
ARTICLE OPEN

Kitaev spin-orbital bilayers and their moiré superlattices
Emilian Marius Nica 1,2✉, Muhammad Akram1,3, Aayush Vijayvargia1, Roderich Moessner4 and Onur Erten1

We determine the phase diagram of a bilayer, Yao-Lee spin-orbital model with inter-layer interactions (J), for several stackings and
moiré superlattices. For AA stacking, a gapped Z2 quantum spin liquid phase emerges at a finite Jc. We show that this phase
survives in the well-controlled large-J limit, where an isotropic honeycomb toric code emerges. For moiré superlattices, a finite-q
inter-layer hybridization is stabilized. This connects inequivalent Dirac points, effectively ‘untwisting’ the system. Our study thus
provides insight into the spin-liquid phases of bilayer spin-orbital Kitaev materials.
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INTRODUCTION
Quantum spin liquids (QSLs) are disordered phases of magnetic
systems with emergent exotic properties arising from their
underlying topological character1–5. The Kitaev model on the
honeycomb lattice6,7 is of particular significance as the first
member of a family of exactly-solvable models. Recent years
witnessed experimental progress in identifying candidate materi-
als which include a number of iridates8 and α-RuCl39. Kitaev
interactions can also be strong in other van der Waals (vdW)
materials such as CrI310,11. Moreover, vdW materials can be
arranged in stacking patterns and twisted to form moiré super-
lattices, potentially leading to new phases. Indeed, recent
theoretical studies12–17 predict several magnetic phases in twisted
vdW magnets, partially realized experimentally18,19.
We study the zero-temperature phase diagram of bilayer

versions of Kitaev spin-orbital models, initially proposed by Yao
and Lee20, with additional inter-layer Heisenberg interactions. Spin-
orbital models are generalizations of the original Kitaev model with
extra local orbital degrees of freedom (DOF) and Kugel-Khomskii
interactions for spin and orbital sectors20–30. Much like Kitaev’s
original proposal, spin and orbital DOF can each be represented in
terms of three-flavored sets of Majorana fermions. The Yao-Lee
model exhibits an emergent Z2 gauge symmetry with gapped flux
excitations (visons) defined exclusively in terms of the orbital
DOF20. The inter-layer spin-exchange interactions commute with
the intra-layer flux operators, in contrast to the Kitaev model and
subsequent bilayer realizations31–34. We take advantage of this
unique feature by considering only the lowest-energy, zero-flux
sector. Furthermore, we treat the spin-exchange interactions in the
Hartree approximation. This introduces an effective inter-layer
hybridization for the itinerant Majorana fermions associated with
the spin DOF. A non-zero expectation value indicates the formation
of inter-layer spin-singlets, as shown in Supplementary Note 1. The
conservation of the fluxes in the Yao-Lee bilayer, which are defined
exclusively in terms the orbital DOF, stands in clear contrast to
bilayers based on Kitaev’s original model. As shown below, this
leads to distinct phase diagrams and to an enhanced stability of
topological QSL phases in Yao-Lee bilayers.
We focus on AA stacking and moiré superlattices, which exhibit

fully-gapped spectra, but also briefly cover the gapless, AB stacking
case. For AA stacking, the effective hybridization becomes non-zero
at a finite value of the inter-layer exchange coupling, and opens a

gap in the itinerant Majorana fermion spectrum. This signals a
topological phase transition to a gapped Z2 QSL. We support our
Hartree approximation with two additional considerations. First, we
show that the bilayer model is equivalent to an attractive Hubbard
model with three flavors of complex fermions, for our choice of
gauge. Previous quantum Monte Carlo (QMC) studies have shown
that the Hubbard model exhibits a single transition to a charge
density wave (CDW) phase35, which is equivalent to the bilayer with
a non-zero inter-layer hybridization. Secondly, we show that in the
limit of large inter-layer interactions, the bilayer model maps onto
Kitaev’s toric code36, which is gapped and exhibits topological
order. This naturally suggests that the gapped phase predicted by
the Hartree approximation is adiabatically connected to the toric
code. However, first-order transitions, possibly involving changes in
the flux configurations, cannot be completely excluded. For AB
stacking, the formation of inter-layer spin singlets leaves the
itinerant Majorana fermions gapless with quadratic band touching,
in analogy with bilayer graphene37. For moiré superlattices, we
consider both uniform (q= 0) and modulated inter-layer effective
hybridizations (q ≠ 0). In contrast to the q= 0 case, the finite-q
hybridization connects inequivalent Dirac points, effectively
‘untwisting’ the system, and opening a gap. This leads to the
emergence of a gapped Z2 QSL, as for AA stacking.
Kitaev spin-orbital models can be realized in spin-orbit coupled

4d and 5d Mott insulators, as predicted by several recent
studies26,38–40. For instance, an enhanced SU(4) symmetry41 has
been advanced for α-ZrCl3.

