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Few topics excite more comment and controversy than the causes
of inequality in educational outcomes that are manifest all about
us; this often spills over into polarised political positions and
sometimes bitter debate with catch-phrases of 'class privilege' and
'social deprivation' being thrown from one side to the other,
unhampered by much in the way of critical evidence. A circuit
breaker to this stale, repetitive argument comes from an entirely
unexpected quarter—molecular biology coupled with some clever
statistical genetics.

The sequencing of the first human genomes around the turn of
the millennium cost millions of dollars each and there was despair
that this technology could never be extended to large samples.
However, it turns out that the genome is organised into haplotype
blocks within which there is a very high degree of correlation
(linkage disequilibrium—LD, hence LD blocks) between adjacent
gene variants (single nucleotide polymorphisms, or SNPs)."? In
layman’s terms, this means that genes that lie close to each other
on a chromosome tend to be inherited together.

You can get most of the information about a person’s genome
(up to 95%) by genotyping for few SNPs that are associated with
specific regions of the genome called LD blocks. SNPs are the
most common type of genetic variation among people, and
genotyping just a few SNPs per LD block, perhaps 700,000 in all,
on a commercial 'SNP chip' is relatively inexpensive (less than $50
per genome). Whereas, sequencing the whole 3.3 billion bases in
the genome would cost (factoring in essential bioinformatics post-
processing fees) around $5000—that is, you can SNP chip about
100 people for the same cost as full sequencing of a single
individual.

Genomic sequencing is the ideal tool for rare (Mendelian)
genetic diseases determined by a single gene of very large effect
(e.g., cystic fibrosis or Tay-Sachs disease), where only a few
individuals need to be sequenced to detect the causative
mutation. But for complex diseases and traits (e.g., asthma,
schizophrenia, height, cognition) it turns out that hundreds or
thousands of genes are involved, each of individually small effect
size, but collectively accounting for 20-80% of variance of most
complex traits. This means that very large samples (tens, hundreds
of thousands) of genotyped individuals are needed to detect the
causal variants. However, even if SNPs do not reach the very
stringent formal level for individual significance (p=0.05/
1,000,000 = 5e-8), their effects can be combined in a simple linear
regression equation to create a polygenic risk score (PRS), the sum
of all SNP effect sizes weighted by their frequencies. Basically, if a
specific set of SNPs is found to be associated with a particular trait
more frequently than would be expected by random chance, it is
more likely that those SNPs influence that trait. Thus PRS, derived
from a large discovery sample, has proved remarkably successful
at predicting variance in the same trait (and sometimes related
traits) in entirely independent smaller (target) samples.

Watching the increasingly spectacular success of medical
scientists in the genome wide association studies (GWAS)
revolution and hundreds of SNPs being discovered significantly
associated with traits as diverse as lipid levels and age at
menarche, social scientists began to wonder whether their
favourite variables might also yield to this breakthrough
technology. Educational attainment (EA) was the first candidate,
since it is collected as a standard sociodemographic covariate in
most studies, and most importantly in the disease GWAS studies
where subjects had already been genotyped; so to contribute EA
GWAS data to an international meta-analysis consortium was
simple.

The first EA GWAS consortium paper (EA1) was published in
Science in 2013 with 126,559 subjects.®> Two metrics were used—
years of education on a 4-point scale (carefully calibrated to take
account of different educational systems in different countries),
and the second much simpler, a binary variable 'Been to college
(in the American sense) yes/no'. They found 3 significant SNPs and
accounted for ~2% of variance in independent samples. The
second paper (EA2) was published in Science in 2016, now with
293,723 subjects, 74 significant SNPs, and accounting for ~4% of
variance in independent samples.* Most interestingly, the authors
reported high genetic correlations between SNPs that influence
EA and those that influence brain volume, 1Q, and several other
obvious correlates. A third study, EA3, was presented at a
conference in June 2017 with n> 700,000, ~550 hits, and 10%
variance accounted for. Publication of this is being held until the
new UK Biobank tranche of 460,000 subjects has been added,
which will make this the largest GWAS sample ever assembled of
over 1 million subjects, which should provide a really powerful
predictive instrument.

Smith-Woolley and colleagues have made use of the published
EA2 results to examine the vexed question of large mean
differences in exam performance between the three largest
groupings of UK secondary schools—state schools that are
selective in their entrance requirements (grammar schools), state
schools that are not selective, and private schools that variably
exercise some degree of selection, either directly or indirectly.”
Using their large longitudinal twin sample (TEDS) and analysing
their results for the GCSE (General Certificate of Education) at age
16, the authors find the usual large mean differences between
school types, that is, non-selective schools doing worst, grammar
schools doing best, and with private schools a little below
grammar schools.

