REVIEW ARTICLE OPEN (Check for updates A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation

Tae Lee Lee^{1,2}, Hanall Lee^{1,2} and Nyeonju Kang $1^{1,2,3}$

Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation used for improving cognitive functions via delivering weak electrical stimulation with a certain frequency. This systematic review and meta-analysis investigated the effects of tACS protocols on cognitive functions in healthy young adults. We identified 56 qualified studies that compared cognitive functions between tACS and sham control groups, as indicated by cognitive performances and cognition-related reaction time. Moderator variable analyses specified effect size according to (a) timing of tACS, (b) frequency band of simulation, (c) targeted brain region, and (b) cognitive domain, respectively. Random-effects model meta-analysis revealed small positive effects of tACS protocols on cognitive performances. The moderator variable analyses found significant effects for online-tACS with theta frequency band, online-tACS with gamma frequency band, and offline-tACS with theta frequency band. Moreover, cognitive performances were improved in online- and offline-tACS with theta frequency band on either prefrontal and posterior parietal cortical regions, and further both online- and offline-tACS with theta frequency band enhanced executive function. Online-tACS with gamma frequency band improving cognitive performances, and the cognitive improvements appeared in executive function and perceptual-motor function. These findings suggested that tACS protocols with specific timing and frequency band may effectively improve cognitive performances.

npj Science of Learning (2023)8:1; https://doi.org/10.1038/s41539-022-00152-9

INTRODUCTION

Cognitive processes are related to exchanging neuronal signals in a specific manner across widely distributed brain regions^{1,2}. Given that a large number of cortical and sub-cortical regions are functionally interconnected, altered neural activation patterns in specific brain area simultaneously influence neural activations in other brain region^{3,4}. Specifically, the temporal synchronization of rhythmic oscillations across key brain regions may be crucial neurophysiological mechanism for mediating functional neural networks contributing to information processing and communications⁵⁻⁹. For example, the signal synchronization across presynaptic spikes within sending neuron populations in one or several cortical regions may effectively drive activities of postsynaptic neuronal populations in receiving regions^{10–12}. Interestingly, synchronized oscillations of neuronal populations in a certain frequency band may be associated with advanced coanitive functions^{13,14}.

Previous studies raised a possibility that neural oscillations at specific frequency band predominantly appears in various cognitive processes^{15,16}. For example, increased synchronized oscillations at the theta frequency band (4–7 Hz) may be associated with improved executive function / complex attention and learning and memory^{17,18}. Specifically, a classical animal study that used the electrocorticogram reported greater neural oscillations at the theta frequency band in rat hippocampal pyramidal neurons during spatial navigation tasks¹⁹. Moreover, theta rhythmic neural oscillations were observed in the human prefrontal cortex (PFC) while remembering a list of items^{20,21}. Greater neural synchronization in brain at the alpha frequency

band (8-12 Hz) may be related to executive function and complex attention²². Several electrophysiological studies evidence higher alpha rhythmic neural synchronization across PFC and parietal cortical areas while generating creative ideas^{23,24}, and further these oscillation patterns was linked to improved inhibitory functions^{25,26}. In addition, greater brain oscillation at the beta frequency band (13-30 Hz) presumably improved the executive function / complex attention^{27,28}. Specifically, beta frequency power in PFC and primary motor cortex (M1) increased during preparatory and inhibitory phases for the movement execution, whereas beta frequency power decreased after the movement execution²⁹⁻³¹. Presumably, neural oscillation patterns at the gamma frequency band (31-139 Hz) influenced the executive function, complex attention, and social cognition¹⁶. Gamma waves emerge in the animal parietal and frontal regions during attentive behavioral states such as a cat observing prey in a room³², and further were activated while integrating sensory information^{33,34}. Taken together, modulating the synchronization of brain oscillations at a specific frequency band may effectively facilitate improvement in various cognitive functions.

Transcranial alternating current stimulation (tACS), one of the non-invasive brain stimulation technique, has been developed to modulate brain oscillations at certain frequency band for enhancing either cognitive or motor functions^{35–37}. tACS protocols use weak sinusoidal oscillating electrical currents into the scalp to temporarily synchronize the neural firing timing^{38,39}. Thus, the rhythmically reversed electron flow potentially interacts with endogenous oscillations in the brain^{40,41} as previous electroence-phalogram (EEG) studies suggested entrained endogenous brain oscillations and external currents^{37,42,43}. Interestingly, recent

¹Department of Human Movement Science, Incheon National University, Incheon, South Korea. ²Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea. ³Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea. ^{Semail:} nyunju@inu.ac.kr

2

literature review studies raised a possibility of positive effects of tACS protocols on cognitive functions^{38,44}. Moreover, some prior studies suggested that timing of tACS protocols (e.g., tACS protocols during cognitive tasks: online stimulation and tACS protocols before cognitive tasks: offline stimulation) may induce different effects on cognitive functions^{45,46}. For example, online-tACS protocols may facilitate higher entrainment between ongoing neural oscillation and external electrical oscillations⁴⁰, whereas offline-tACS protocols may cause longer lasting after-effects presumably contributing to network changes related to neural plasticity⁴⁷. Thus, determining potential treatment effects of tACS interventions based on different stimulation timing can provide meaningful information on identifying optimal stimulation protocols facilitating cognitive functions.

The purpose of this systematic review and meta-analysis was to investigate the effect of tACS protocols on cognitive functions in healthy young adults. Previous studies suggested that the existence of speed and accuracy trade-off in cognitive processes that hasty responses are error-prone whereas careful decisions take more time^{48,49}. Further, different brain involvements were observed between cognitive functions estimated by speed and accuracy, respectively⁵⁰. Thus, we focused on two types of cognitive function variables including cognitive performance and cognition-related reaction time to examine potential altered cognitive functions between active tACS protocols and sham stimulation. In addition, we compared potential different effects of timing of tACS protocols (i.e., online versus offline stimulation) on cognitive function, and further determined whether specific frequency bands for tACS protocols (i.e., delta vs. theta vs. alpha vs. beta vs. gamma vs. ripple) alter cognitive function improvements^{40,45}. For each frequency band of online- and offline-tACS protocols, we additionally examined specific treatment effects on cognitive functions based on different targeted brain regions and cognitive domains, respectively⁵¹.

RESULTS

Study identification

Our initial search found 573 potential studies from the PubMed, 26 potential articles from the Web of Science, and 43 articles from other resources, and we removed 14 duplicated articles. In addition, we excluded 572 articles (i.e., 30 review articles, three case articles, and 539 studies irrelevant to our topic). Finally, the remaining 56 studies that examined potential effects of tACS on cognitive functions using either cognitive performance or cognition-related reaction time variables qualified for this meta-analysis^{45,46,52–105}. The PRISMA flow diagram illustrating our study identification procedure is shown in Fig. 1.

Participant characteristics

Fifty-six total qualified studies in this meta-analysis included 1797 healthy young adults without any neurological and psychological deficits (a range of mean age = 18.0-33.0 years and a range of female proportion = 52.8-100%). Nine studies were randomized controlled trials, and 46 studies used a crossover design. One study used both designs for each experiment⁶⁵. Table 1 shows specific detailed demographic information on the participants.

tACS protocols and potential side effects

For improving cognitive functions, the qualified studies used tACS protocols stimulating regions of (a) prefrontal cortex (PFC) including primary motor cortex, dorsolateral-prefrontal cortex, inferior frontal gyrus, and frontal region = 21 studies, (b) posterior parietal cortex (PPC) including posterior occipital cortex and parietal cortex = 19 studies, (c) temporal cortex (TC) including fusiform cortex and temporal region = seven studies, and (d)

Fig. 1 **PRISMA flowchart.** The flowchart shows the study identification procedure.

multiple regions (Multi) such as targeting multiple regions across PFC, PPC, and TC = eight studies. One study focused on two different regions including PPC and TC, respectively⁷⁸. For the timing of tACS protocols, 38 studies used tACS protocols during cognitive tasks (i.e., online-tACS), and 12 studies applied tACS protocols prior to executing cognitive tasks (i.e., offline-tACS). Six studies examined both timings of tACS protocols, respectively^{46,55,58,65,86,96}. Twenty-eight out of 56 total studies administered only tACS protocols, whereas the remaining 28 studies applied tACS protocols with additional task-related trainings (e.g., brief training phase, discrimination task, familiarization session, language assessment, training visual associative memory task, and word-pair learning). Forty-eight studies administered a single session of tACS protocols (i.e., 2–4 sessions).

The specific parameters of tACS protocols used for the qualified studies were: (a) stimulation intensity = 0.7-3 mA, (b) electrode area = 1.2-35 cm², (c) current density = 0.02-0.83 mA/cm², (d) density charge = $0.24 - 16.8 \,\text{C/cm}^2$, and (e) session duration = 2 s-48 min. Specific frequency bands for tACS protocols included: (a) delta band (1-3 Hz) = four studies, (b) theta band (4-7 Hz) = 30 studies, (c) alpha band (8-12 Hz) = 19 studies, (d) betaband (13-30 Hz) = sevenstudies, (e) gamma band (31-139 Hz) = 24 studies, and (f) ripple band (140 Hz) = one study. Specific details on tACS protocols are shown in Table 2.

Regarding the potential side effects of tACS protocols, 11 studies confirmed that participants did not experience any side effects. Twenty-three studies reported that some participants experienced side effects: (a) discomfort = three studies, (b) itching = 10 studies, (c) mild headache = four studies, (d) tingling = 11 studies, (e) tiredness = three studies, (f) phosphene (flickering) = eight studies, (g) attention difficulties = six studies, (h) dizziness = one study, (i) pain (e.g., pinch, burning, heat, shock-like sensations, pricking) = six studies, and (j) other side effects = three studies (e.g., fatigue, tiring,

Table 1.	Demographic	information	for	participants.
----------	-------------	-------------	-----	---------------

I

Study	Study design	Total N	Age (years)	Sex (a ratio of females)
Alekseichuk ⁵²	Crossover	25	23.5 ± 2.9	13 F 12 M (52.0%)
Alekseichuk ⁸⁴	Crossover	25	18–28	13 F 12 M (52.0%)
Ambrus ⁵³	Crossover	18	24.6 ± 3.2	12 F 6 M (66.7%)
Antonenko ⁵⁴	Crossover	12	22.3 ± 1.5	6 F 6 M (50.0%)
Brauer ⁵⁵	Crossover	23	22.9 ± 3.4	16 F 7 M (69.6%)
Braun ⁸⁵	Crossover	Exp (1) 36	20.0 ± 2.4	24 F 12 M (66.7%)
		Exp (2) 36	21.0 ± 2.2	24 F 12 M (66.7%)
Brignani ⁵⁶	RCT	96	21.8 ± 2.5	48 F 48 M (50.0%)
Deng ⁸⁶	Crossover	Exp (1) 20 Exp (2) 18	21.2 ± 3.0 22.1 ± 2.4	13 F 7 M (65.0%) 15 F 3 M (83.4%)
Feurra ⁴⁵	Crossover	14	27.6 ± 4.3	8F6M (57.1%)
Fusco ⁵⁷	Crossover	36	24.4 ± 3.5	18 F 18 M (50.0%)
Giustiniani ⁵⁸	Crossover	17	24.5 ± 3.5	NR
Grabner ⁸⁷	Crossover	22	23.0 ± 2.9	11 F 11 M (50.0%)
Gutteling ⁸⁸	Crossover	22	18–31	12 F 10 M (54.5%)
Hopfinger ⁸⁹	Crossover	23	18–27	14 F 9 M (60.9%)
Hoy ⁵⁹	Crossover	18	29.3 ± 7.7	9 F 9 M (50.0%)
Janik ⁶⁰	Crossover	22	25.7 ± 5.8	13 F 9 M (61.9%)
Jaušovec (BP) ⁶¹	Crossover	24	20.7 ± 5.6	16 F 8 M (66.7%)
Jaušovec (AP) ⁶²	Crossover	36	20.5 ± 4.3	27 F 9 M (75.0%)
Javadi ⁹⁰	Crossover	17	22.1 ± 2.7	10 F 7 M (58.8%)
Kasten ⁹¹	RCT	20	26.0 ± 3.0	8 F 12 M (40.0%)
Laczó ⁹²	Crossover	20	25.8 ± 6.2	9 F 11 M (45.0%)
Lang ⁶³	RCT	37	26.7 ± 5.8	18 F 19 M (48.6%)
Loffler ⁶⁴	RCT	23	25.7 ± 2.7	12 F 11 M (52.2%)
Luft ⁶⁵	Crossover RCT	Exp (1) 29 Exp (2) 36	24.6 ± 5.9 23.9 ± 4.5	15 F 14 M (50.0%) NR
Lustenberger ⁶⁶	Crossover	Exp (1) 19 Exp (2) 20	20.9 ± 2.7 20.5 ± 3.2	14 F 5 M (73.7%) 7 F 13 M (35.0%)
Marchesotti ⁶⁷	Crossover	15	25.6 ± 7.8	11 F 4 M (73.3%)
Meier ⁶⁸	Crossover	26	28.5 ± 7.9	8 F 18 M (30.7%)
Meiron ⁶⁹	RCT	24	21.5 ± 2.1	24 F (100%)
Meng ⁷⁰	Crossover	18	21.7 ± 2.8	12 F 6 M (66.7%)
Moliadze ⁹³	Crossover	24	22.0 ± 3.4	12 F 12 (50.0%)
Neubauer ⁹⁴	Crossover	20	24.9 ± 3.3	11 F 9 M (55.0%)
Nomura ⁷¹	RCT	36	21.3 ± 0.5	28 F 8 M (77.8%)
Pahor ⁷²	Crossover	28	20.8 ± 4.4	20 F 8 M (71.4%)
Pahor ⁹⁵	Crossover	18	20.2 ± 0.4	11 F 7 M (61.1%)
Polanía ⁷³	Crossover	36	22–30	NR
Polanía ⁷⁴	Crossover	86	20–30	30 F 56 M (34.9%)
Pollok ⁷⁵	Crossover	13	22.1 ± 2.6	7 F 6 M (53.8 %)
Reinhart ⁹⁶	Crossover	Exp (1) 30 Exp (2) 30 Exp (3) 30	26 27 26	14 F 16 M (46.7%) 16 F 14 M (53.3%) 15 F 15 M (50.0%)
Riecke ⁹⁷	Crossover	20	20-38	9 F 11 M (45.0%)
Riecke ⁹⁸	Crossover	20	20–28	10 F 10 M (50.0%)
Santarnecchi ⁷⁶	Crossover	20	20.2 ± 12.3	10 F M 10 (50.0%)
Santarnecchi ⁷⁷	Crossover	Exp (1) 24 Exp (2) 34	24.1 ± 3.0	28 F 30 M (48.2%)
Santarnecchi ⁷⁸	Crossover	31	24.4 ± 3.8	17 F 14 M (54.8%)
Schuhmann ⁷⁹	Crossover	34	21.6±NR	18 F 16 M (51.4%)
Sela ⁸⁰	RCT	27	23.9 ± 2.5	14 F 13 M (51.9%)
Strüber ⁹⁹	Crossover	Exp (1) 17 Exp (2) 13 Exp (3) 15	24.9 ± 4.1	9 F 8 M (52.9%) 9 F 4 M (69.2%) 9 F 6 M (60.0%)