RESULTS
Model
Our models include intra-layer Yao-Lee20 interactions on a
honeycomb lattice (Hν), and inter-layer, antiferromagnetic Heisen-
berg interactions (HI):

H ¼ Hν þ HI (1)

Hν ¼
X

α�links;hiji
K ðαÞ τ

ðαÞ
ν;i τ

ðαÞ
ν;j

� �
σν;i � σν;j
� �

(2)

HI ¼
X
ij

Jijσ1i � σ2j: (3)
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We first focus on Hν, where K(α) is the nearest neighbor coupling
(NN) constant for type-α links (α ∈ {x, y, z}) (Fig. 1a, b). The lattice
sites are labeled by i and j, while ν ∈ {1, 2} denotes the two
layers. An exact solution is obtained by introducing Majorana
fermion representations for the spin and orbital DOF in each layer:
σ
ðαÞ
ν;j ¼ �iϵαβγcðβÞν;j c

ðγÞ
ν;j =2 and τ

ðαÞ
ν;j ¼ �iϵαβγdðβÞν;j d

ðγÞ
ν;j =2

20. Note that we
use a normalization convention for the Majorana fermions where
fcðαÞμ;i ; c

ðβÞ
ν;j g ¼ 2δαβδμνδij , and similarly for the b’s. These representa-

tions are redundant and the physical states in each layer must be
restricted to the eigenstates of Dν;i ¼ �icðxÞν;i c

ðyÞ
ν;i c

ðzÞ
ν;i d

ðxÞ
ν;i d

ðyÞ
ν;i d

ðzÞ
ν;i

operators with eigenvalues 1. As in Kitaev’s model, these
constraints can be imposed via projection operators
Pν= ∏i(1+ Dν,i)/2. The intra-layer Hamiltonians in the Majorana
representation can be expressed as Hν ¼ PνHνPν , where

Hν ¼
X
hiji

K ðαÞuαν;ij ic
ðxÞ
ν;i c

ðxÞ
ν;j þ icðyÞν;i c

ðyÞ
ν;j þ icðzÞν;i c

ðzÞ
ν;j

h i
: (4)

The bond operators uðαÞν;ij ¼ �idðαÞν;i d
ðαÞ
ν;j , where i, j are on the A and

B sublattices, respectively, commute with Hν , and are therefore
conserved with eigenvalues ± 1. Both Hν are invariant under
separate Z2 gauge transformations cðαÞν;i ! �cðαÞν;i ; uðαÞij ! �uðαÞij
with flux operators which are defined by the product of the uðαÞij
around hexagonal plaquettes.
Lieb’s theorem42 predicts that the ground state lies in the zero-

flux sector, with a finite vison gap. We can obtain the itinerant
Majorana spectrum by choosing a gauge where uij= 1 ∀ 〈ij〉 in
both layers. Unless otherwise stated, we use this choice
throughout. The three flavors of itinerant Majorana fermions have
identical spectra, which are gapless for Kx+ Ky > Kz. We consider
the symmetric, gapless case with Kx= Ky= Kz= K.
We now consider the inter-layer interactions in HI. Unlike in the

Kitaev model, the visons in the Yao-Lee model are defined
exclusively in terms of the orbital DOF, while the itinerant
Majorana excitations stem from the spin DOF alone. Consequently,
additional terms involving the spin DOF only, including a bilayer
coupling, commute with the flux operators. The resulting
spectrum can a priori preserve the gapped flux excitations, in

contrast to the original Kitaev model31,33,34. Consequently, we
consider Yao-Lee bilayers coupled via inter-layer antiferromag-
netic Heisenberg interactions in HI. Note that we allow for general
inter-layer Jij coupling beyond NN. The bilayer Hamiltonian in the
Majorana representation is H ¼PνHν þHI where

HI ¼
X
i;j;α≠β

Jij
2

cðαÞ1i c
ðαÞ
2j c

ðβÞ
1i c

ðβÞ
2j

� �
: (5)

