compatible with the measurements. In prac-
tice, we selectN values of the global phase shift ξa,j = 2πj/N, with j = 0, 1, ... ,
N− 1. We specifically set N = 64. Only one of the candidates can best
describe the process under investigation. To find it, we perform an addi-
tional measurement in the reciprocal space, obtained by evolving any input
state without projection on the internal degree of freedom, e.g.:

~I0ðkÞ ¼
Z

d2rUðrÞ∣bieik�r
����

����
2

; ð7Þ

where ∣bi can be chosen arbitrarily, and ∥…∥ represents the norm of the
transformed state. Crucially, this last measurement also provides the nor-
malization factor for all the data. In this way, by numerically simulating the
far field obtained from each of the N possible SU(2) evolutions, we can
isolate the realization associated with the physical setup by sifting the one
that minimizes the distance with the measurement of Eq. (7). This step,
besides representing a computational bottleneck of the present method,
does not affect its scalability.

We finally remark that, in principle, the method also works with only
2 sets of measurements. For instance, one could process I11(r) and I22(r),
together with ~I11ðkÞ and ~I22ðkÞ, to retrieve n1(r) and n2(r). In this case, the
third component could be directly computed from the normalization
condition: n3 ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21 � n22

p
. Combined with the final measurement

in the reciprocal space, these add up to a minimal set of 5 total measure-
ments, inperfectagreementwith the argumentprovided in ref. 18.However,
we observed that experimental noise may yield nonphysical results, i.e., n3
features a non-zero imaginary part at some location. This suggested inte-
grating the minimal setting with an additional set of measurements18,20,21.

When accounting for the noise, the proposed technique thus requires
only 7measurements instead of the conventional 16: 3measurements in the
lattice space, 3 in the reciprocal space, and a last one, still in the reciprocal
space, tofixnormalization and remove all the ambiguities on theparameters
of the unitary.

Experimental results
In photonic setups, a qubit can be encoded into photon polarization, which
is typically manipulated via optical waveplates. In the circular polarization
basis, where ∣Li ¼ ð1; 0ÞT and ∣Ri ¼ ð0; 1ÞT are left and right circular
polarization states, respectively, a waveplate Lδ,θ having the birefringence δ
and theoptic axis oriented atθwith respect to thehorizontal direction canbe
expressed in the matrix form:

Lδ;θ ¼
cosðδ=2Þ i sinðδ=2Þe�2iθ

i sinðδ=2Þe2iθ cosðδ=2Þ

 !
: ð8Þ

Asinglewaveplate thus implements a rotationof anangle−δ/2 around the
equatorial axis n ¼ ðcos 2θ; sin 2θ; 0Þ. Nevertheless, one can cascade mul-
tiple waveplates to implement more general operations35,36.

We apply FQPT to periodic polarization transformations induced by
complex LCMSs22. These can be modeled as optical waveplates having
patterned optic-axis modulation θ = θ(x, y) and fixed, but tunable,
birefringence37. Inparticular,we test ourmethodwithLCMSs featuringhigh
spatial-frequencymodulations along the x and y directions. This scenario is
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experimentally more challenging than the one addressed in ref. 18, where
simple combinations of polarization gratings were considered. We bench-
mark our technique against the standard ML approach processing a whole
set of 16 polarimetric measurements (all taken in the near field), taking into
account both the timing and the accuracy of thefinal reconstruction. For the
minimization, we employed the NMinimize routine from Wolfram
Mathematica38.

The experiments are realizedwith the setup sketched in Fig. 1a. ATi:Sa
laser (wavelength λ = 810 nm) is coupled to a single-mode fiber. The output
Gaussian mode is magnified with a telescope lens system, f1 = 125mm and
f2 = 200mm (not shown in the figure). The beam waist is measured to be
2.6 ± 0.1 mm. In this way, the overall beam size is larger than the largest
periodicity on the plates, that is Λ = 2.5mm. A combination of a linear
polarizer (P1), a half-wave plate (HWP1) and a quarter-wave plate (QWP1)

is needed to prepare any input polarization state. The beam then propagates
through one or multiple LCMSs, engineering a space-dependent SU(2)
optical operator. Another set QWP2-HWP2-P2 is adjusted to project onto
any state. The last element (P2) is removed when performing the mea-
surement of Eq. (7). Each polarimetric measurement is collected on a CCD
camera, placed either after a 4f system (f = 150mm) or in the focal plane of a
lens (f 0 ¼ 250mm ), depending on if the measurement is realized in the
near field or in the far field, respectively. Recall that the far-field light dis-
tribution is proportional to the transverse momentum distribution, i.e., to
the Fourier transform of the input field.