Table 1

Table 1 continued				
Study	Study design	Total N	Age (years)	Sex (a ratio of females)
Tseng ¹⁰⁰	Crossover	Exp (1) 20 Exp (2) 20	21 23	8 F 12 M (40.0%) 8 F 12 M (40.0%)
Tseng ¹⁰¹	Crossover	Exp (1) 24 Exp (2) 24	23 23	12 F 12 M (50.0%) 12 F 12 M (50.0%)
Violante ⁸¹	Crossover	10	28.6 ± 5.0	6 F 4 M (60.0%)
Vosskuhl ⁴⁶	RCT	33	25.8 ± 2.7	14 F 19 M (42.4%)
Wischnewski ⁸²	RCT	50	24.1 ± 7.8	31 F 19 M 62.0%)
Wöstmann ¹⁰²	Crossover	20	19–31	10 F 10 M (50.0%)
Wynn ⁸³	Crossover	54	21.3 ± 2.7	38 F 16 M (70.3%)
Zavecz ¹⁰³	Crossover	26	21.4 ± 1.5	19 F 7 M (73.1%)
Zoefel ¹⁰⁴	Crossover	17	33.0 ± 8.0	10 F 7 M (58.8%)
Zoefel ¹⁰⁵	Crossover	Exp (1) 27 Exp (2) 19	31.0 ± 7.0 21.0 ± 2.0	15 F 12 M (55.6%) 8 F 11 M (42.1%)

AP published in the Acta Psychologica, BP published in the Biological Psychology, Exp experiment, F female, M male, NR not reported, RCT randomized controlled trial.

Data for age is mean $\pm\, standard\,$ deviation.

and anxiety)^{54–57,63,64,66,67,70,73,75–77,80,82,83,85,87,88,92,93,102,104}. In the 34 studies, ~46.2% of participants (i.e., number of participants from studies that reported the presence of side effects / total number of participants from studies that reported presence or absence of side effects × 100) may experience potential side effects of tACS protocols (Supplementary Table 1). However, the remaining 22 studies failed to mention whether participants experienced side effects.

Cognitive function assessments

Thirty-eight out of 56 qualified studies reported cognitive performance variables and six studies showed cognition-related reaction time variables. The remaining twelve studies reported both cognitive performance and reaction time variables. Taken together, 50 out of 56 qualified studies reported cognitive performance variable comparisons and 18 out of 56 qualified studies reported cognition-related reaction time variable comparisons (Table 3).

For cognitive performance variables, specific measurements were: (a) accuracy = six studies, (b) correctness (e.g., correctly recalled words, correct response, and correct associative memory) = eight studies, (c) creativity index: two studies, (d) d-prime = three studies, (e) number of errors = four studies, (f) scores (e.g., digit span forward scores, memory capability scores, fluid intelligence scores, and correctly answered scores) = eight studies, and (g) others (e.g., average probability, behavioral adaptation, d-index, false-choice trial, hit ratio, laterality index, memory performance, motion dominance index, number of adjusted pumps, Pashler's K, performance change rate, recognition, and updating gain) = 19 studies.

In this study, specific cognitive domains included: (a) perceptual-motor function (e.g., visual detection, Cambridge face perception task, and face and scene task) = 12 studies, (b) learning and memory (e.g., memory recognition task, word-pair learning task, and language learning task) = nine studies, (c) executive function / complex attention (e.g., n-back task, digit span task, and change detection task): = 34 studies, and (d) language (e.g., phoneme-categorization task): = one study.

Specific comparisons for meta-analysis

For meta-analysis procedures, we acquired specific comparisons from each included study because of different experiments, timing (i.e., online and offline), and frequency bands (i.e., delta, theta, alpha, beta, gamma, and ripple) of tACS protocols. Twentyeight out of 50 studies that used cognitive performance variables reported one comparison, and 22 studies reported multiple comparisons (i.e., 13 studies reported two comparisons, two studies reported three comparisons, five studies reported four comparisons, one study reported five comparisons, and one study showed eight comparisons). For 18 studies that used cognitionrelated reaction time variables, nine studies reported one comparison and nine studies reported multiple comparisons (i.e., six studies reported two comparisons, one study reported three comparisons, and two studies reported four comparisons). Taken together, the meta-analysis focused on 93 total cognitive performance variable comparisons from the 50 studies and 32 total cognition-related reaction time variable comparisons from the 18 studies.

Methodological quality assessments

The Cochrane risk of bias assessment showed three potential methodological concerns including (a) randomized process, (b) deviations from intended interventions, and (c) measurements of the outcome. Especially, 23 included studies failed to either mention a specific randomization process or randomly assign the tACS conditions, and 41 out of 56 studies did not mention the blinding of experimenters or assessors. However, we confirmed that the current meta-analysis showed a low level of risk bias in (a) timing of identification or recruitment of participants, (b) missing outcome data, and (c) selection of the reported result domains (Fig. 2).

Meta-analytic findings on cognitive performance

The random-effects meta-analysis on 93 total comparisons from the 50 studies identified a significant low overall effect of tACS protocols on cognitive performance improvements (*SMD* = 0.161; *SE* = 0.027; 95% CI = 0.109–0.214; Z = 6.038; P < 0.001). The heterogeneity tests revealed lower level of variability across the 93 comparisons (*Q*-statistics = 130.256 and *P* = 0.005; l^2 = 29.4%), and the publication bias was the relatively asymmetrical distribution of individual effect sizes: (1) a revised funnel plot with 7 imputed values (Supplementary Fig. 1) and (2) Egger's regression intercept (β_0) = 1.57 and *P* = 0.001.

The first moderator variable analysis for comparing the effects of online-tACS versus offline-tACS on changes in cognitive performance showed significant treatment effects: (a) 71 online-tACS comparisons from the 38 studies: SMD = 0.168; SE = 0.033;

Table 2. Specific	parameters for tA	vCS protocols.				
Study	Timing	Anodal	Return	Session	Intensity, area, density, duration, density charge	Frequency band
Alekseichuk ⁵²	Online	Multi: L-PFC + L-PPC	R-PFC + R-PPC	-	$1 \text{ mA}, 25 \text{ cm}^2$; 0.04 mA/cm ² , 18 min, 0.72 C/cm ²	Theta (6 Hz)
Alekseichuk ⁸⁴	Online	PPC: R-PPC	R-TC + M1+ L-PPC + POC	-	3 mA, 4 cm ² , 0.75 mA/cm ² , 20 min, 15.0 C/cm ²	Theta (4 Hz)
Ambrus ⁵³	Offline	PFC: Bi-PFC	Bi-Mastoids A	-	$1 \text{ mA}, 25 \text{ cm}^2, 0.04 \text{ mA/cm}^2, 10 \text{ min}, 0.40 \text{ C/cm}^2$	Ripple (140 Hz)
Antonenko ⁵⁴	Offline	РРС: L-РРС	R-Supraorbital A	-	1 mA, 35 cm ² , 0.03 mA/cm ² , 20 min, 0.60 C/cm ²	Theta (6 Hz)
Brauer ⁵⁵	Online Offline	PFC: R-PFC	L-Supraorbital A	-	1 mA, 25 cm ² , 0.04 mA/cm ² , 20 min, 0.80 C/cm ²	Theta (6 Hz)
Braun ⁸⁵	Online	PFC: R-IFG, PFC: L-IFG	L-SO A, R-SO A	-	Exp (1) 2 md, 14 cm ² , 0.14 mA/cm ² , 2 s, 0.28 C/cm ² Exp (2) 1.6 mA, 10.75 cm ² , 0.15 mA/cm ² , 2 s, 0.30 C/cm ²	Theta (6.8 Hz), Alpha (10.7 Hz), Beta (18.5 Hz), Gamma (30, 48 Hz)
Brignani ⁵⁶	Online	PPC: Bi-POC	Vertex (Cz)	-	1 mA, 16 cm ² , 0.06 mA/cm ² , 15 min, 0.90 C/cm ²	Theta (6 Hz), Alpha (10 Hz), Beta (25 Hz)
Deng ⁸⁶	Online Offline	PPC: R-PPC	R-PPC + M-PPC R-PPC + R-POC	-	1.5 mA, 4 cm ² , 0.38 mA/cm ² , 20 min, 7.60 C/cm ²	Exp (1) Alpha (10 Hz) Exp (2) Theta (6 Hz)
Feurra ⁴⁵	Online	ррс: L-ррс	L- shoulder A	-	1 mA, 35 cm ² , 0.03 mA/cm ² , 15 min, 0.45 C/cm ²	Theta (5 Hz), Alpha (10 Hz), Beta (20 Hz), Gamma (40 Hz)
Fusco ⁵⁷	Online	PFC: M-PFC	M-PCC	-	1.5 mA, 25 cm ² , 0.06 mA/cm ² , 4 min, 0.24 C/cm ²	Delta (2 Hz), Theta (6 Hz), Alpha (11 Hz), Beta (21 Hz), Gamma (60 Hz)
Giustiniani ⁵⁸	Online Offline	PFC: L-M1	R-SO A	-	2 mA, 25 cm ² , 0.08 mA/m ² , 5 min, 0.40 C/cm ²	Delta (1 Hz), Gamma (40 Hz)
Grabner ⁸⁷	Online	PFC: L-PFC	R-PFC	-	1 mA, 35 cm ² , 0.03 mA/cm ² , 30 min, 0.90 C/cm ²	Alpha (10 Hz), Gamma (40 Hz)
Gutteling ⁸⁸	Online	PPC: Bi-POC	Vertex (Cz)	1	1 mA, 12 cm ² , 0.08 mA/cm ² , 25 min, 2.00 C/cm ²	Alpha (10 Hz)
Hopfinger ⁸⁹	Online	PPC: R-PPC	Vertex (Cz)	-	2 mA, 25 cm ² , 0.08 mA/cm ² , 33 min, 2.64 C/cm ²	Alpha (10 Hz), Gamma (40 Hz)
Hoy ⁵⁹	Offline	PFC: L-DLPFC	R-SO A	1	2 mA, 35 cm ² , 0.06 mA/cm ² , 20 min, 1.20 C/cm ²	Gamma (40 Hz)
Janik ⁶⁰	Online	PFC: M-M1	R-POC	-	1 mA, 35 cm ² , 0.03 mA/cm ² , 16 min, 0.48 C/cm ²	Gamma (40 Hz)
Jaušovec (BP) ⁶¹	Offline	PPC: L-PPC	R-SO A	-	1.7 mA, 35 cm ² , 0.05 mA/cm ² , 15 min, 0.75 C/cm ²	Theta (5 Hz)
Jaušovec (AP) ⁶²	Offline	PPC: L-PPC	R-SO A	-	1.5 mA, 35 cm ² , 0.04 mA/cm ² , 15 min, 0.60 C/cm ²	Theta (5 Hz)
Javadi ⁹⁰	Online	PFC: L-DLPFC	L-Wrist	2	1.5 mA, 35 cm ² , 0.04 mA/cm ² , 16 min, 0.64 C/cm ²	Gamma (60 Hz)
Kasten ⁹¹	Online	PPC: M-POC	Vertex (Cz)	-	0.7 mA, 16 cm ² , 0.04 mA/cm ² , 20 min, 0.80 C/cm ²	Alpha (10.5 ± 0.9 Hz)
Laczó ⁹²	Online	PPC: M-POC	Vertex (Cz)	-	1.5 mA, 16 cm ² , 0.09 mA/cm ² , 15 min, 1.35 C/cm ²	Gamma (40 Hz)
Lang ⁶³	Offline	TC: R-FC	R-SO A + Bi-PPC + L-POC	. 	2 mA, 4 cm ² , 0.50 mA/cm ² , 10 min, 5.00 C/cm ²	Theta (6 Hz)
Loffler ⁶⁴	Online	PPC: M-POC	Vertex (Cz)	1	2 mA, 20 cm 2 , 0.10 mA/cm 2 , 30 min, 3.00 C/cm 2	Gamma (40 Hz)
Luft ⁶⁵	Online Offline	TC: L-TC	Exp (1) Vertex (Cz), Exp (2) M-PFC	2	Exp (1) 1 mA, 25 cm ² , 0.04 mA/cm ² , 30 min, 1.20 C/cm ² Exp (3) 1 mA, 25 cm ² , 0.04 mA/cm ² , 25 min, 1.00 C/cm ²	Exp (1) Alpha (10 Hz) Exp (2) Alpha (8–10 Hz)
Lustenberger ⁶⁶	Online	PFC: Bi-PFC	Vertex (Cz)	-	1 mA, 35 cm ² , 0.03 mA/cm ² , 30 min, 0.90 C/cm ²	Exp (1) Alpha (10 Hz) Exp (2) Gamma (40 Hz)
Marchesotti ⁶⁷	Offline	TC: L-TC	L-TC + L-PPC + L-M1 + L-Mastoids A	ε	1.1 mA, 4 cm ² , 0.28 mA/cm ² , 20 min, 5.60 C/cm ²	Gamma (30 Hz)
Meier ⁶⁸	Online	Multi: L-PFC + L-PPC + R-TC	R-PFC + R-PPC +L-TC	-	1 mA, 1.2 cm 2 , 0.83 mA/cm 2 , 20 min, 16.0 C/cm 2	Gamma (40 Hz)
Meiron ⁶⁹	Online	PFC: L-DLPFC	R-DLPFC	-	1 mA, 16 cm ² , 0.06 mA/cm ² , 20 min, 1.20 C/cm ²	Theta (4.5 Hz)
Meng ⁷⁰	Offline	РРС: L-РРС	NR	-	2 mA, 3 cm², 0.67 mA/cm², 15 min, 10.5 C/cm²	Theta (6 Hz)
Moliadze ⁹³	Offline	PFC: Bi-PFC	NR	-	1 mA, 9 cm ² , 0.11 mA/cm ² , 20 min, 2.20 C/cm ²	Alpha (10 Hz), Beta (16.8 Hz)
Neubauer ⁹⁴	Offline	PPC: L-PPC	Vertex (Cz)	-	1.5 mA, 35 cm ² , 0.04 mA/cm ² , 15 min, 0.60 C/cm ²	Theta (5 Hz)

