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Transforming agrifood production systems and supply chains
with digital twins
Asaf Tzachor 1,2✉, Catherine E. Richards1,3 and Scott Jeen3,4

Digital twins can transform agricultural production systems and supply chains, curbing greenhouse gas emissions, food waste and
malnutrition. However, the potential of these advanced virtualization technologies is yet to be realized. Here, we consider the
promise of digital twins across six typical agrifood supply chain steps and emphasize key implementation barriers.
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Agrifood production systems and supply chains are currently not
on track to meet the sustainable development goals. They are
wasteful and polluting, breach several of the so-called planetary
boundaries, and fail on their most basic premise to provide an
expanding global population with safe and nutritious diets,
leaving some 900 million people undernourished1.
As a response, transformation through digital technological

innovation is often proposed2,3. In such proposals, computer-
enabled technologies, including smart sensors, artificial intelli-
gence (AI) and other embedded systems, are fundamental. Here,
we consider the promise of digital twin (DT) technology, which
despite its potency and increasing diffusion across industrial
domains has not been considered for the purpose of improving
agrifood sector sustainability, namely through mitigating malnu-
trition and undernutrition, reducing greenhouse gas (GHG)
emissions and preventing food waste. We then discuss enabling
and disabling factors for achieving this yet-to-be-realized potential
of virtualized agrifood value chains.

ADVANTAGES OF VIRTUALIZED AGRIFOOD SYSTEMS AND
SUPPLY CHAINS
DTs are virtual representations of living or non-living physical
entities. Enabled by improvements in computing capabilities, they
exist in silico, that is, as computer-simulated models4. Deployment
of sensors that detect biological, chemical, and physical properties
of objects in real-time, ensures that the digital counterparts of
these measured objects are accurate and ‘live’5. In such cyber-
physical architectures, changes that occur in the physical system
are modifying its virtual twin simultaneously and continuously.
With origin in experimental designs of satellites, spacecrafts, city

infrastructures6, and civil engineering writ large, in recent years,
DTs have been re-purposed to address predicaments such as
climate change and extreme weather, in complex natural
environments7,8.
By simulating the state of physical systems, DTs can be queried

using advanced modelling techniques to uncover optimal
behaviour. Reinforcement Learning (RL), a subfield of AI that
enables autonomous agents to make decisions in complex
systems9, can be deployed in DTs to advise optimal control
strategies to the physical counterpart. RL agents take the current
state of a system as input, and predict future action sequences
that optimize system behaviour. DTs allow agents to simulate

many control sequences to determine which aligns best with the
control objective before advising the physical system.
Combining virtual replicas with such advanced decision-making

technologies will have profound transformative implications for
the agrifood sector10, offering possible remedies to the problems
of malnutrition, GHG emissions, and food waste. To appreciate
these prospects, we acknowledge potential applications across six
supply chain steps: (a) agricultural inputs, (b) primary agricultural
production, (c) storage and transportation, (d) food processing, (e)
distribution and retail, and (f) consumption (Fig. 1).

Inputs for agricultural production
Agricultural inputs commonly refer to agro-chemicals, such as
nitrogen (N) and phosphorous (P) fertilizers, pesticides, and crop
seeds, which are essential for yield productivity. The carbon
footprint involved in the manufacture of these inputs is
considerable. For example, CO2 emissions of N fertilizer produc-
tion in China is estimated at 452 Tg CO2-eq, constituting 7% of
total GHG emissions from the Chinese economy. Measures to
improve heat conversion efficiency in power plants supporting N
fertilizer manufacturing are recognized as an essential interven-
tion to lower carbon intensity11. In this context, ‘virtual power
plants’ could be developed and used by RL agents to find control
policies that maximize electricity generation whilst minimizing
CO2 emissions12.
DTs proven to operate at the molecular, cell, tissue and organ

levels5 can enable precise simulations of crops. New ‘virtual crops’
could be rapidly stress-tested in computer laboratories under
alternate conditions, including precipitation, temperature and
salinity, to discover desirable traits and risk factors. While
genetically modified organisms (GMO) are currently precluded in
some jurisdictions, including the European Union, in the face of a
shifting climate niche13 such laboratories could prove useful in
supporting seed improvements for climate-resilient staples.