Self-consistent solutions for AA and AB stacking patterns
The inter-layer interactions are bi-quadratic in the itinerant
Majorana operators, thus precluding a closed-form solution.
Instead, we treat the inter-layer interactions within a Hartree
approximation. This approach is supported by additional con-
siderations, as discussed below.
For the purpose of illustration, we restrict the inter-layer

coupling to NN pairs. We do not expect that weaker couplings
beyond NNs will alter our conclusions. The on-site mean-field (MF)

parameters hχðαÞi i ¼ hicðαÞ1i c
ðαÞ
2i i preserve the SO(3) spin symmetry,

and, we drop the corresponding flavor indices for most of the
following discussion.
Before proceeding with a detailed presentation of the results,

we first clarify the nature of the MF parameters. In the absence of
intra-layer Yao-Lee interactions (K(α)= 0), the decoupled, inter-
layer, spin-singlet states for overlapping sites can equally be

described by two eigenstates of χðαÞi , with eigenvalues ± 1 for each
α, as shown in Supplementary Note 1. The Ising-like nature of
these states stems from a redundancy in the representation of the
decoupled singlets in terms of the c Majorana fermions. Once the
intra-layer interactions are turned on, and a set of bond variables

(uðαÞij ) is chosen, we obtain a unique MF solution with hχðαÞi i≠ 0,
which is identical for the three flavors. These finite MF parameters
likewise indicate the formation of inter-layer spin-singlets in the
physical ground-state (GS). However, the Ising-like nature of these
parameters is not immediately physical, since the non-trivial
phases that we find are not described in terms of a local order
parameter. We further elucidate these aspects in the following.

Fig. 1 Yao-Lee bilayer without twisting. Illustration of the model for (a) AA and (b) AB stacking patterns. K and J are the intra-layer Kitaev and
inter-layer Heisenberg exchange terms, respectively. (c) Effective inter-layer hybridization for AA stacking. Finite χAAh i indicates the formation
of inter-layer singlets and leads to gapped itinerant Majorana fermions. (d) Same for AB stacking, leading to quadratic band touching.
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As previously mentioned, we carry out the Hartree approxima-
tion in a gauge where all uij= 1 in both layers, and obtain the GS

Ψj i ¼ 8 uðαÞν;ij ¼ 1
��� E

� χ
ðαÞ
i ≠0

D E��� E
: (6)

Importantly, hχðαÞi iΨ is not a well-defined, Landau-Ginzburg order
parameter for the bilayer. Indeed, any gauge transformation,
implemented for instance by Dν;i Ψj i, changes the sign of the
associated hχðαÞi i together with those of the three bonds extending
from i in layer ν. Furthermore, the physical GS is obtained by
applying the projector P to Ψj i as
Ψj iPhys ¼ P Ψj i: (7)

Ψj iPhys amounts to a linear superposition of all gauge-
symmetrized states which preserve a net zero flux, as shown in
Supplementary Note 2 A. States with finite ± jhχðαÞi ij occur with
equal weight, implying that hχðαÞi iPhys ¼ 0.
In order to characterize transitions in the physical GS, we instead

consider a gauge-invariant correlator

CðαÞ
ij

D E
Phys

¼
Y0

α�links; i0 j0h i
uðαÞ1;i0 j0u

ðαÞ
2;i0 j0

0
@

1
Aχ

ðαÞ
i χ

ðαÞ
j

* +
Phys

; (8)

where the strings of bonds connect operators at the end sites i, j.
In Supplementary Note 2 B, we show that the expectation value of
CðαÞ
ij in the physical GS matches that of a two-point correlator for

χ(α) in Ψj i.
CðαÞ
ij

D E
Phys

¼ χ
ðαÞ
i χ

ðαÞ
j

D E
Ψ
: (9)

From this expression, long-range order in Ψj i is equivalent to
hχðαÞi iΨ ≠ 0. It follows that non-vanishing MF parameters imply a

finite hCðαÞ
ij i

Phys
, in the limit of infinite separation. In Supplementary

Note 2 C, we express hCðαÞ
ij i

Phys
in terms of the spin and orbital

operators of the bilayer, and show that it signals a topological
phase transition to a gapped, Z2 QSL for the AA-stacked case,
which involves the formation of inter-layer spin-singlets. We note
that all subsequent conclusions regarding the MF parameters,
obtained in the Hartree approximation and in a fixed gauge, are to
be understood in the present context.
We now discuss our results in the Hartree approximation. For

the AA stacking pattern, the A and B sublattice sites overlap
(Fig. 1a). The inter-layer interactions involve two pairs of sites per
unit cell: HI ¼ �2J½Pi2A;αhχAAiðicα1icα2iÞ þ

P
j2B;αhχBBiðicα1jcα2jÞ�.