Published in partnership with The University of Queensland

Table 2 continu	ed					
Study	Timing	Anodal	Return	Session	Intensity, area, density, duration, density charge	Frequency band
Nomura ⁷¹	Offline	PFC: L-PFC	L-Wrist	2	1.5 mA, 35 cm ² , 0.04 mA/cm ² , 15 min, 0.60 C/cm ²	Gamma (60 Hz)
Pahor ⁷²	Online	РРС: L-РРС	R-SO A	-	1.75 mA, 35 cm ² , 0.05 mA/cm ² , 15 min, 0.75 C/cm ²	Theta (5 Hz)
Pahor ⁹⁵	Offline	PFC: Bi-DLPFC	NR	-	1.75 mA, 35 cm ² , 0.05 mA/cm ² , 15 min, 0.75 C/cm ²	Alpha (10.95 ± 0.98 Hz)
Polanía <mark>73</mark>	Online	Multi: L-PFC + L-PPC	Vertex (Cz)	-	1 mA, 25 cm ² , 0.04 mA/cm ² , 14 min, 0.56 C/cm ²	Theta (6 Hz), Gamma (35 Hz)
Polanía ⁷⁴	Online	Multi: M-PFC + PPC	R-Shoulder	-	2 mA, 35 cm ² , 0.06 mA/cm ² , 18 min, 1.08 C/cm ²	Gamma (55 Hz)
Pollok ⁷⁵	Online	PFC: L-M1	R-SO A	-	1 mA, 35 cm ² , 0.03 mA/cm ² , 12 min, 0.36 C/cm ²	Alpha (10 Hz), Beta (20 Hz)
Reinhart ⁹⁶	Online Offline	Exp (1, 3) PFC: M-PFC + R-PFC Exp (2) PFC: M-PFC + L-PFC	Surrounding	-	1 mA, 4 cm ² , 0.25 mA/cm ² , 20 min, 5.00 C/cm ²	Exp (1) Theta (6 Hz), Gamma (35 Hz) Exp (2, 3) Theta (6 Hz)
Riecke ⁹⁷	Online	TC: Bi-TC	Vertex (Cz)	-	0.8 mA, 25 cm ² , 0.03 mA/cm ² , 40 min, 1.20 C/cm ²	Theta (4 Hz)
Riecke ⁹⁸	Online	TC: Bi-TC	Vertex (Cz)	-	0.9 mA, 25 cm ² , 0.04 mA/cm ² , 36 min, 1.44 C/cm ²	Theta (4 Hz)
Santarnecchi ⁷⁶	Online	PFC: L-DLPFC	Vertex (Cz)	-	0.75 mA, 35 cm ² , 0.02 mA/cm ² , 48 min, 0.96 C/cm ²	Theta (5 Hz), Alpha (10 Hz), Beta (20 Hz), Gamma (40 Hz)
Santarnecchi <mark>77</mark>	Online	PFC: L-DLPFC	Vertex (Cz)	-	1.5 m, 25 cm ² , 0.06 mA/cm ² , 30 min, 1.80 C/cm ²	Theta (5 Hz), Gamma (40 Hz)
Santarnecchi ⁷⁸	Online	PPC: R-PPC TC: R-TC	R-PFC + L-PPC + L-TC L-PFC + L-PPC + L-TC	-	2 m4, 35 cm ² , 0.06 mA/cm ² , 9 min, 0.50 C/cm ²	Alpha (10 Hz) Gamma (40 Hz)
Schuhmann <mark>79</mark>	Online	РРС: L-РРС	L-PPC	-	1 mA, 2.1 cm ² , 0.48 mA/cm ² , 35 min. 16.8 C/cm ²	Alpha (10 Hz)
Sela ⁸⁰	Online	PFC: L-DLPFC	L-TC	-	1 mA, 25 cm ² , 0.04 mA/cm ² , 15 min, 0.60 C/cm ²	Theta (6.5 Hz)
Strüber ⁹⁹	Online	Exp (1, 2) PPC: L-POC Exp (3) PPC: B-POC	Exp (1, 2) R-POC Exp (3) B-PFC	-	Exp (1, 2) 0.76 mA, 35 cm ² , 0.02 mA/cm ² , 15 min, 0.30 C/cm ² Exp (3) 1.3 mA, 15.21 cm ² , 0.09 mA/cm ² , 15 min, 1.35 C/cm ²	Theta (6 Hz), Gamma (40 Hz)
Tseng ¹⁰⁰	Online	Multi: L-TC + L-PPC	R-Cheek	-	1.5 mA, 25 cm ² , 0.06 mA/cm ² , 20 min, 1.20 C/cm ²	Gamma (40 Hz)
Tseng ¹⁰¹	Online	PPC: Bi-PPC	L-Cheek	-	1.6 mA, 16 cm², 0.10 mA/cm², 20–24 min, 2.20 C/cm²	Theta (6 Hz)
Violante ⁸¹	Online	Multi: R-PFC + R-PPC	R-TC	2	1 mA, 5 cm ² , 0.20 mA/cm ² , 26.5 min, 5.30 C/cm ²	Theta (6 Hz)
Vosskuhl ⁴⁶	Online Offline	PFC: M-PFC	M-PPC	ε	0.8 mA, 35 cm ² , 0.02 mA/cm ² , 18 min, 0.36 C/cm ²	Theta (3.7–4.6 Hz)
Wischnewski ⁸²	Online	PFC: R-PFC + L-PFC	NR	-	1 mA, 35 cm ² , 0.03 mA/cm ² , 11 min, 0.33 C/cm ²	Theta (6 Hz)
Wöstmann ¹⁰²	Online	Multi: L-TC + L-PPC	NR	-	1 mA, 3 cm ² , 0.34 mA/cm ² , 25 min, 8.50 C/cm ²	Alpha (10 Hz), Gamma (47.1 Hz)
Wynn ⁸³	Online	PPC: Bi-PPC	Vertex (Cz)	-	$2 \text{ mA}, 25 \text{ cm}^2, 0.08 \text{ mA/cm}^2, 30 \text{ min}, 2.40 \text{ C/cm}^2$	Theta (3.5 Hz), Alpha (8 Hz)
Zavecz ¹⁰³	Online	Multi: M-PFC + M-PPC	NR	4	1 m4, 25 cm ² , 0.04 mA/cm ² , 20 min, 0.80 C/cm ²	Theta (6 Hz)
Zoefel ¹⁰⁴	Online	TC: L-TC	L-PFC	-	1.7 mA, 9 cm ² , 0.19 mA/cm ² , 30 min, 5.70 C/cm ²	Delta (3.125 Hz)
Zoefel ¹⁰⁵	Online	Exp (1) TC: L-TC, Exp (2) TC: Bi-TC	Exp (1) L-PFC, Exp (2) Surrounding	2	Exp (1) 1.2 mA, 9 cm ² , 0.13 mA/cm ² , 30 min, 3.90 C/cm ² Exp (2) 1.7 mA, 9 cm ² , 0.19 mA/cm ² , 30 min, 5.70 C/cm ²	Delta (3.125 Hz)
A area, AP publish gyrus, L left, M mé cortex, R right, SC	hed in the Acta Psycesial, <i>Multi</i> multiple supraorbital, <i>TC</i> te	chologica, <i>Bi</i> bilateral hemisp regions, <i>NR</i> not reported, <i>M1</i> imporal cortex.	ohere, <i>BP</i> published in the E primary motor cortex, <i>OFC</i>	3iological Psy orbitofronta	/chology, C cortex, DLPFC dorsolateral–prefrontal cortex, FC fu: il cortex, PARC parietal cortex, PFC prefrontal cortex, POC poste.	iform cortex, Hz hertz, IFG inferior frontal rior occipital cortex, PPC posterior parietal