The first experiment is realized with a single LCMS displaying a
complex periodic modulation along the x axis (see Fig. 1b). The optical
retardation is set at δ = π. The periodicity of the process simplifies the
analysis, as only a discrete spectrum of Fourier components is expected to

Fig. 1 | Fourier Quantum Process Tomography.
a A space-dependent polarization transformation
U(x, y) is implemented via LCMSs. The process
tomography is performed by preparing and pro-
jecting onto MUB states. The resulting intensity
distributions are measured in the far field,
~Iaaðkx; kyÞ, and the image plane, Iaa(x, y), of the
optical operator. b Plots of the optic-axis pattern of
two plates used to test the technique. These are
patterned along orthogonal directions to create a
complex 2D modulation. c Reconstruction of the
process U(x, y) = Tx(x)Ty(y) using FQPT and the
traditional ML technique. The arrows represent the
local eigenvectors n(x, y) and their color is asso-
ciated with the local rotation angle E(x, y) (see also
Fig. 3d for details).
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Fig. 2 | One-dimensional complex polarization transformations. a Far-field
intensity distribution ~IHH ðkxÞ for a 1D periodic SU(2) transformation. A power
spectrum P(m) is extracted after discretizing the reciprocal space. Comparison
between the experimental total far-field distribution for a ∣Li input state and the
reconstruction obtained from FQPT (b) and ML (c). The insets show the

reconstructed near-field amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffi
IHHðxÞ

p
, compared with the experimental

measurement. d Reconstructions of the process parameters across one period per-
formed by FQPT (red curves) and ML (blue curves). The expected periodicity is
captured by both approaches.
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Fig. 3 | Two-dimensional complex polarization transformations. a Far-field
intensity distribution ~IHH ðkx; kyÞ for a 2D periodic SU(2) transformation. A power
spectrum P(mx,my) is extracted. b Reconstructed near-field amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IHH ðx; yÞ

p
,

compared with the experimentalmeasurement. cComparison between the total far-

field distribution for a ∣Li input state and the reconstruction obtained from FQPT
and ML. d Reconstructions of the process parameters across one period performed
by FQPT and ML. The expected periodicity is captured by both approaches.
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appear in the far field for all the measurements. Furthermore, in this one-
dimensional (1D) realization, the intensity modulations can also be inte-
grated along the y direction to mitigate experimental imperfections.

Figure 2a shows the far-field intensity distributions recorded for the
〈H∣U∣H〉 configuration,with ∣Hi ¼ ð∣Li þ ∣RiÞ= ffiffiffi

2
p

.Asdiscussedabove, the
far-field distribution can be discretized and a normalized power spectrum
P(m) is extracted. Figure 2b, c illustrates the comparison between the
experimentally measured total far-field distribution for a ∣Li input state (see
Eq. (7)) and the reconstruction performed via FQPT and ML, respectively.
Theagreementwith the experimental observation isquantified in termsof the

similarity estimator s ¼ ðPm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PexpðmÞPrecðmÞ

q
Þ
2
, where PexpðmÞ and

Prec(m) are the (normalized) experimental and reconstructed far-field dis-
tributions. We obtain sFQPT = 97.2% and sML = 97.0%. Another metric that
can be considered is the absolute distance between the two distributions,
computed asΔ ¼ ðPmjPexpðmÞ � PrecðmÞjÞ2.We reportΔFQPT = 0.088 and
ΔML = 0.083. In bothfigures, the insets show the same comparison for the 1D
near-field amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffi
IHHðxÞ

p
. Reconstructions of individual parameters are

plotted in Fig. 2d. We note that the reconstruction of E suffers from higher
deviations from theMLprediction, while this does not occur for the vectorn.
This is ascribed to the role of the unit-normconstraint,which further restricts
the optimization domain for the vector n. The agreement between the pre-
dictions of the two methods is quantified in terms of the fidelity

F ¼ jTrðUy
MLUFQPTÞj=n, wheren = 2 is the dimension of the internal degree

of freedom39. An excellent average fidelity is obtained, �F ¼ 95:7%, where �F
denotes the average fidelity computed over all the pixels. These results prove
that both methods provide reliable reconstructions. It must be noted that
FQPT achieves satisfactory reconstructions by only processing a near-
optimal set of measurements. Moreover, a brute-force minimization
approach tends to jump between the parameters associated with processesU
and eiπU =−U, as these both generate the same experimental outcomes18,40–42.
For this reason, a continuity constraintmustbe enforcedbetweenconsecutive
pixels. Conversely, our method only relies on the block-diagonal decom-
position of the complex unitary operator. The technique is also extremely
efficient on the computational level. The total times required for a complete
reconstruction are t1DFQPT ≈ 1min and t1DML≈30min .