Primary agricultural production
Beyond the organ level, virtualization of entire farming systems
that replicate atmospheric factors, geomorphological processes
and edaphic conditions, including soil microbiology, would
support precision agriculture at unprecedented scales. Such DTs
are likely to use cameras and sensors to sample humidity,
moisture content, temperature, irradiance, irrigation and nutrient
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supply as often as every minute. The digitalisation of agricultural
production has the potential to revolutionise problems in animal
health, farming resource efficiency and biodiversity loss14–16.
DTs can be used to actively monitor livestock well-being using

facial recognition technology that infers emotion from ear
positions and pupil dilation17. Others can track soil water content,
solar irradiance, and weather conditions, then be used to predict
the nitrogen response rate (NRR) of pasture dry matter and
monitor soil conditions18.
RL agents could use these DTs to generate synthetic data for

training, then find policies that recommend irrigation, lighting and
nutrient dissemination to minimize resource-use whilst maximiz-
ing crop yield19.
Moreover, DTs may promote rewilding, sediment trapping and

additional nature-based solutions for land management and
restoration20, through rapid experimentation in ‘virtual farms’. In
silico ‘what-if’ simulations could elicit further benefits, such as
testing and identifying pathways to increase carbon sequestration
in croplands and pastures, or using agro-forestry techniques, such
as integrated green belts for wildfire prevention.
As in other domains, including water and electricity infrastruc-

ture, DTs can support predictive maintenance21, for instance, of
irrigation systems in plantations to minimize food losses. In
intensive controlled environment agriculture (CEA), such as
commercial aeroponic greenhouses and hydroponic systems,
DTs may be used in structure design and operations to suggest
optimum light intensity, humidity, temperatures, CO2 concentra-
tions and water-nutrient recycling.

Storage and transportation
Commodity chains that connect local produce to markets typically
involve transit in freight trains and bulk carriers as well as
temporary storage in terminal elevators. In rail, road and sea
vessels, and in storage silos, cargos of grain are susceptible to
mold, mustiness and early germination.

Ventilation management is essential to prevent dampness and
fungal infestation, such as Aspergillus and Penicillium that
frequently deteriorate the quality of cereal bulks22. DTs already
employed for improved HVAC systems design23 could be re-
purposed to this end. In addition, real-time replicas of stationary
elevators and vessels on voyage could track ventilation periods
and moisture content of cargo as well as provide early warning of
mycotoxin contamination that warrants fumigation.
DTs can monitor fruit quality during inter-continental shipping24.

Combining live temperature measurements with mechanistic
models, such DTs can predict parts of the fruit that will perish
before delivery. Amalgamated insights from many of these DTs can
provide insights into transportation conditions that reduce food
quality, informing new delivery strategies that limit food waste.
In cold chains of perishable produce, where fruit, vegetable,

dairy, meat and seafood products are pre-cooled and provisionally
stored in refrigerated facilities, computer simulations may advise
on energy efficiency measures to reduce carbon emissions.
Synchronized DTs can monitor food temperatures, humidity,
delivery schedules, respiratory behaviour, and grid carbon
intensity; RL agents can then optimize the control of cooling
equipment to draw power from the grid when carbon intensity is
lowest to minimize emissions whilst maintaining food quality.

Food processing
Paired with sensing technologies, DTs can be integrated across
food processing and packaging facilities that convert agricultural
commodities, such as corn or cattle, to ingredients and end-user
food products, including tinned vegetables, meat cuts, ready
meals and confectionery25.
Food loss and waste in this echelon are prevalent in both

developed and developing regions, with implications for food
security and the environment. In the UK, for example, food waste
in this echelon stands at five megatonnes each year26.