Table 3. Specific cognitive function assessment and cognitive domains.								
Study	Cognitive assessments	Cognitive task	Cognitive domains					
Alekseichuk ⁵²	Performance (memory performance %) Reaction time (reaction time)	Two-back visual-spatial task	Executive function/complex attention					
Alekseichuk ⁸⁴	Performance (correct %)	Memory recognition task	Learning and memory					
Ambrus ⁵³	Performance (number of correctly recalled words)	Word-pair learning task	Learning and memory					
Antonenko ⁵⁴	Performance (correct %)	Language learning paradigm	Learning and memory					
Brauer ⁵⁵	Performance (number of error) Reaction time (reaction time)	Go/Nogo task	Executive function/complex attention					
Braun ⁸⁵	Performance (hits %)	Memory performance for words	Executive function/complex attention					
Brignani ⁵⁶	Performance (accuracy)	Visual detection and discrimination task	Perceptual-motor function					
Deng ⁸⁶	Performance (correct %)	Selective auditory attention task	Executive function/complex attention					
Feurra ⁴⁵	Performance (digit span forward scores)	Digit forward	Executive function/complex attention					
Fusco ⁵⁷	Performance (behavioral adaptation)	Flanker task	Executive function/complex attention					
Giustiniani ⁵⁸	Reaction time (mean RT)	Serial reaction time task	Learning and memory					
Grabner ⁸⁷	Performance (scores)	Verbal creativity task	Executive function/complex attention					
Gutteling ⁸⁸	Performance (updating gain)	Whole-body motion updating task	Perceptual-motor function					
Hopfinger ⁸⁹	Reaction time (mean RT)	Visual attention task	Executive function/complex attention					
Hoy ⁵⁹	Performance (d-prime) Reaction time (reaction time)	N-back task	Executive function/complex attention					
Janik ⁶⁰	Performance (correct responses %)	Cambridge face perception identity task	Perceptual-motor function					
Jaušovec (BP) ⁶¹	Performance (memory capacity scores)	Visual-array comparison task	Executive function/complex attention					
Jaušovec (AP) ⁶²	Performance (memory capacity scores)	Forward and backward corsi block-tapping task	Executive function/complex attention					
Javadi ⁹⁰	Performance (correct %)	Declarative memory task	Executive function/complex attention					
Kasten ⁹¹	Performance (performance change %) Reaction time (reaction time change %)	Mental rotation task	Perceptual-motor function					
Laczó ⁹²	Performance (false-choice trial)	Four alternative forced choice task	Perceptual-motor function					
Lang ⁶³	Performance (correct associative memory)	Face and scene task	Perceptual-motor function					
Loffler ⁶⁴	Performance (mean error) Reaction time (reaction time)	Visual two-choice task	Perceptual-motor function					
Luft ⁶⁵	Performance (creativity)	Remote associate task/Divergent thinking task	Executive function/complex attention					
Lustenberger ⁶⁶	Performance (creativity index)	Creative thinking task	Executive function/complex attention					
Marchesotti ⁶⁷	Performance (performance)	Phonemic awareness task	Executive function/complex attention					
Meier ⁶⁸	Performance (laterality index)	Dichotic listening task	Perceptual-motor function					
Meiron ⁶⁹	Performance (memory accuracy) Reaction time (reaction time)	N-back task	Executive function/complex attention					
Meng ⁷⁰	Performance (recognition)	Face and scene task	Perceptual-motor function					
Moliadze ⁹³	Performance (number of error) Reaction time (mean RT)	Phonological decision task	Executive function/complex attention					
Neubauer ⁹⁴	Performance (performance)	Raven's progressive matrices test	Executive function/complex attention					
Nomura ⁷¹	Performance (hits ratio)	Episodic memory task	Learning and memory					
Pahor ⁷²	Performance (fluid intelligence scores)	Fluid intelligence task	Executive function/complex attention					
Pahor ⁹⁵	Performance (score)	Raven's progressive matrices task	Executive function/complex attention					
Polanía ⁷³	Reaction time (reaction time)	Delayed letter discrimination task	Executive function/complex attention					

Table 2 continued

Study	Cognitive assessments	Cognitive task	Cognitive domains
Polanía ⁷⁴	Performance (corrects and accuracy) Reaction time (reaction time)	Decision-making task	Executive function/complex attention
Pollok ⁷⁵	Reaction time (learning index reaction time)	Serial reaction time task	Learning and memory
Reinhart ⁹⁶	Performance (mean error)	Time-estimation task	Executive function/complex attention
Riecke ⁹⁷	Performance (false alarm rate)	Naturalistic listening task	Perceptual-motor function
Riecke ⁹⁸	Performance (performance)	Phoneme-categorization task	Language
Santarnecchi ⁷⁶	Performance (accuracy %) Reaction time (reaction time)	Fluid intelligence task	Executive function/complex attention
Santarnecchi ⁷⁷	Performance (accuracy %) Reaction time (reaction time)	Abstract-reasoning task/Change- localization working memory task	Executive function/complex attention
Santarnecchi ⁷⁸	Performance (accuracy %) Reaction time (reaction time)	Insight task	Executive function/complex attention
Schuhmann ⁷⁹	Reaction time (reaction time)	Endogenous attention task	Perceptual-motor function
Sela ⁸⁰	Performance (number of adjusted pumps)	Balloon analog risk task	Executive function/complex attention
Strüber ⁹⁹	Performance (motion dominance index)	Stroboscopic alternative motion task	Perceptual-motor function
Tseng ¹⁰⁰	Performance (d-index)	Change detection task	Executive function/complex attention
Tseng ¹⁰¹	Performance (Pashler's K)	Change detection task	Executive function/complex attention
Violante ⁸¹	Reaction time (reaction time)	Choice reaction time task	Executive function/complex attention
Vosskuhl ⁴⁶	Performance (correctly answered scores)	Digit span task/N-back task	Executive function/complex attention
Wischnewski ⁸²	Performance (average probability high risk)	Reinforcement learning task	Learning and memory
Wöstmann ¹⁰²	Performance (hits %)	Dichotic listening task	Executive function/complex attention
Wynn ⁸³	Performance (d-prime)	Recognition memory task	Learning and memory
Zavecz ¹⁰³	Performance (score) Reaction time (reaction time)	Alternating serial reaction time task	Learning and memory
Zoefel ¹⁰⁴	Performance (d-prime)	Detection task	Executive function/complex attention
Zoefel ¹⁰⁵	Performance (correct %)	Word report task	Executive function/complex attention

syc ogica, bP p sy ·gy,

95% CI = 0.104-0.233; Z = 5.138; P < 0.001; O-statistics = 118.535 with P < 0.001; $l^2 = 41.0\%$ (Fig. 3) and (b) 22 offline-tACS comparisons from the 17 studies: SMD = 0.153; SE = 0.049; 95% CI = 0.056 - 0.250; Z = 3.092; P = 0.002; Q-statistics = 11.715 with P = 0.947; $I^2 = 0.0\%$ (Fig. 4). These findings indicate that tACS protocols showed significant improvements in cognitive performance regardless of stimulation timing.

For online-tACS comparisons, the second moderator variable analysis for comparing the effects of different frequency bands (i.e., delta vs. theta vs. alpha vs. beta vs. gamma) of tACS protocols showed significant positive effects of theta and gamma frequency bands on cognitive performance: (a) 26 theta frequency band comparisons from the 22 studies: SMD = 0.247; SE = 0.069; 95% CI = 0.111 - 0.383; Z = 3.556; P < 0.001; Q-statistics = 62.079 with P < 0.001; $I^2 = 59.7\%$ and (b) 21 gamma frequency band comparisons from the 18 studies: SMD = 0.175; SE = 0.049; 95% CI = 0.078-0.272; Z = 3.547; P < 0.001; Q-statistics = 23.442 with $P = 0.268; I^2 = 14.7\%$ (Fig. 5).

However, the analyses revealed no significant effects of delta, alpha, and beta frequency bands on cognitive performance improvements: (a) four delta frequency band comparisons from the three studies: SMD = 0.178;SE = 0.106;95% CI = -0.030 - 0.387; Z = 1.675; P = 0.094; Q-statistics = 3.525 with P = 0.318; $l^2 = 14.9\%$, (b) 15 alpha frequency band comparisons the 14 studies: *SMD* = 0.044; from SE = 0.052: 95% CI = -0.058 - 0.146; Z = 0.854; P = 0.393; Q-statistics = 14.800 with P = 0.392; $l^2 = 5.4\%$, and (c) five beta frequency band comparisons from the five studies: SMD = 0.185; SE = 0.136; 95% CI = -0.081 - 0.450; Z = 1.363; P = 0.173; Q-statistics = 8.516 with $P = 0.074; I^2 = 53.0\%$ (Fig. 6).

For the comparisons of each frequency band of online-tACS protocols, the third moderator variable analysis examined specific changes in cognitive performances among different targeted brain regions, respectively. The analysis revealed significant positive effects for the following conditions: (a) 12 PFC in the theta frequency band comparisons from 10 studies: SMD = 0.389; SE = 0.122; 95% CI = 0.149-0.629; Z = 3.180; P = 0.001; Q-statistics = 37.850 with P < 0.001; $l^2 = 70.9\%$, (b) 10 PPC in the theta frequency band comparisons from eight studies: SMD = 0.206; SE = 0.078; 95% CI = 0.052-0.359; Z = 2.627; P = 0.009; Q-statistics = 10.930 with P = 0.281; $l^2 = 17.658\%$, and (c) five PPC in the gamma frequency band comparisons from four studies: SMD = 0.243; SE = 0.120; 95% CI = 0.007-0.479; Z = 2.018; P = 0.044; Qstatistics = 1.747 with P = 0.782; $l^2 = 0.0\%$ (Fig. 7). We found no significant changes in cognitive performance variables for the remaining conditions (Supplementary Table 2).

D1a: Randomization process

D1b : Timing of identification or recruitment of participants

- D2 : Deviations from the intended interventions
- D3 : Missing outcome data
- D4 : Measurement of the outcome
- D5 : Selection of the reported result

For the comparisons of each frequency band of online-tACS protocols, the fourth moderator variable analysis investigated different changes in cognitive performances based on cognitive domains, respectively. The analysis revealed significant positive effects for the following conditions: (a) 17 executive function / complex

1

1

attention in the theta frequency band comparisons from 14 studies: SMD = 0.325; SE = 0.102; 95% CI = 0.125–0.526; Z = 3.180; P = 0.001; Q-statistics = 54.206 with P = 0.001; $I^2 = 70.5\%$, (b) 15 executive function / complex attention in the gamma frequency band comparisons from 13 studies: SMD = 0.154; SE = 0.060; 95%

D1a D1b D2

Alekseichuk 2017 🕂 Alekseichuk 2020 🕂 Ambrus 2015 ! Antonenko 2016 🕂 Brauer 2018 Braun 2017 🕕 Brignani 2013 🛖 Deng 2019 🕂 Feurra 2016 🕂 Fusco 2018 Giustiniani 2019 Grabner 2018 Gutteling 2017 🕂 Hopfinger 2017 ! Hoy 2015 + Janik 2015 ! Jaušovec 2014 (BP) + Jaušovec 2014 (AP) Javadi 2017

> Kasten 2018 Laczó 2012

> > Lang 2019

Loffler 2018 Luft 2018 Lustenberger 2015

Marchesotti 2020 (Meier 2019 (

> Meiron 2014 Meng 2021

Moliadze 2019

Nomura 2019 🕂

Pahor 2014 ! Pahor 2016 !

Polanía 2012 🔸 Polanía 2015 🕂

Pollok 2015 + Reinhart 2017 + Riecke 2015 + Riecke 2018 +

Santarnecchi 2013 🕂

Santarnecchi 2016 ! Santarbecchi 2019 🕂

Schuhmann 2019 🛨

Strüber 2014 Tseng 2016

Tseng 2018

Vosskuhl 2015 🔹 Wischnewski 2016 ! Wöstmann 2018 ! Wynn 2020 🔹 Zavecz 2020 🔹 Zoefel 2018 !

Zoefel 2020 !