Solutions which are both uniform and symmetric in the sublattice
index ( χAAh i ¼ χBBh i) amount to gapless itinerant Majorana
fermions, with shifted Dirac cones. In contrast, when the
hybridization has an alternating sign on the two sublattices
(〈χAA〉=− 〈χBB〉), the spectrum is gapped, leading to a lower
ground-state energy. Our self-consistent solutions are shown in
Fig. 1c as functions of J/K. We find that the critical value for this
transition is Jc/K= 0.55.
To establish the stability of our solutions beyond the Hartree

approximation, we map H to an equivalent form by using
complex fermions f αi ¼ ðcα1i þ icα2iÞ=2:

H ¼ 2K
X
hiji;α

ðif αyA;i f αB;j þ H:c:Þ � 2J
X
i

ni � 3
2

� �2

; (10)

where ni ¼
P

αf
αy
i f αi . For J > 0, Eq. (10) describes an attractive

Hubbard model with three flavors of complex fermions. This
model exhibits a single, broken-symmetry CDW phase with finite
〈nA〉=− 〈nB〉, as determined by QMC35. This Ising order
parameter acts as a mass term for the complex fermions, and
gaps their spectrum. It is equivalent to a solution in which χh i
alternates between sublattices in the Yao-Lee bilayer. Importantly,

the Hubbard model and CDW order parameter were obtained by
fixing the gauge. While the CDW breaks inversion symmetry in the
Hubbard model, the same cannot be said of the physical GS of the
bilayer model. As previously mentioned, the order parameters
obtained in a fixed gauge are physically meaningful only in
relation to the gauge-invariant correlator hCðαÞ

ij i
Phys

defined in
Eq. (9).
The GS obtained in the Hartree approximation for AA stacking

has a fourfold topological degeneracy, as shown in Supplementary
Note 9. This result is corroborated by the perturbative analysis in
the large-J limit discussed in the following.
For AB stacking, the A sublattice sites of layer 1 lie directly on

top of the B sublattice sites of layer 2, with a single bond per unit
cell, (Fig. 1b). Therefore, for finite χh i beyond Jc/K≃ 1.1, the
itinerant Majorana spectrum is similar to that of AB-stacked bilayer
graphene with quadratic band touching37. The self-consistent
solutions for 〈χAB〉 are shown in Fig. 1d. A mapping to an
equivalent model as in the AA case is not apparent here.
The choice of uniform uij= 1 for both layers implies that the

system persists in a zero-flux sector. This is supported by
additional MF calculations with several distinct non-zero flux
patterns (Supplementary Note 3), which indicate that the zero-flux
states are lower in energy. Furthermore, the effective Hamiltonian
in the large-J limit (see below) similarly prefers this configuration.
We comment on the stability of the phases obtained in the

Hartree approximation in the presence of additional inter-layer,
NN, spin-exchange interactions, which we realistically expect to be
subleading. For the AA-stacked bilayer, the gapped phase
obtained for J > Jc is stable with respect to additional, infinitesimal,
NN interactions. For the AB-stacked bilayer with J > Jc, our Hartree
approximation predicts quadratic band touching, which implies a
finite density of states for the itinerant Majorana fermions at zero
energy. Additional inter-layer, NN interactions are therefore likely
relevant in a renormalization-group sense. Establishing the nature
of the low-energy phases in these cases requires further analysis,
at Hartree level and beyond, and we reserve such questions for
future study.
The GSs obtained in the fixed gauge survive projection onto the

physical sector, as shown in Supplementary Note 2 A.

Limit of large inter-layer interactions with AA stacking pattern
We consider the AA stacking pattern in the limit of large J/K. To
zeroth order in the intra-layer (K) terms, the GS manifold consists
of a collection of independent inter-layer spin singlets with
degenerate orbital states. We derive an effective Hamiltonian on
the GS manifold, perturbatively up to 6th order in K/J

Heff ¼ P
α�links

hiji

g2τ
ðαÞ
1i τ

ðαÞ
2i τ

ðαÞ
1j τ

ðαÞ
2j þ g3

P
ν¼1;2

τ
ðαÞ
νi τ

ðαÞ
νj

 !