Fig. 1 Example of apparent benefits of digital twins in the agrifood supply chain. This diagram indicates potential or possible 17 benefits of
digital twins in reducing greenhouse gas emissions, food waste and malnutrition, spanning six steps of a typical agrifood supply chain, as
presented and discussed in this paper.
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Here, DTs can support industrial ecology approaches to prevent
food loss, in the same way they have been used to enhance
circular economy applications in construction manufacturing27.
DTs can be deployed in smart manufacturing plants to monitor
ingredient delivery schedules, plant throughput, ingredient
wastage, operator work schedules and demand forecasts. RL
models can then be trained to manipulate manufacturing
equipment to match food processing to expected demand whilst
minimizing waste28.

Distribution and retail
Food distribution networks are significant contributors to global
GHG emissions, with food retail alone responsible for ~0.3
gigatonnes of CO2 annually29. Food discarded in this echelon is
considerable too, for example, with estimates suggesting 366
kilotonnes of food waste per year in the UK26. These losses are
attributed to inefficient warehousing, hypermarkets and super-
markets operations including shelf management and failure to
monitor and measure food waste30.
DTs that track construction-site logistics31 could be repurposed

to mimic food distribution systems, and used to optimize delivery
schedules minimizing carbon emissions and food wastage. Such
DTs could monitor the location of delivery vehicles across the road
network, food inventory in retail stores, food embodied emissions
traffic, weather and shelf-life of food in transit.
DTs can model the cold chain end-to-end to provide retailers

with a better understanding of food quality when it arrives in-
store32. Here, live temperature readings inform physics-based food
models to track quality throughout distribution. By performing
sensitivity analyses on such models, and inferring optimised
shipping conditions fruit shelf life can lengthen.
Given this state representation, RL agents used to optimise

supply chain distribution to maximise producer profit could be
repurposed to maximise resource efficiency33. Agents could
synthesise policies that minimize food wastage, and thus
system-level emissions, by sending food to a retailer further from
the distribution centre with low inventory levels, rather than a
closer store more likely to incur wastage. Recent reviews suggest
these simulations could further predict delays in supply chains,
signs of food spoilage and potential food losses as well as
recommend preventative measures34.
Where discard of food surplus is expected, the expansion of DTs

to encompass networks of food re-distribution, such as commu-
nity soup kitchens, can aid in waste mitigation and improving the
nutritional security of vulnerable populations. Such expansion may
also include growers to more effectively apportion and dispense
unharvested produce.

Consumption
Malnutrition, which currently afflicts over two billion people, arises
from deficient, excessive or imbalanced consumption of macro- and
micro-nutrients. Insufficient intake of iodine and iron, for instance,
may lead to anaemia. Overconsumption of carbohydrates, for
example, can result in increased risk of cardiovascular diseases.
One recent and emerging approach to the predicament of

malnutrition is nutrigenetics. This field of research proposes that
individuals’ genetic profile and microbiome determines their
metabolism, nutrient requirements, predisposition to nutrition-
related diseases such as type 2 diabetes, and response to dietary
interventions35. To the extent that DTs could, in the future,
simulate individual persons36, by combining omics data, including
nutrigenomics and metabolomics, and drawing on medical and
lifestyle records, including via IoT wearable devices, virtual
representations of humans could generate scenarios on the
health effects of their food choices, customize dietary interven-
tions and transform preventive healthcare thereby reducing
malnutrition.

ENABLING AND DISABLING FACTORS FOR VIRTUALIZED
AGRIFOOD VALUE CHAINS
‘Live’ DTs offer comprehensive computational ecosystems for
simulating crops, farms, agricultural equipment, storage facilities,
processing factories, and distribution networks. Nevertheless,
agrifood stakeholders must be cognizant of at least four techno-
economic limitations currently associated with the deployment
of DTs.
First, robust virtual replicas rely on two elements: (a)