Violante 2017

Sela 2012 🛨

D3 D4 D5

Study Name	Outcome measure	SMD	TT	III	D volve	SMD and 05% CIa
Study Ivame		SND	LL	UL	r-value	SMD and 95% CIS
Alekseichuk 2017	Two-back visual spatial task (Executive function / Complex attention); tACS (θ) vs. Sham	-0.51	-0.92	-0.09	0.017	
Alekseichuk 2020	Memory recognition task (Learning and memory); tACS (θ) vs. Sham	0.33	-0.08	0.73	0.113	│ │ │ ┼── │ │
Brauer 2018	Go/Nogo task (Executive function / Complex attention); tACS (θ) vs. Sham	0.18	-0.23	0.59	0.395	
Braun 2017	Memory performance for words (Executive function / Complex attention); tACS (θ) vs. Sham	0.03	-0.20	0.26	0.790	
Braun 2017	Memory performance for words (Executive function / Complex attention); tACS (α) vs. Sham	0.03	-0.21	0.28	0.822	-0-
Braun 2017	Memory performance for words (Executive function / Complex attention); tACS (B) vs. Sham	0.03	-0.29	0.36	0.838	-0
Braun 2017	Memory performance for words (Executive function / Complex attention): tACS (v) vs. Sham	0.08	-0.15	0.31	0.508	_
Brignani 2013	Discrimination task (Percentual-motor function): tACS (0) vs. Sham	0.18	-0.28	0.52	0.568	
Brignani 2013	Discrimination task (Percentual motor function): tele(s) (s) Sham	-0.18	-0.58	0.23	0.390	
Drignani 2013	Discrimination task (receptual-motor function), (ACS (0) vs. Sham	-0.18	0.36	0.25	0.590	
Brighani 2015	Discrimination task (Perceptual-motor function); (ACS (b) vs. snam	-0.05	-0.45	0.55	0.014	
Deng 2019	Selective auditory attention task (Executive function / Complex attention); (ACS (6) vs. Snam	-0.47	-0.95	-0.01	0.047	
Deng 2019	Selective auditory attention task (Executive function / Complex attention); fACS (α) vs. Sham	0.38	-0.10	0.86	0.121	
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (θ) vs. Sham	0.19	-0.34	0.72	0.477	
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (α) vs. Sham	0.37	-0.18	0.91	0.185	
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (β) vs. Sham	1.03	0.38	1.68	0.002	
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (y) vs. Sham	0.19	-0.34	0.72	0.481	
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (δ) vs. Sham	0.35	0.02	0.69	0.041	-0
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (θ) vs. Sham	0.45	0.10	0.79	0.011	
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (α) vs. Sham	0.20	-0.13	0.53	0.245	
Fusco 2018	Flanker task (Executive function / Complex attention): tACS (B) vs. Sham	0.17	-0.16	0.50	0.319	
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (v) vs. Sham	0.24	-0.09	0.57	0.161	
Grahner 2018	Verbal Creativity task (Executive function / Complex attention); tracs (a) vs. Sham	0.06	-0.36	0.48	0.767	
Grabner 2018	Varial creativity task (Executive function) / Complex attention), b(CS (a) vs. Sham	-0.08	0.50	0.34	0.709	
Guttaling 2017	What is had under the testing testing testing testing in the Complex automotion, tACS (y) vs. Sham	-0.08	0.30	0.34	0.709	
Junilla 2017	whole-body motion updating task (Perceptual-motor function); tACS (0) vs. Sham	0.04	-0.57	0.40	0.030	
Janik 2015	Cambridge face perception identity task (Perceptual-motor function); tACS (y) vs. Sham	0.49	0.04	0.94	0.035	
Javadı 2017	Declarative memory task (Executive function / Complex attention); tACS (y) vs. Sham	0.69	0.16	1.22	0.011	
Kasten 2018	Mental rotation task (Perceptual-motor function); tACS (α) vs. Sham	0.32	-0.56	1.21	0.473	
Laczó 2012	Four alternative forced choice task (Perceptual-motor function); tACS (y) vs. Sham	0.12	-0.32	0.56	0.598	
Loffler 2018	Visual two-choice task (Perceptual-motor function); tACS (y) vs. Sham	0.19	-0.63	1.01	0.643	
Luft 2018	Remote associate task (Executive function / Complex attention); tACS (α) vs. Sham	0.10	-0.27	0.46	0.609	-0
Luft 2018	Divergent thinking task (Executive function / Complex attention); tACS (a) vs. Sham	0.09	-0.37	0.55	0.703	— —
Lustenberger 2015	Creative thinking task (Executive function / Complex attention); tACS (α) vs. Sham	0.61	0.12	1.10	0.014	
Lustenberger 2015	Creative thinking task (Executive function / Complex attention): tACS (V) vs. Sham	-0.02	-0.46	0.42	0.934	
Meier 2019	Dichotic listening task (Perception-motor function): tACS (v) vs. Sham	0.12	-0.31	0.50	0.552	
Meiron 2014	N-back task (Executive function/Complex attention): tACS (f) vs. Sham	1.21	0.34	2.08	0.006	
Pahor 2014	Fluid intelligence task (Executive function / Complex attention): $tACS(A)$ vs. Sham	0.81	0.20	1 41	0.009	
Polanía 2015	Decision-making task (Executive function / Complex attention); tACS (4) vs. Sham	0.07	-0.27	0.42	0.682	
Reinhart 2017	Time-estimation task (Executive function) Complex attention), $4CS(\theta)$ vs. Sham	0.54	0.15	0.92	0.006	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (0) vs. Sham	0.06	-0.30	0.42	0.752	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (4) vs. Sham	0.00	-0.27	0.45	0.637	
Reinhart 2017	Time astimation task (Executive function / Complex attention); tACS (0) vs. Sham	1 20	0.81	1.78	<0.001	
Riacka 2015	Interesting light and the Concentration of the for start and the CS (0) vs. Sham	0.02	0.01	0.46	~0.001	
Diceke 2015	Naturalistic instelling task (refection-inoto function), (725 (b) vs. Shahi	0.02	0.42	0.40	0.937	
Santamaaahi 2012	Findemet-categorization task (Language), tACS (0) vs. Shani	0.19	-0.25	0.05	0.404	
Santamecciii 2013	Fund intelligence task (Executive function / Complex attention); tACS (6) vs. Sham	-0.06	-0.51	0.58	0.790	
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (α) vs. Sham	-0.02	-0.45	0.42	0.943	
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (β) vs. Sham	0.13	-0.31	0.57	0.556	
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (y) vs. Sham	0.04	-0.40	0.48	0.870	
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (θ) vs. Sham	0.09	-0.31	0.49	0.650	
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (y) vs. Sham	0.00	-0.41	0.40	0.991	
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (y) vs. Sham	-0.11	-0.51	0.29	0.600	
Santarnecchi 2019	Insight task (Executive function / Complex attention); tACS (α) vs. Sham	-0.12	-0.47	0.23	0.508	
Santarnecchi 2019	Insight task (Executive function / Complex attention); tACS (y) vs. Sham	0.64	0.25	1.02	0.001	
Sela 2012	Balloon analog risk task (Executive function / Complex attention); tACS (θ) vs. Sham	1.47	0.36	2.57	0.009	
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function); tACS (θ) vs. Sham	-0.23	-0.78	0.32	0.414	
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function): tACS (V) vs. Sham	0.54	0.03	1.05	0.037	
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function): tACS (θ) vs. Sham	0.03	-0.47	0.54	0.902	
Strüber 2014	Stroboscopic alternative motion task (Percentual-motor function): tACS (V) vs. Sham	0.18	-0.33	0.69	0.491	
Tseng 2016	Change detection task (Executive function / Complex attention); tACS (y) vs. Sham	0.61	0.13	1.08	0.013	
Tseng 2016	Change detection task (Executive function / Complex attention), tACS (A) is Sham	0.13	-0.31	0.57	0.551	
Tsong 2018	Change detection task (Executive function/ Complex attention), tACS (0) vs. Sham	0.15	0.04	0.07	0.023	
Teeng 2018	Change detection task (Executive function/ Complex autontion), tACS (0) vs. Sham	0.21	0.04	0.57	0.055	
Veeelerbl 2016	Change detection task (Executive function) / Complex attention); (ACS (6) vs. snam	0.21	-0.25	0.05	0.333	
V OSSKUIII 2015	Digit span task/tv-back task (Executive function / Complex attention); tACS (θ) vs. Snam	0.09	-0.59	0.78	0.790	
Wistmann 2010	Remorement learning task (Learning and memory); tACS (θ) vs. Sham	0.62	-0.02	1.27	0.057	
wostmann 2018	Dichotic listening task (Executive function / Complex attention); tACS (α) vs. Sham	-0.04	-0.48	0.40	0.859	
wostmann 2018	Dichotic listening task (Executive function / Complex attention); tACS (y) vs. Sham	0.14	-0.301	0.58	0.534	
Wynn 2020	Recognition memory task (Learning and memory); tACS (θ) vs. Sham	0.03	-0.24	0.31	0.826	_ e _
Wynn 2020	Recognition memory task (Learning and memory); tACS (a) vs. Sham	0.06	-0.21	0.33	0.663	
Zavecz 2020	Alternating serial reaction time task (Learning and memory); tACS (θ) vs. Sham	0.22	-0.17	0.61	0.266	
Zoefel 2018	Detection task (Executive function / Complex attention); tACS (δ) vs. Sham	0.11	-0.27	0.50	0.566	
Zoefel 2020	Word report task (Executive function / Complex attention); tACS (δ) vs. Sham	0.00	-0.38	0.38	1.000	
Zoefel 2020	Word report task (Executive function / Complex attention); tACS (δ) vs. Sham	0.07	-0.37	0.53	0.738	
	Online-tACS overall	0.17	0.10	0.23	< 0.001	♠
Abbreviations. CIs: conf	idence intervals; LL: lower limit; SMD: standardized mean difference; UL: upper limit; δ: delta bend (1-3 Hz	;); θ : theta	band (4-8	Hz); α:	alpha band	

(9-13 Hz); β: beta band (14-30 Hz); y: gamma band (30-139 Hz). Note. Red diamonds indicate an overall effects size. More positive values indicate greater improvement in cognitive performance.

Fig. 3 Cognitive performance comparisons after online-tACS. Meta-analytic findings show potential effects of online-tACS protocols on changes in cognitive performances.

Cl = 0.036- 0.271; Z = 2.564; P = 0.010; Q-statistics = 19.114 with P = 0.161; $l^2 = 26.8\%$, and (c) six perceptual-motor function in the gamma frequency band comparisons from five studies: SMD = 0.264; SE = 0.100; 95% Cl = 0.068-0.460; Z = 2.635; P = 0.008; Q-statistics = 3.198 with P = 0.669; $l^2 = 0.0\%$ (Fig. 8). We found no significant changes in cognitive performance variables for the remaining conditions (Supplementary Table 3).

For offline-tACS comparisons, the moderator variable analysis on 12 theta frequency band comparisons from the 10 studies showed significant positive effects on cognitive performance: SMD = 0.221;

SE = 0.067; 95% CI = 0.090-0.352; Z = 3.298; P = 0.001; Q-statistics = 7.183 with P = 0.784; $l^2 = 0.0\%$ (Fig. 9). However, the analyses showed no significant effects on alpha, beta, gamma, and ripple frequency bands on cognitive performance improvements: (a) four alpha frequency band comparisons form the four studies: SMD = 0.044; SE = 0.112; 95% CI = -0.175-0.264; Z = 0.394; P = 0.693; Q-statistics = 0.667 with P = 0.881; $l^2 = 0.0\%$ and (b) four gamma frequency band comparisons from the four studies: SMD = 0.060; SE = 0.125; 95% CI = -0.185-0.305; Z = 0.482; P = 0.630; Q-statistics = 1.107 with P = 0.775; $l^2 = 0.0\%$.

-2

-1

0

1

2

Study Name	Outcome measure	SMD	LL	UL	P-value	SMD and 95% CIs
Ambrus 2015	Word-pair learning task (Learning and memory); tACS (Я) vs. Sham	0.23	-0.24	0.70	0.341	
Antonenko 2016	Explicit vocabulary learning task (Learning and memory); tACS (θ) vs. Sham	0.16	-0.41	0.73	0.577	
Brauer 2018	Go/Nogo task (Executive function / Complex attention); tACS (θ) vs. Sham	0.25	-0.16	0.67	0.233	│
Deng 2019	Selective auditory attention task (Executive function / Complex attention); tACS (θ) vs. Sham	0.17	-0.30	0.63	0.486	│
Deng 2019	Selective auditory attention task (Executive function / Complex attention); tACS (α) vs. Sham	-0.06	-0.49	0.38	0.807	
Hoy 2015	N-back task (Executive function / Complex attention); tACS (y) vs. Sham	-0.13	-0.59	0.34	0.582	
Jaušovec 2014 (BP)	Visual-array comparison task (Executive function / Complex attention); tACS (θ) vs. Sham	0.05	-0.52	0.62	0.865	
Jaušovec 2014 (AP)	Corsi block-tapping, digit-span, N-back task (Executive function / Complex attention); tACS (θ) vs. Sham	0.69	0.06	1.32	0.032	
Lang 2019	Face and scene task (Perceptual-motor function); tACS (θ) vs. Sham	0.57	0.09	1.06	0.021	
Luft 2018	Divergent thinking task (Executive function / Complex attention); tACS (a) vs. Sham	-0.05	-0.51	0.42	0.842	
Marchesotti 2020	Phonemic awareness task (Executive function / Complex attention); tACS (y) vs. Sham	0.04	-0.47	0.55	0.874	
Meng 2021	Face and scene task (Perceptual-motor function); tACS (θ) vs. Sham	0.11	-0.36	0.57	0.645	
Moliadze 2019	Phonological decision task (Executive function / Complex attention); tACS (a) vs. Sham	0.14	-0.26	0.55	0.485	
Moliadze 2019	Phonological decision task (Executive function / Complex attention); tACS (β) vs. Sham	0.08	-0.32	0.48	0.706	
Neubauer 2017	Raven's progressive matrices task (Executive function / Complex attention); tACS (θ) vs. Sham	0.09	-0.35	0.53	0.676	
Nomura 2019	Episodic memory task (Learning and memory); tACS (y) vs. Sham	0.29	-1.18	1.75	0.700	
Pahor 2016	Raven's progressive matrices task (Executive function / Complex attention); tACS (α) vs. Sham	0.12	-0.35	0.58	0.628	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.39	0.02	0.76	0.042	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (y) vs. Sham	0.17	-0.19	0.53	0.353	│ –∔ॿ── │
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.03	-0.33	0.39	0.862	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.21	-0.16	0.57	0.262	
Vosskuhl 2015	Digit span task/N-back task (Executive function / Complex attention); tACS (θ) vs. Sham	0.70	-0.61	0.75	0.840	
	Offline-tACS overall	0.15	0.06	0.25	0.002	●
Abbreviations. AP: pu	blished in the Acta Psychologica; BP: published in the Biological Psychology; CIs: confidence intervals; LL	: lower lin	nit; SMD:	standar	lized mean	

Abbreviations. AP: published in the Acta responsibility in the Biological Psychology; Us: confidence intervals; LL: lower limit; SMD: standardized midifference; UL: upper limit; 6: delta bend (1-3 Hz); e: theta band (4-8 Hz); a: alpha band (9-13 Hz); b: beta band (14-30 Hz); y; giamma band (30-139 Hz); fl: ripple band (140 Hz). Note. Red diamonds indicate an overall effects size. More positive values indicate greater improvement in cognitive performance. -2

Fig. 4 Cognitive performance comparisons after offline-tACS. Meta-analytic findings show potential effects of offline-tACS protocols on changes in cognitive performances.