þ g6
P
⎔;ν

Wν
p

(11)

where W1ð2Þ
p is the flux operator defined on the honeycomb

plaquettes on layer 1(2) as Wν
p ¼ τ

ðzÞ
νi τ

ðyÞ
νj τ

ðxÞ
νk τ

ðzÞ
νl τ

ðyÞ
νmτ

ðyÞ
νn (Fig. 2d).

Please consult Supplementary Notes 4 and 5 for additional details.
The coupling constants are g2=− K2/4J, g3=− K3/J2, and
g6=− K6/(8J)5. The g2 term describes Kitaev interactions around
inter-layer plaquettes while the g3 term is a standard Kitaev
interaction in each layer.
Note that g6 terms promote uniform W1ð2Þ

p ¼ 1 corresponding
to a zero-flux low-energy manifold. This configuration is preserved
by the remaining terms which commute with the W1ð2Þ

p ¼ 1.
We first focus on the the leading g2 terms, and define new

operators pðαÞi ¼ τ
ðαÞ
i1 τ

ðαÞ
2i , which unlike the τ’s, all commute with each

other. Furthermore their product amounts to pðxÞi pðyÞi pðzÞi ¼ �1.
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Therefore, we use local basis states which are eigenstates of all p
operators and which also satisfy the product rule:
f �;�;�j i; �;þ;þj i; þ;�;þj i; þ;þ;�j ig where ± denotes the
eigenvalue of p(α), (α= x, y, z). The g2 < 0 terms favor equal-p(α)

states on NN sites. Therefore, in the GS manifold of the g2 terms, it is
possible to define bond variables rij= ± 1 for pairs of (+ ,+ ) and
(− ,− ) eigenvalues of pðαÞi=j , respectively. For configurations that do
not minimize the g2 terms, rij is not defined (Fig. 2a). In addition to
minimizing the g2 terms, the GS manifold must also satisfy the local

constraint due to pðxÞi pðyÞi pðzÞi ¼ �1. Taken together, these conditions
are equivalent to bond configurations which obey an Ising Gauss’s
law GP

i ¼
Q

Y rij ¼ �1 (Fig. 2b). We stress that the rij bond variables
and Gauss’s law are only defined in the GS manifold of the g2 terms.
Next, we examine the effect of g3 and g6 terms acting on the GS

manifold obtained from the combined effects of the g2 terms and

local product constraints. Each τ
ðαÞ
1;2 acting on jpx ; py; pzi preserves

the corresponding α eigenvalues but flips the remaining two (see
Supplementary Note 5). Therefore, the g6 terms acting on a
plaquette flips all of the rij bond variables therein (Fig 2d), leading
to an effective term

�κ
X
⎔

⎔j i ⎔h j þ H:c:ð Þ (12)

In contrast, the single g3 term on sites 〈ij〉, connects a ground-state
configuration to excited states (Fig. 2 (c)). Consecutive application
of g3 terms around a plaquette leads to plaquette flips, but these
processes are subdominant with respect to those due to the
g6 term.
As shown in Supplementary Note 6, the resonance term in Eq. (12),

along with Gauss’ law, describe Kitaev’s toric code36 on a honeycomb
lattice. We thus conclude that the bilayer model in the limit of large
inter-layer spin exchange interactions is in a gapped abelian Z2
topological QSL phase.

Self-consistent solutions for moiré superlattices
We generalize the Hartree approximation to include the effects of
small-angle twists. We follow Ref. 43 to derive a low-energy theory

defined on the moiré extended BZ, as shown in Supplementary
Note 7.
To allow for non-vanishing inter-layer interactions under

arbitrary, small twist angles, we extend the former beyond
overlapping NN pairs and allow for an implicit decay with
increasing pair separation. In general, this entails a decay of the
Fourier components J(k) with ∣k∣, and involves interactions which
are delocalized in the extended BZ. In the low-energy limit, the
interactions are naturally limited to the vicinity of a discrete set of
equivalent crystal momenta throughout the extended BZ. In
practice, we keep only J(k) with ∣k∣⪅ ∣2K00∣, or twice the distance
from the origin to the nearest Dirac point (Eq. 59 in Supplemen-
tary Note 7). We also assume that the retained Fourier
components are all comparable in magnitude. The restrictions
on the values of J(k) allow us to explicitly consider the Yao-Lee
bilayer analogs of flat bands in twisted bilayer graphene43.
However, our conclusions are independent of this approximation,
as discussed in the following. We also limit the hybridization to
states in the vicinity of Dirac points in neighboring moiré
reciprocal unit cells. This truncation is justified in the low-energy
limit, where small-momentum scattering processes are dominant.
The intra-layer terms amount to the usual Dirac fermions for the

two layers, which are shifted with respect to each other due to
twisting. The inter-layer interactions together with the approxima-
tions discussed previously can be written as