appropriate sensor coverage and (b) model uncertainty quantifi-
cation. For advanced decision-making systems to recommend
optimal control strategies using a DT, its sensors must be
sufficiently predictive of the agent’s objectives. For example, a
DT of an agrifood storage facility could only be used to predict
food spoilage if it monitors correlating variables, like temperature,
food type and product age. Even with sufficient sensor coverage,
the DT can only ever be an approximation of the physical system
meaning its state representation and future predictions are
uncertain. In response, several authors recommend building DTs
using Bayesian methods, but robust methods for dealing with DT
uncertainty and decision making remains an open challenge37.
Deploying DTs that capture uncertainty explicitly is crucial to
mitigating these issues.
In the same vein, setting ‘live’ replicas of entire supply chains

that encompass re-distribution centres, such as food banks and
soup kitchens in lower-income communities, would require hefty
investments in data architectures, including cloud computing and
on-premise sensors.
However, it is likely that private firms at the forefront of DTs

research and development would lack incentive to invest in cyber-
physical systems that promote ecological and humanitarian
causes, such as agro-biodiversity and food rescue, but yield no
direct financial returns. This may stifle the dissemination of DTs for
agrifood sector transformation, particularly in areas where digital
innovation is needed the most.
Second, current DT technologies rely on low-latency, temporally

consistent data streams to inform the model. In practice, sensors
fail, or do not log data for periods of time, violating the design
assumptions of the DT. If agents are selecting control actions
using a model with erroneous sensor data, unsafe behaviour is
likely. Designing DTs that are robust to periods when sensor data
is inaccessible requires technical innovation and is an important
barrier to scaled deployment.
Third, modelling flaws may be introduced in design, through

human error in coding or merging error-free but discordant
algorithms or data. A small notational error in the code of a
computational model used for predictive maintenance of an
irrigation system, for instance, could result in ill-informed
decisions leading to crop yield failures and produce loss38.
Fourth, the lack of common modelling standards for DTs might

create compatibility difficulties in integrating separately created
models5. For example, patching a virtual representation of a new
piece of cooling equipment in cold chains, programmed by the
manufacturer to monitor temperature in degrees Fahrenheit, into
an existing cold chain that regulates temperature in degrees
Celsius will result in immediate food spoilage.

Lifting barriers
The barriers currently limiting sizeable and meaningful imple-
mentation of DTs across the food sector globally are considerable.
In particular, the expertise, methods and infrastructure involved
preclude the utilization of DTs in lower-middle income economies
—where the greatest number of smallholders operate, rural credit
markets are immature, agricultural productivity is low, food
spoilage and waste are widespread, and malnutrition is pre-
valent—much in the same way, Green Revolution technologies
have bypassed the most vulnerable39.
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A concentrated, and inclusive, effort by international and public
institutions is essential for the deployment of DTs outside of their
origin context in civil and mechanical engineering to fulfil their
promise in agrifood sector transformation. Multidisciplinary
collaborations involving computer science, agriculture, food and
nutrition experts must be initiated.
Nonprofit international research centres, such as CGIAR with its

Platform for Big Data in Agriculture, ought to be financed to
promote open-access and standardized datasets that could
support DTs from molecular to landscape levels, including of
orphan crops and indigenous agro-ecologies as well as to develop
open-source and secured platforms for agricultural DTs initiatives.
Public institutions should further invest in underlying standards
and data architectures along value chain echelons, deploy bio-
physical and bio-chemical smart sensors, telecommunication
networks, and cloud computing to meet the data storage and
processing demands of DTs.
Once leading centres have established the fundamental

knowledge, skills and methods required, collaborations should
then expand with the consultation of diverse stakeholders to
facilitate spill-over of DTs across agrifood disciplines, domains and
geographies. For instance, it will be essential to develop tailored
technical and vocational education and training (TVET) programs,
including designated syllabi and simulation software, to build
computer science literacy among actors involved in the agrifood
sector in different socioeconomic contexts.
Finally, the DTs that already inform scientists and engineers in

other domains should be continuously studied to enable agile
cross-sector adaptation and robust governance of the technology
to achieve agrifood production system and supply chain sustain-
ability. These limitations must be addressed before any promised
transformation of the agrifood sector with DTs can be realized
successfully and at scale.
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