Study Name	Outcome measure	SMD	LL	UL	P-value	SMD and 95% CIs
Alekseichuk 2017	Two-back visual spatial task (Executive function / Complex attention); tACS (θ) vs. Sham	-0.51	-0.92	-0.09	0.017	
Alekseichuk 2020	Memory recognition task (Learning and memory); tACS (θ) vs. Sham	0.33	-0.08	0.73	0.113	│ │ ∔╍── │ │
Brauer 2018	Go/Nogo task (Executive function / Complex attention); tACS (θ) vs. Sham	0.18	-0.23	0.59	0.395	│ │ →━─ │ │
Braun 2017	Memory performance for words (Executive function / Complex attention); tACS (0) vs. Sham	0.03	-0.20	0.26	0.790	
Brignani 2013	Discrimination task (Perceptual-motor function); tACS (θ) vs. Sham	0.18	-0.28	0.52	0.568	
Deng 2019	Selective auditory attention task (Executive function / Complex attention); tACS (θ) vs. Sham	0.38	-0.10	0.86	0.121	+
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (θ) vs. Sham	0.19	-0.34	0.72	0.477	
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (θ) vs. Sham	0.35	0.02	0.69	0.041	
Meiron 2014	N-back task (Executive function/Complex attention); tACS (0) vs. Sham	1.21	0.34	2.08	0.006	
Pahor 2014	Fluid intelligence task (Executive function / Complex attention); tACS (θ) vs. Sham	0.81	0.20	1.41	0.009	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.54	0.15	0.92	0.006	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.09	-0.27	0.45	0.638	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	1.29	0.81	1.78	< 0.001	│ │ │ ┼╍── │
Riecke 2015	Naturalistic listening task (Perception-motor function); tACS (θ) vs. Sham	0.02	-0.42	0.46	0.937	
Riecke 2018	Phoneme-categorization task (Language); tACS (θ) vs. Sham	0.19	-0.25	0.63	0.404	-+
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (θ) vs. Sham	-0.06	-0.50	0.38	0.790	
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (θ) vs. Sham	0.09	-0.31	0.49	0.650	
Sela 2012	Balloon analog risk task (Executive function / Complex attention); tACS (θ) vs. Sham	1.47	0.36	2.57	0.009	
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function); tACS (θ) vs. Sham	-0.23	-0.78	0.32	0.414	
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function); tACS (θ) vs. Sham	0.03	-0.47	0.54	0.902	
Tseng 2018	Change detection task (Executive function / Complex attention); tACS (θ) vs. Sham	0.51	0.04	0.97	0.033	
Tseng 2018	Change detection task (Executive function / Complex attention); tACS (θ) vs. Sham	0.21	-0.23	0.65	0.353	-+
Vosskuhl 2015	Digit span task/N-back task (Executive function / Complex attention); tACS (θ) vs. Sham	0.09	-0.59	0.78	0.790	
Wischnewski 2016	Reinforcement learning task (Learning and memory); tACS (θ) vs. Sham	0.62	-0.02	1.27	0.057	
Wynn 2020	Recognition memory task (Learning and memory); tACS (θ) vs. Sham	0.03	-0.24	0.31	0.826	
Zavecz 2020	Alternating serial reaction time task (Learning and memory); tACS (θ) vs. Sham	0.22	-0.17	0.61	0.266	│ │ ┼╍── │ │
	Online-theta frequency band overall	0.25	0.11	0.38	< 0.001	
Braun 2017	Memory performance for words Executive function / Complex attention); tACS (y) vs. Sham	0.08	-0.15	0.31	0.508	-p
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (y) vs. Sham	0.19	-0.34	0.72	0.481	-+
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (y) vs. Sham	0.24	-0.09	0.57	0.161	│ │ ┼╍── │ │
Grabner 2018	Verbal creativity task (Executive function / Complex attention); tACS (y) vs. Sham	-0.08	-0.50	0.34	0.709	
Janik 2015	Cambridge face perception identity task (Perceptual-motor function); tACS (y) vs. Sham	0.49	0.04	0.94	0.035	
Javadi 2017	Declarative memory task (Executive function / Complex attention); tACS (y) vs. Sham	0.69	0.16	1.22	0.011	
Laczó 2012	Four alternative forced choice task (Perceptual-motor function); tACS (y) vs. Sham	0.12	-0.32	0.56	0.598	-+=
Loffler 2018	Visual two-choice task (Perceptual-motor function); tACS (y) vs. Sham	0.19	-0.63	1.01	0.643	
Lustenberger 2015	Creative thinking task (Executive function / Complex attention); tACS (y) vs. Sham	-0.02	-0.46	0.42	0.934	————————
Meier 2019	Dichotic listening task (Perception-motor function); tACS (y) vs. Sham	0.12	-0.31	0.50	0.552	
Polanía 2015	Decision-making task (Executive function / Complex attention); tACS (y) vs. Sham	0.07	-0.27	0.42	0.682	│ │ ─₽── │ │
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (y) vs. Sham	0.06	-0.30	0.42	0.752	▏
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (y) vs. Sham	0.04	-0.40	0.48	0.870	————
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (y) vs. Sham	0.00	-0.41	0.40	0.991	
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (y) vs. Sham	-0.11	-0.51	0.30	0.600	▏
Santarnecchi 2019	Insight task (Executive function / Complex attention); tACS (y) vs. Sham	0.64	0.25	1.02	0.001	│ │ │ ───┤ │
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function); tACS (y) vs. Sham	0.54	0.03	1.05	0.037	│ │ │────┤ │
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function); tACS (y) vs. Sham	0.18	-0.33	0.69	0.491	▏
Tseng 2016	Change detection task (Executive function / Complex attention); tACS (y) vs. Sham	0.61	0.13	1.08	0.013	│ │ │───┼ │
Tseng 2016	Change detection task (Executive function / Complex attention); tACS (y) vs. Sham	0.13	-0.31	0.57	0.551	-+=-
Wöstmann 2018	Dichotic listening task (Executive function / Complex attention); tACS (y) vs. Sham	0.14	-0.301	0.58	0.534	-+=-
	Online-gamma frequency band overall	0.18	0.08	0.27	< 0.001	Ⅰ
Abbreviations. Cls: con	indence intervals; LL: lower limit; SMD: standardized mean difference; UL: upper limit; θ : theta band (4-8 Hz);	y: gamma	band (30-	139 HZ).		

Fig. 5 Cognitive performance comparisons after online-tACS with theta and gamma frequency bands. Meta-analytic findings show potential effects of online-tACS protocols with theta and gamma frequency bands on changes in cognitive performances.

-1

0

1

2

Study Name	Outcome measure	SMD	LL	UL	P-value	SMD and 95% CIs
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (δ) vs. Sham	0.45	0.02	0.79	0.011	
Zoefel 2018	Detection task (Executive function / Complex attention); tACS (δ) vs. Sham	0.11	-0.27	0.50	0.566	
Zoefel 2020	Word report task (Executive function / Complex attention); tACS (δ) vs. Sham	0.00	-0.38	0.38	1.000	│ │ ———— │ │
Zoefel 2020	Word report task (Executive function / Complex attention); tACS (δ) vs. Sham	0.08	-0.37	0.53	0.738	
	Online-delta frequency band overall	0.18	-0.03	0.39	0.094	🔶
Braun 2017	Memory performance for words (Executive function / Complex attention); tACS (α) vs. Sham	0.03	-0.21	0.28	0.822	
Brignani 2013	Discrimination task (Perceptual-motor function); tACS (a) vs. Sham	-0.18	-0.58	0.23	0.390	
Deng 2019	Selective auditory attention task (Executive function / Complex attention); tACS (α) vs. Sham	-0.47	-0.93	-0.01	0.047	
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (α) vs. Sham	0.37	-0.18	0.91	0.185	
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (α) vs. Sham	0.20	-0.13	0.53	0.245	
Grabner 2018	Verbal creativity task (Executive function / Complex attention); tACS (a) vs. Sham	0.06	-0.36	0.48	0.767	
Gutteling 2017	Whole-body motion updating task (Perceptual-motor function); tACS (α) vs. Sham	0.04	-0.37	0.46	0.838	
Kasten 2018	Mental rotation task (Perceptual-motor function); tACS (α) vs. Sham	0.32	-0.56	1.21	0.473	
Luft 2018	Remote associate task (Executive function / Complex attention); tACS (a) vs. Sham	0.10	-0.27	0.46	0.609	
Luft 2018	Divergent thinking task (Executive function / Complex attention); tACS (a) vs. Sham	0.09	-0.37	0.55	0.703	
Lustenberger 2015	Creative thinking task (Executive function / Complex attention); tACS (a) vs. Sham	0.61	0.12	1.10	0.014	
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (a) vs. Sham	-0.02	-0.45	0.42	0.943	
Santarnecchi 2019	Insight task (Executive function / Complex attention); tACS (α) vs. Sham	-0.12	-0.47	0.23	0.508	
Wöstmann 2018	Dichotic listening task (Executive function / Complex attention); tACS (α) vs. Sham	-0.04	-0.48	0.40	0.859	
Wynn 2020	Recognition memory task (Learning and memory); tACS (a) vs. Sham	0.06	-0.21	0.33	0.663	_p_
	Online-alpha frequency band overall	0.04	-0.06	0.15	0.393	
Braun 2017	Memory performance for words (Executive function / Complex attention); tACS (β) vs. Sham	0.03	-0.29	0.36	0.838	\$
Brignani 2013	Discrimination task (Perceptual-motor function); tACS (B) vs. Sham	-0.05	-0.45	0.35	0.814	
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (β) vs. Sham	1.03	0.38	1.68	0.002	— ——
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (β) vs. Sham	0.17	-0.16	0.51	0.319	│ │ ┼▣── │ │
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (β) vs. Sham	0.13	-0.31	0.57	0.556	
	Online-beta frequency band overall	0.19	-0.08	0.45	0.173	🔶
Abbreviations. CIs: con	fidence intervals; LL: lower limit; SMD: standardized mean difference; UL: upper limit; δ : delta bend (1-3 H:	z); α: alpha	band (9-1	3 Hz); β	: beta band	

Fig. 6 Cognitive performance comparisons after online-tACS with delta, alpha, and beta frequency bands. Meta-analytic findings show no significant effects of online-tACS protocols with delta, alpha, and beta frequency bands on changes in cognitive performances.