HI ¼ � 4J
N

X
nm

χy00ðqÞ
D E

χnmðqÞ þ χ00ðqÞh iχnmð�qÞ
h i

þ H.c. (13)

where

χnmðqÞ ¼ i
P
k

cy;ðμÞ1;α;nmðkÞcðμÞ2;β;nmðk � qÞ
h

þ e�iG2�ðτα�τβÞcy;ðμÞ1;α;nmðkÞcðμÞ2;β;nþ1mðk � qÞ
þ e�iG3�ðτα�τβÞcy;ðμÞ1;α;nmðkÞcðμÞ2;β;nmþ1ðk � qÞ

i ; (14)

while

cy;ðμÞα;1=2ðK00 þ k � nb2 �mb3Þ ¼ cy;ðμÞα;1=2;nmðkÞ (15)

Fig. 2 Effective Hamiltonian in the large-J limit. a The bond operator rij ¼ sgnðpðαÞi Þ ¼ sgnðpðαÞj Þ, which is defined in the ground-state
manifold of the g2 terms in Eq. (11). Red (black) solid lines correspond to +(−) bonds. Conversely, bond configurations which include NNs with
sgnðpðαÞi Þ≠ sgnðpðαÞj Þ, shown here with blue dashed lines, are not labeled by rij bonds. These configurations correspond to excited states. b A
ground-state manifold configuration which minimizes the g2 terms and which also obeys the local product constraint, equivalent to an Ising
Gauss’s law. c g3 terms on sites i, j flip four adjacent bonds resulting in an excited state. d g6 terms change bond configurations from rij= 1 to
rij=− 1 around each plaquette and thus connect configurations which belong to the Ising Gauss' Law manifold.
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are states with an effective Dirac dispersion which is shifted by the
moiré reciprocal vectors b2,3 with respect to the Dirac point
centered on the moiré first BZ at n=m= 0. K00 is the position of
the Dirac point of layer 1 in the first BZ while G2;3 are the
reciprocal unit vectors of layer 1. The sums over momenta k cover
the extended moiré BZ, with an implicit cutoff. The vectors τα,β
denote the shift of the A, B sublattices in layers 1 and 2,
respectively. q is a vector contained within a single moiré
reciprocal unit cell. As already mentioned, our approximations,
and the cutoff for J(k) in particular, ensure that the form of the
effective hybridization in Eqs. (13) and (14) bears a close
resemblance to that of twisted bilayer graphene43. For more
details on the MF procedure, please see Supplementary Note 7.
We consider two cases, one for q= 0 corresponding to a

uniform inter-layer hybridization, and another for finite q= q1

where q1 ¼ �8π=3 sinðθ=2Þŷ43 which denotes the shift between
the Dirac points in layers 1 and 2 in the first BZ due to twisting
(see Fig. 3d). In both cases, 〈χAA〉=− 〈χBB〉 acquire finite
expectation values whereas 〈χAB〉 and 〈χBA〉 remain pinned to
zero. Our self-consistent calculations indicate that the critical
coupling Jc/K for the q= q1 solution is below its q= 0 counterpart
for the entire range of twist angles (Fig. 3a), indicating that the
modulated hybridization is energetically favored. A finite-q
hybridization connects states near inequivalent Dirac points in
the moiré BZ and gaps the spectrum, as illustrated in Fig. 3b,
effectively ‘untwisting’ the system. In contrast, for q= 0, the
spectrum remains gapless, (Fig. 3c). Consequently, the finite-q
solution is preferred for any non-zero twist angle. The two
solutions merge smoothly as θ→ 0 since q1 vanishes in this limit,
at which point the low-energy sectors match the self-consistent
solutions of the un-twisted bilayer with AA stacking.
At the level of the Hartree approximation, our results indicate