Recall that the GS algorithm is executed to retrieve the unknown
phases.This algorithm is basedonan iterative strategy that presents intrinsic
limitations43. The convergence speed is sensitive to the initial guess of the
phase, and the convergence to a global minimum is not guaranteed.
Moreover, the presence of noise in the input data can severely affect the
accuracy of phase retrieval. To overcome these limitations, for each set of
polarimetric measurements, the algorithm is run N1D

T ¼ 100 times for
N1D

I ¼ 1000 iterations, randomly initializing thephase guess at each trial. In
doing so, the best phase reconstruction canbe selected (up to global shifts) as
the one minimizing the total distance between the reconstructed and
measured near-field amplitudes. The number of repetitions is chosen to
ensure the stability of the final reconstruction. Alternatively, the routine can
be stopped when the algorithm has converged below a tolerance threshold.

The second experiment is realized by cascading the previous LCMS
with a second one, patterned along the y direction (see Fig. 1b). The
sequence thus implements a two-dimensional (2D) periodic SU(2) trans-
formation. The birefringence setting is δ1 = π/2 and δ2 = π. Figure 3a shows
the experimental far-field distribution~IHHðkx; kyÞ, from which a 2D power
spectrum P(mx,my) is extracted. The total far-field reconstructions for a ∣Li
input state are plotted in Fig. 3c, where the comparison with the experi-
mental result is also provided. We obtain sFQPT = 88.5% and sML = 96.7%,
with a total error ofΔFQPT = 0.080 andΔML = 0.013. The slight deterioration
in the final prediction can be ascribed to the reduced performance of the GS
algorithm in two spatial dimensions44. Figure 3b shows the near-field
amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IHHðx; yÞ

p
, as reconstructed from FQPT and ML, compared

with the experimental measurement. In this case, the GS algorithm runs
N2D

T ¼ 50 times forN2D
I ¼ 500 iterations. In this realization, we compress

the experimental images by integrating light intensity over 11 pixel × 11

pixel regions equally distributed on the camera. This allows for both
minimizing the errors due to local intensity fluctuations in the image area
and keeping the computation time within the same range as the 1D
experiment. The reconstructions of individual parameters are shown in Fig.
3d. An alternative visualization of the reconstructed process in terms of the
local eigenvector and rotation angle is provided in Fig. 1c.A good agreement
is observed between the two predictions, with average fidelity �F ¼ 91:4%.
The computation times are t2DFQPT ≈ 5min and t2DML ≈ 60min .

Discussion
In this work, a technique for fast and accurate Quantum Process Tomo-
graphy is demonstrated. This is accomplished via a non-interferometric
scheme requiring no a-priori information on the unknown operator. In the
case of complex polarization transformations, our method achieves per-
formances very close to the standard tomographybased on anovercomplete
set of measurements. It offers experimental advantage, only requiring a
near-minimal set of measurements, and computational speed-up, out-
performing the standard approach by at least one order of magnitude. The
proposed scheme reliesona standardphase retrieval algorithmanddoesnot
require a careful fine-tuning of hyperparameter configurations, which is
instead crucial in typical optimization routines18.

FQPT appears naturally suitable for all experimental setups that allow
for easy access to conjugate domains. The implementation of the QFT
algorithm in non-optical setups is still challenging, however more efficient
protocols based on digital-analog computing45, cold atoms in repro-
grammable lattices46, anddynamic circuits47 have recently beenproposed. For
this reason, this method could also be soon implemented on other physical
platforms, such as quantum circuits for atoms48,49 and electron beams50,51.

Nevertheless, we believe that the performance of the method can be
further improved by adopting optimized strategies for phase retrieval. For
instance, convolutional neural networks represent a promising solution52–54.
We also expect that FQPT can detect non-unitary evolutions55 if equipped
with some minor modifications, such as including multiple intermediate
planes in thefinal analysis. At the same time, it would be interesting to adapt
the present method to retrieve multi-photon gates and complex operations
in high-dimensional Hilbert spaces.

In principle, this procedure can also be applied to processes acting on a
m × d dimensional space, having the irreducible form

Ld
i¼1U ðiÞ, with

U ðiÞ 2 SU ðmÞ. In this case, one must consider the decomposition of U ðiÞ in
the generators of SU(m), the generalizedGell-Mannmatrices. Although the
analytical relations between the process parameters and the measurement
outcomes become significantly more complicated, the number of mea-
surements required by FQPTwill still be optimal. Thiswill be investigated in
successive works.

Data availability
The data supporting the findings of this study are available in ref. 56.

Code availability
The code for data processing is available in ref. 56.
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