Study Name	Outcome measure	SMD	LL	UL	P-value	SMD and 95% CIs
Brauer 2018	Go/Nogo task (Executive function / Complex attention); tACS (θ) vs. Sham	0.18	-0.23	0.59	0.395	
Braun 2017	Memory performance for words (Executive function / Complex attention); tACS (θ) vs. Sham	0.03	-0.20	0.26	0.790	p
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (θ) vs. Sham	0.35	0.02	0.69	0.041	╎││⊢╍──│
Meiron 2014	N-back task (Executive function/Complex attention); tACS (θ) vs. Sham	1.21	0.34	2.08	0.006	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.54	0.15	0.92	0.006	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.09	-0.27	0.45	0.638	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	1.29	0.81	1.78	< 0.001	+
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (θ) vs. Sham	-0.06	-0.50	0.38	0.790	
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (0) vs. Sham	0.09	-0.31	0.49	0.650	
Sela 2012	Balloon analog risk task (Executive function / Complex attention); tACS (θ) vs. Sham	1.47	0.36	2.57	0.009	
Vosskuhl 2015	Digit span task/N-back task (Executive function / Complex attention); tACS (θ) vs. Sham	0.09	-0.59	0.78	0.790	
Wischnewski 2016	Reinforcement learning task (Learning and memory); tACS (θ) vs. Sham	0.62	-0.02	1.27	0.057	
	Online-theta frequency band on PFC overall	0.39	0.15	0.63	0.001	
Alekseichuk 2020	Memory recognition task (Learning and memory); tACS (θ) vs. Sham	0.33	-0.08	0.73	0.113	╎ ┼╍──│
Brignani 2013	Discrimination task (Perceptual-motor function); tACS (θ) vs. Sham	0.18	-0.28	0.52	0.568	
Deng 2019	Selective auditory attention task (Executive function / Complex attention); tACS (θ) vs. Sham	0.38	-0.10	0.86	0.121	+
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (θ) vs. Sham	0.19	-0.34	0.72	0.477	-+
Pahor 2014	Fluid intelligence task (Executive function / Complex attention); tACS (θ) vs. Sham	0.81	0.20	1.41	0.009	
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function); tACS (θ) vs. Sham	-0.23	-0.78	0.32	0.414	
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function); tACS (θ) vs. Sham	0.03	-0.47	0.54	0.902	
Tseng 2018	Change detection task (Executive function / Complex attention); tACS (θ) vs. Sham	0.51	0.04	0.97	0.033	
Tseng 2018	Change detection task (Executive function / Complex attention); tACS (θ) vs. Sham	0.21	-0.23	0.65	0.353	-+
Wynn 2020	Recognition memory task (Learning and memory); tACS (θ) vs. Sham	0.03	-0.24	0.31	0.826	-@
	Online-theta frequency band on PPC overall	0.21	0.05	0.36	0.009	
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (y) vs. Sham	0.19	-0.34	0.72	0.481	▏
Laczó 2012	Four alternative forced choice task (Perceptual-motor function); tACS (y) vs. Sham	0.12	-0.32	0.56	0.598	
Loffler 2018	Visual two-choice task (Perceptual-motor function); tACS (y) vs. Sham	0.19	-0.63	1.01	0.643	
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function); tACS (y) vs. Sham	0.54	0.03	1.05	0.037	
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function); tACS (y) vs. Sham	0.18	-0.33	0.69	0.491	│ │ ─┼▆── │
	Online-gamma frequency band on PPC overall	0.24	0.01	0.48	0.044	🔶
Abbreviations. CIs: con	nfidence intervals; LL: lower limit; SMD: standardized mean difference; UL: upper limit; θ: theta band (4-8 F	Iz); y: gan	ıma band	(30-139	Hz); PFC:	
Abbreviations. CIs: con	Online-gamma frequency band on PPC overall fidence intervals; LL: lower limit; SMD: standardized mean difference; UL: upper limit; 0: theta band (4-8 I posterior portical portar	0.24 Hz); y: gan	0.01 nma band	0.48 (30-139	0.044 Hz); PFC:	

Note. Red diamonds indicate an overall effects size. More positive values indicate greater improvement in cognitive performance.

Fig. 7 Cognitive performance comparisons after online-tACS with theta and gamma frequency bands across targeted brain regions. Meta-analytic findings show potential effects of online-tACS protocols with theta frequency band on PFC and PPC and online-tACS protocols with gamma frequency band on PFC.

For the comparisons of each frequency band of offline-tACS protocols, the third moderator variable analysis that examined specific changes in cognitive performances among different targeted brain regions revealed significant positive effect for the following condition: five PFC in the theta frequency band comparisons from three studies: SMD = 0.204; SE = 0.092; 95% CI = 0.023- 0.384; Z = 2.211; P = 0.027; Q-statistics = 2.009 with P = 0.734; $I^2 = 0.0\%$ (Fig. 10). The fourth moderator variable analysis that investigated potential different treatment effects based on cognitive domains showed significant positive effect for the following condition: nine executive function / complex

attention in the theta frequency band comparisons from seven studies: *SMD* = 0.204; *SE* = 0.075; 95% CI = 0.056–0.351; Z = 2.711; P = 0.007; *Q*-statistics = 4.855 with P = 0.773; $I^2 = 0.0\%$ (Fig. 10). We found no significant changes in cognitive performance variables for the remaining conditions (Supplementary Tables 4 and 5).

Meta-analytic findings on cognition-related reaction time

The random-effects model meta-analysis on 32 total comparisons from the 18 studies failed to demonstrate a significant effect of

Study Name	Outcome measure	SMD	LL	UL	P-value	SMD and 95% CIs
Alekseichuk 2017	Two-back visual spatial task (Executive function); tACS (θ) vs. Sham	- 0.51	-0.92	-0.09	0.017	
Brauer 2018	Go/Nogo task (Executive function / Complex attention); tACS (θ) vs. Sham	0.18	-0.23	0.59	0.395	
Braun 2017	Memory performance for words (Executive function / Complex attention); tACS (θ) vs. Sham	0.03	-0.20	0.26	0.790	
Deng 2019	Selective auditory attention task (Executive function / Complex attention); tACS (θ) vs. Sham	0.38	-0.10	0.86	0.121	
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (θ) vs. Sham	0.19	-0.34	0.72	0.477	
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (θ) vs. Sham	0.35	0.02	0.69	0.041	
Meiron 2014	N-back task (Executive function/Complex attention); tACS (θ) vs. Sham	1.21	0.34	2.08	0.006	
Pahor 2014	Fluid intelligence task (Executive function / Complex attention); tACS (θ) vs. Sham	0.81	0.20	1.41	0.009	□
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.54	0.15	0.92	0.006	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (0) vs. Sham	0.09	-0.27	0.45	0.638	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	1.29	0.81	1.78	< 0.001	
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (θ) vs. Sham	-0.06	-0.50	0.38	0.790	
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (θ) vs. Sham	0.09	-0.31	0.49	0.650	
Sela 2012	Balloon analog risk task (Executive function / Complex attention); tACS (θ) vs. Sham	1.47	0.36	2.57	0.009	
Tseng 2018	Change detection task (Executive function / Complex attention); tACS (θ) vs. Sham	0.51	0.04	0.97	0.033	
Tseng 2018	Change detection task (Executive function / Complex attention); tACS (θ) vs. Sham	0.21	-0.23	0.65	0.353	
Vosskuhl 2015	Digit span task/N-back task (Executive function / Complex attention); tACS (θ) vs. Sham	0.09	-0.59	0.78	0.790	
	Online-theta frequency band on Executive function / Complex attention overall	0.33	0.13	0.53	0.001	
Braun 2017	Memory performance for words (Executive function / Complex attention); tACS (y) vs. Sham	0.08	-0.15	0.31	0.508	
Feurra 2016	Digit forward (Executive function / Complex attention); tACS (y) vs. Sham	0.19	-0.34	0.72	0.481	
Fusco 2018	Flanker task (Executive function / Complex attention); tACS (y) vs. Sham	0.24	-0.09	0.57	0.161	
Grabner 2018	Verbal creativity task (Executive function / Complex attention); tACS (y) vs. Sham	-0.08	-0.50	0.34	0.709	
Javadi 2017	Declarative memory task (Executive function / Complex attention); tACS (y) vs. Sham	0.69	0.16	1.22	0.011	│
Lustenberger 2015	Creative thinking task (Executive function / Complex attention); tACS (y) vs. Sham	-0.02	-0.46	0.42	0.934	
Polanía 2015	Decision-making task (Executive function / Complex attention); tACS (y) vs. Sham	0.07	-0.27	0.42	0.682	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (y) vs. Sham	0.06	-0.30	0.42	0.752	
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (y) vs. Sham	0.04	-0.40	0.48	0.870	₽
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (y) vs. Sham	0.00	-0.41	0.40	0.991	<u> </u> ↓
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (y) vs. Sham	-0.11	-0.51	0.30	0.600	
Santarnecchi 2019	Insight task (Executive function / Complex attention); tACS (y) vs. Sham	0.64	0.25	1.02	0.001	
Tseng 2016	Change detection task (Executive function / Complex attention); tACS (y) vs. Sham	0.61	0.13	1.08	0.013	
Tseng 2016	Change detection task (Executive function / Complex attention); tACS (y) vs. Sham	0.13	-0.31	0.57	0.551	
Wöstmann 2018	Dichotic listening task (Executive function / Complex attention); tACS (y) vs. Sham	0.14	-0.301	0.58	0.534	
	Online-gamma frequency band on Executive function / Complex attention overall	0.15	0.04	0.27	0.010	
Janik 2015	Cambridge face perception identity task (Perceptual-motor function); tACS (y) vs. Sham	0.49	0.04	0.94	0.035	
Laczó 2012	Four alternative forced choice task (Perceptual-motor function); tACS (y) vs. Sham	0.12	-0.32	0.56	0.598	
Loffler 2018	Visual two-choice task (Perceptual-motor function); tACS (y) vs. Sham	0.19	-0.63	1.01	0.643	
Meier 2019	Dichotic listening task (Perception-motor function); tACS (y) vs. Sham	0.12	-0.31	0.50	0.552	
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function); tACS (y) vs. Sham	0.54	0.03	1.05	0.037	
Strüber 2014	Stroboscopic alternative motion task (Perceptual-motor function); tACS (y) vs. Sham	0.18	-0.33	0.69	0.491	-+
	Online-gamma frequency band on Perceptual-motor function overall	0.26	0.07	0.46	0.008	
Abbreviations. CIs: confidence intervals; LL: lower limit; SMD: standardized mean difference; UL: upper limit; θ : theta band (4-8 Hz); y? gamma band (30-139 Hz).						
Note. Red diamonds indicate an overall effects size. More positive values indicate greater improvement in cognitive performance2 -1 0 1 2						

Fig. 8 Cognitive performance comparisons after online-tACS with theta and gamma frequency bands across cognitive domains. Metaanalytic findings show potential effects of online-tACS protocols with theta frequency band on changes in executive function / complex attention and online-tACS protocols with gamma frequency band on changes in executive function / complex attention and perceptualmotor function.

Study Name	Outcome measure	SMD	LL	UL	P-value	SMD and 95% CIs
Antonenko 2016	Explicit vocabulary learning task (Learning and memory); tACS (θ) vs. Sham	0.16	-0.41	0.73	0.577	
Brauer 2018	Go/Nogo task (Executive function / Complex attention); tACS (θ) vs. Sham	0.25	-0.16	0.67	0.233	
Deng 2019	Selective auditory attention task (Executive function / Complex attention); tACS (θ) vs. Sham	0.17	-0.30	0.63	0.486	
Jaušovec 2014 (BP)	Visual-array comparison task (Executive function / Complex attention); tACS (θ) vs. Sham	0.05	-0.52	0.62	0.865	
Jaušovec 2014 (AP)	Corsi block-tapping, digit-span, N-back task (Executive function / Complex attention); tACS (θ) vs. Sham	0.69	0.06	1.32	0.032	
Lang 2019	Face and scene task (Perceptual-motor function); tACS (θ) vs. Sham	0.57	0.09	1.06	0.021	
Meng 2021	Face and scene task (Perceptual-motor function); tACS (θ) vs. Sham	0.11	-0.36	0.57	0.645	e
Neubauer 2017	Raven's progressive matrices task (Executive function / Complex attention); tACS (θ) vs. Sham	0.09	-0.35	0.53	0.676	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.39	0.02	0.76	0.042	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.03	-0.33	0.39	0.862	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.21	-0.16	0.57	0.262	
Vosskuhl 2015	Digit span task/N-back task (Executive function / Complex attention); tACS (0) vs. Sham	0.70	-0.61	0.75	0.840	
	Offline-theta frequency band overall	0.22	0.09	0.35	0.001	◆
Deng 2019	Selective auditory attention task (Executive function / Complex attention); tACS (a) vs. Sham	-0.06	-0.49	0.38	0.807	_
Luft 2018	Divergent thinking task (Executive function / Complex attention); tACS (a) vs. Sham	-0.05	-0.51	0.42	0.842	a
Moliadze 2019	Phonological decision task (Executive function / Complex attention); tACS (a) vs. Sham	0.14	-0.26	0.55	0.485	
Pahor 2016	Raven's progressive matrices task (Executive function / Complex attention); tACS (α) vs. Sham	0.12	-0.35	0.58	0.628	
	Offline-alpha frequency band overall	0.04	-0.18	0.26	0.693	
Moliadze 2019	Phonological decision task (Executive function / Complex attention); tACS (β) vs. Sham	0.08	-0.32	0.48	0.706	
	Offline-beta frequency band overall	0.08	-0.32	0.48	0.706	-
Hoy 2015	N-back task (Executive function / Complex attention); tACS (y) vs. Sham	-0.13	-0.59	0.34	0.582	<u> </u>
Marchesotti 2020	Phonemic awareness task (Executive function / Complex attention); tACS (y) vs. Sham	0.04	-0.47	0.55	0.874	
Nomura 2019	Episodic memory task (Learning and memory); tACS (y) vs. Sham	0.29	-1.18	1.75	0.700	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (y) vs. Sham	0.17	-0.19	0.53	0.353	
	Offline-gamma frequency band overall	0.06	-0.19	0.31	0.630	-
Ambrus 2015	Word-pair learning task (Learning and memory); tACS (Я) vs. Sham	0.23	-0.24	0.70	0.341	
	Offline-ripple frequency band overall	0.23	-0.24	0.70	0.341	
Abbreviations. AP: published in the Acta Psychologica; BP: published in the Biological Psychology; CIs: confidence intervals; LL: lower limit; SMD: standardized mean						
difference; UL: upper limit; θ: theta band (4-8 Hz); α: alpha band (9-13 Hz); β: beta band (14-30 Hz); y: gamma band (30-139 Hz); Я: ripple band (140 Hz).						