that the gap remains open as the small-angle twisting is turned
on. Within the same approximation, we conclude that resulting
phases are adiabatically connected with the AA-stacked bilayer in
the large-J limit. Our results suggest that, beyond the Hartree
approximation, the gap in the spin excitations of the bilayer
survives, and that the GS remains in a net zero-spin state for small-
angle twisting. We expect that the intra-layer interactions lift the
extensive degeneracy of the orbitals, resulting in a gapped, Z2
QSL, as for the case with AA stacking.
For the gauge choice of uniform and identical bonds in both

layers, the q= q1 incommensurate, inter-layer hybridization
breaks the translation symmetry of simple moiré pattern but
preserves all other symmetries. It consequently triples the size of
the moiré unit cell (Fig. 3e). Figure 3d shows the moiré (black) and
folded (red) BZ’s, respectively. The rotated Dirac cones at the
corners of the moiré BZ are folded onto the Γ point. However,
since the effective hybridization is not gauge invariant, this does
not imply a true translation symmetry breaking, but instead
demonstrates that small-angle twisting preserves the gapped
Z2 QSL.
We note that the main conclusion of the preceding paragraphs,

that twisting the AA-stacked bilayer by small angles preserves the
gapped spectrum, does not rely on our assumptions concerning
the cutoff in J(k). Indeed, keeping only the leading J(0) terms in
the expression for the self-consistent hybridization (Eqs. 82-84 in
Supplementary Note 7), which likewise connect pairs of Dirac
points in the moiré BZ, leads to a similar conclusion in the Hartree
approximation.

DISCUSSION
It is instructive to contrast the bilayer Yao-Lee model considered
here with the bilayer Kitaev models of earlier works. For a bilayer
Kitaev model, a mean-field study predicts gapped QSL and trivial
dimer phases for intermediate and large values of the inter-layer
coupling, respectively31. However, an exact diagonalization

study33 finds that a single phase transition between gapless QSL
and trivial dimer phases occurs at a substantially weaker coupling
J/K ~ 0.06. Our results indicate that the QSL phase remains stable
in Yao-Lee bilayers for large but finite intra-layer couplings, while
the trivial dimer phase emerges only in the absence of intra-layer
terms (K= 0). The stability of the gapped QSL in the Yao-Lee
bilayer can be attributed to the effect of the spin operators on the
zero-flux GSs of the decoupled layers. In the Kitaev model, the spin
operators create two visons, as shown in Supplementary Note 10.
By contrast, the spin operators in the Yao-Lee model preserve the
zero-flux GS manifold, since the spin and flux operators are
associated with different DOF.
We studied the zero-temperature phase diagram of a bilayer

Yao-Lee model with inter-layer interactions. For AA stacking, we
determined that finite inter-layer singlet correlations gap the
itinerant Majorana fermion spectrum. We also derived an effective
Hamiltonian in the limit of large J/K, and demonstrated that it
maps onto the toric code. In the absence of any additional
transitions which close the gap, we concluded that the solutions
obtained via the Hartree approximation are adiabatically con-
nected to the large inter-layer interaction limit, leading to the
stability of a topological gapped Z2 QSL. This phase persists for
moiré superlattices under small-angle twisting. Detailed studies of
the AB stacked phases and of the toric code models in the large
inter-layer coupling limit are clearly desirable.

METHODS
For more details on the methods used to obtain the results shown
in Figs. 1–3 please consult Supplementary Notes 7 and 8.

Fig. 3 Moiré superlattices of the Yao-Lee bilayer. a Critical inter-
layer exchange Jc θð Þ, as a function of twisting angle θ, and for q= 0
and q= q1 in the effective interlayer hybridization χ00ðqÞh i (Eq. (13)),
in units of Jc θ ¼ 0ð Þ. The q= q1 solution is energetically preferred.
The spectrum for (b) q= q1 and (c) q= 0 in units of the intra-layer
coupling K (Eq. (2)). d Moiré reciprocal unit cells for J < Jc (black) and
J > Jc (red). 1 and 2 denote the Dirac points of the two layers which
are separated by q1 for J < Jc, corresponding to vanishing inter-layer
hybridization. When the latter acquires a finite value for J > Jc and
q= q1, the two Dirac points are shifted to the Γ point of the folded
BZ, and are subsequently gapped. e Schematic illustration of the
moiré lattice vectors for J < Jc (black) and J > Jc (red) corresponding
to zero and non-zero (q= q1) hybridization, respectively.
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