Because the TEDS sample has been genotyped, it is possible to
calculate PRS for them all, using the weights from EA2 (to which
TEDS did not contribute). Mean EA2 PRS between the school types
follows the same pattern as the GCSE scores, the grammar
schools’ mean, being 0.44 standard deviations above that of
unselected schools, and for private schools, 0.37sd above the
unselected mean (the difference between these latter two not
significant). When the GCSE grades are corrected for the EA2 PRS,
the gaps are lessened but not removed, as they are also by
correction for socioeconomic status (SES) and, most notably, prior
achievement (which is hardly surprising). When all selective

Received: 29 November 2017 Revised: 29 January 2018 Accepted: 13 February 2018

Published online: 23 March 2018

Published in partnership with The University of Queensland

NP| nature partner
pJ journals


https://doi.org/10.1038/s41539-018-0021-1
https://doi.org/10.1038/s41539-018-0021-1
www.nature.com/npjscilearn

Editorial

criteria used to determine who went to which school type were
jointly taken into account the mean differences between schools
largely disappeared.

The key conclusion is that mean differences between GCSE
performance between school types are largely due to selective
factors as to who gets in, or not, and further, that these are to a
considerable extent determined by genetic factors partly measur-
able by EA PRS. Once these factors are taken into account there is
little residual variance that might be attributed. Complicating this
analysis are the strong genetic correlations between outcome and
predictor variables—EA, SES, prior ability, and prior achievement,
and disentangling cause and effect between these will be a
formidable task. But the authors have made a bold and useful
start, and one that will only get more informative as the EA PRS
instrument gets stronger with EA3/4 to be published next year.

One can only hope that the lessons of this paper are noticed by
our politicians. | refer particularly to a recent Australian Prime
Minister who took the fact of the low rate of university entrance in
her working class electorate compared with that in the middle
class electorate next door as prima facie evidence of social
discrimination, and many other politicians have committed similar
errors of inference. It would be interesting to estimate the mean
EA PRS in the two electorates.

Molecular biology can also cast light on the nature of
environmental variance, as manifested in patterns of DNA
methylation, one of the primary epigenetic mechanisms for
regulating gene expression, which can arise from both endogen-
ous (genetic or stochastic) and exogenous (external environmen-
tal) sources. To analyse this, van Dongen and colleagues compared
the degree of DNA methylation in peripheral blood at over
400,000 sites across the genome in over 4000 Dutch subjects to
their EA, and found significant associations at 58 sites.® The van
Dongen study shows that disentangling the biology behind the
epigenetic EA candidate loci requires detailed studies of environ-
mental factors influencing the DNA methylome and that these
types of studies are more difficult to interpret than GWAS. As the
authors stress, EA-associated variation at specific DNA methylation
sites may point to three ongoing processes. Firstly, variation may
indicate epigenetic consequences of differential life conditions that
correlate with educational attainment (i.e,, epigenetic biomarkers
of exposure). Secondly, variation may represent peripheral
correlates of the epigenetic mechanisms that contribute to
individual differences in educational attainment, for instance by
regulating gene expression in neurons. Thirdly, variation may mark
peripheral epigenetic correlates of education-related health
differences (which may be biomarkers or may be part of the
causal mechanisms that contribute to disease, respectively).

The paper clearly shows that methylation sites associated with
educational attainment in blood reveal epigenetic consequences
of differential exposures that correlate with educational attain-
ment, including cigarette smoke, air pollution and maternal folate
levels. This finding highlights the value of DNA methylation
patterns in circulating cells to get an objective measure of
differential exposures connected to educational attainment or
other characteristics in human populations, and warrants further
investigation into the health consequences of EA associated DNA
methylation signatures.

The extensive follow-up analyses of this paper will put the
findings in a broader perspective, and includes integration with
RNA-sequence data, the use of twin data to shed light on the role
of genetics and environment in contributing to variation in DNA
methylation between people at these loci, and the use of public
data on DNA methylation in blood and brain samples. The
inclusion of RNA sequencing will help shed light on what effect
the DNA methylation levels actually have on gene expression,
since DNA methylation can positively or negatively affect gene
expression and can influence isoform specific gene expression.
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It is noteworthy that this study identified more EA-associated
DNA methylation sites in a sample size of 4152, compared to a
recently published larger international meta-analysis of educa-
tional attainment and whole blood DNA methylation that included
10,767 participants from 27 cohorts from different countries (top
findings from the two studies largely overlapped).” This suggests
that the homogeneous study population of the van Dongen et al.
study (same educational system and social conditions) may have
been an advantage.

The overlap between methylation signatures associated with EA
and smoking, the fact that some of this signal remains associated
with educational attainment after adjusting for smoking, and the
observation that DNA methylation level in blood correlates with
DNA methylation level in brain tissue at 17% of the 58 sites,
generates interesting questions for future studies: which smoking-
associated DNA methylation signals are not merely a reflection of
smoking exposure (or other pollutants) but are also a driver of
smoking behaviour? Does the methylation level of these loci directly
influence EA via altered gene expression? The authors suggest
Mendelian randomisation analyses using SNPs known to alter
methylation at the sites associated with EA, and we look forward to
the time when there is sufficient power to perform such analyses.

Meanwhile, there is no doubt that the work presented in both
these outstanding papers has taken the discussion of environ-
mental effects on educational attainment to a higher level.
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