Note. Red diamonds indicate an overall effects size. More positive values indicate greater improvement in cognitive performance.

Fig. 9 Cognitive performance comparisons after offline-tACS with specific frequency bands. Meta-analytic findings show potential effects of offline-tACS protocols with theta frequency band on changes in cognitive performances.

Study Name	Outcome measure	SMD	LL	UL	P-value	SMD and 95% CIs	
Brauer 2018	Go/Nogo task (Executive function / Complex attention); tACS (θ) vs. Sham	0.25	-0.16	0.67	0.233		
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.39	0.02	0.76	0.042		
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.03	-0.33	0.39	0.862	<u>-</u> e	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.21	-0.16	0.57	0.262	+=	
Vosskuhl 2015	Digit span task/N-back task (Executive function / Complex attention); tACS (0) vs. Sham	0.70	-0.61	0.75	0.840		
	Offline-theta frequency band on PFC overall	0.20	0.02	0.38	0.027		
Brauer 2018	Go/Nogo task (Executive function / Complex attention); tACS (θ) vs. Sham	0.25	-0.16	0.67	0.233		
Deng 2019	Selective auditory attention task (Executive function / Complex attention); tACS (θ) vs. Sham	0.17	-0.30	0.63	0.486		
Jaušovec 2014 (BP)	Visual-array comparison task (Executive function / Complex attention); tACS (0) vs. Sham	0.05	-0.52	0.62	0.865	p	
Jaušovec 2014 (AP)	Corsi block-tapping, digit-span, N-back task (Executive function / Complex attention); tACS (0) vs. Sham	0.69	0.06	1.32	0.032		
Neubauer 2017	Raven's progressive matrices task (Executive function / Complex attention); tACS (θ) vs. Sham	0.09	-0.35	0.53	0.676		
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.39	0.02	0.76	0.042	 	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.03	-0.33	0.39	0.862	∔ ∎—	
Reinhart 2017	Time-estimation task (Executive function / Complex attention); tACS (θ) vs. Sham	0.21	-0.16	0.57	0.262		
Vosskuhl 2015	Digit span task/N-back task (Executive function / Complex attention); tACS (0) vs. Sham	0.70	-0.61	0.75	0.840		
	Offline-theta frequency band on Executive function / Complex attention overall	0.20	0.06	0.35	0.007		
Abbreviations. AP: published in the Acta Psychologica; BP: published in the Biological Psychology; CIs: confidence intervals; LL: lower limit; SMD: standardized mean							
difference; UL: upper lin	nit; θ : theta band (4-8 Hz); PFC: prefrontal cortex.				-2	-1 0 1	

Note. Red diamonds indicate an overall effects size. More positive values indicate greater improvement in cognitive performance.

Fig. 10 Cognitive performance comparisons after offline-tACS with theta frequency band across targeted brain regions and cognitive domains. Meta-analytic findings show potential effects of offline-tACS protocols with theta frequency band on PFC and executive function / complex attention.

Study Name	Outcome measure	SMD	LL	UL	P-value	SMD and 95% CIs
Alekseichuk 2017	Two-back visual spatial task (Executive function / Complex attention); tACS (θ) vs. Sham	-0.52	-0.94	-0.11	0.014	
Brauer 2018	Go/Nogo task (Executive function / Complex attention); tACS (θ) vs. Sham	0.77	0.31	1.24	0.001	
Giustiniani 2019	Serial reaction time task (Learning and memory); tACS (δ) vs. Sham	-0.08	-0.56	0.39	0.735	
Giustiniani 2019	Serial reaction time task (Learning and memory); tACS (y) vs. Sham	0.01	-0.46	0.49	0.964	
Hopfinger 2017	Visual attention task (Executive function / Complex attention); tACS (α) vs. Sham	0.09	-0.32	0.50	0.669	
Hopfinger 2017	Visual attention task (Executive function / Complex attention); tACS (y) vs. Sham	0.11	-0.30	0.52	0.610	
Kasten 2018	Mental rotation task (Perceptual-motor function); tACS (α) vs. Sham	-0.36	-1.25	0.52	0.422	
Loffler 2018	Visual two-choice task (Perceptual-motor function); tACS (y) vs. Sham	-0.45	-1.28	0.38	0.287	
Meiron 2014	N-back task (Executive function/Complex attention); tACS (0) vs. Sham	0.42	-0.39	1.23	0.312	│ │ <mark>─┼╺──┼</mark> │
Polanía 2012	Delayed letter discrimination task (Executive function / Complex attention); tACS (0) vs. Sham	-0.80	-1.34	-0.27	0.003	│ ─┼╍── │ │ │
Polanía 2012	Delayed letter discrimination task (Executive function / Complex attention); tACS (y) vs. Sham	-0.17	-0.63	0.30	0.479	
Polanía 2015	Decision-making task (Executive function / Complex attention); tACS (y) vs. Sham	-0.30	-0.66	0.05	0.095	│ │ ───┤ │ │
Pollik 2015	Serial reaction time task (Learning and memory); tACS (α) vs. Sham	0.26	-0.29	0.81	0.356	│ │ ─┼╍───│ │
Pollik 2015	Serial reaction time task (Learning and memory); tACS (B) vs. Sham	0.19	-0.36	0.74	0.493	
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (θ) vs. Sham	-0.06	-0.50	0.38	0.776	│ │ ──ब── │ │
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (α) vs. Sham	-0.12	-0.31	0.57	0.955	
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (β) vs. Sham	0.16	-0.40	0.48	0.468	
Santarnecchi 2013	Fluid intelligence task (Executive function / Complex attention); tACS (y) vs. Sham	0.03	-0.41	0.46	0.910	│ │ ──∲── │ │
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (0) vs. Sham	0.10	-0.30	0.51	0.611	
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (y) vs. Sham	1.19	0.67	1.72	< 0.001	│ │ │ ─┼╍── │
Santarnecchi 2016	Abstract-reasoning task / Change-localization (Executive function / Complex attention); tACS (y) vs. Sham	0.04	-0.30	0.38	0.810	
Santarnecchi 2019	Insight task (Executive function / Complex attention); tACS (a) vs. Sham	-0.18	-0.53	0.18	0.324	│ │ ──■┼─ │ │
Santarnecchi 2019	Insight task (Executive function / Complex attention); tACS (y) vs. Sham	0.16	-0.20	0.51	0.380	│ │ ┽╍── │ │
Schuhmann 2019	Endogenous attention task (Perceptual-motor function); tACS (a) vs. Sham	0.14	-0.21	0.48	0.417	│ │ ─┼╍── │ │
Vosskuhl 2015	Digit span task/N-back task (Executive function / Complex attention); tACS (θ) vs. Sham	0.77	0.06	1.47	0.033	
Zavecz 2020	Alternating serial reaction time task (Learning and memory); tACS (θ) vs. Sham	-0.19	-0.57	0.20	0.349	│ │ ──■┼─ │ │ │
	Online-tACS overall	0.04	-0.10	0.18	0.552	🔶
Brauer 2018	Go/Nogo task (Executive function / Complex attention); tACS (θ) vs. Sham	0.03	-0.38	0.44	0.895	
Giustiniani 2019	Serial reaction time task (Learning and memory); tACS (δ) vs. Sham	0.07	-0.41	0.55	0.769	
Giustiniani 2019	Serial reaction time task (Learning and memory); tACS (y) vs. Sham	0.18	-0.30	0.65	0.475	
Hoy 2015	N-back task (Executive function / Complex attention); tACS (y) vs. Sham	0.04	-0.42	0.50	0.871	
Moliadze 2019	Phonological decision task (Executive function / Complex attention); tACS (α) vs. Sham	0.48	0.05	0.90	0.027	│ │ │── <u></u> ───│ │
Moliadze 2019	Phonological decision task (Executive function / Complex attention); tACS (β) vs. Sham	0.88	-0.31	0.49	0.667	
	Offline-tACS overall	0.15	-0.03	0.33	0.104	
Abbreviations. CIs: confidence intervals; LL: lower limit; SMD: standardized mean difference; UL: upper limit; 5: delta bend (1-3 Hz); 0: theta band (4-8 Hz); a: alpha band						
(9-13 Hz); β: beta band	(14-30 Hz); y: gamma band (30-139 Hz).					2 -1 0 1 2
Note. Red diamonds ind	licate an overall effects size. More positive values indicate greater improvement in cognitive performance				-	

Fig. 11 Cognition-related reaction time comparisons after online- and offline-tACS. Meta-analytic findings show no significant effects of online- and offline-tACS protocols on changes in cognition-related reaction time.

tACS protocols on the reaction time (*SMD* = 0.062; *SE* = 0.060; 95% CI = -0.055-0.180; Z = 1.038; *P* = 0.229) with moderate heterogeneity levels of variability across the 32 comparisons (*Q*-statistics = 66.181 and *P* < 0.001; *I*² = 53.2%), and publication bias was the relatively symmetrical distribution of individual effect size: (1) a revised funnel plot with 8 imputed values and (2) Egger's regression intercept (β_0) = 0.92 and *P* = 0.465 (Supplementary Fig. 2).

The moderator variable analysis for comparing effects of onlinetACS versus offline-tACS on changes in cognition-related reaction time revealed no significant treatment effects: (a) 26 online-tACS comparisons from the 15 studies: *SMD* = 0.043; *SE* = 0.072; 95% CI = -0.098-0.184; Z = 0.595; P = 0.552; *Q*-statistics = 61.730 with P < 0.001; $I^2 = 59.5\%$ and (b) six offline-tACS comparisons from the four studies: *SMD* = 0.148; *SE* = 0.091; 95% CI = -0.031-0.327; Z = 1.625; P = 0.104; Q-statistics = 3.058 with P = 0.691; $l^2 = 0.0\%$ (Fig. 11). For online-tACS comparisons, moderator variable analysis

For online-tACS comparisons, moderator variable analysis comparing the effects of different frequency bands (i.e., delta vs. theta vs. alpha vs. beta vs. gamma) of tACS protocols failed to show any significant positive effects on cognition-related reaction time (Supplementary Fig. 3): (a) eight theta frequency band comparisons from the eight studies: SMD = 0.029; SE = 0.189; 95% CI = -0.342-0.399; Z = -0.151; P = 0.880; Q-statistics = 32.153 with P < 0.001; $I^2 = 78.2\%$, (b) six alpha frequency band comparisons from the six studies: SMD = 0.020; SE = 0.090; 95% CI = -0.155-0.196; Z = -0.228; P = 0.820; Q-statistics = 3.266 with P = 0.659; $I^2 = 0.0\%$, (c) two beta frequency band comparisons from the two studies: SMD = 0.175; SE = 0.175; 95% CI = -0.169-0.518; Z = 0.995; P = 0.320; Q-statistics = 0.006 with P = 0.937; $l^2 = 0.0\%$, and (d) nine gamma frequency band comparison from the eight studies: SMD = 0.077; SE = 0.131; 95% CI = -0.180-0.333; Z = 0.587; P = 0.557; Q-statistics = 24.787 with P = 0.002; $l^2 = 67.7\%$. For the comparisons of each frequency band of online-tACS protocols, the third (different targeted brain regions) and fourth (different cognitive domains) moderator variable analyses identified no significant effects on cognitionrelated reaction time (Supplementary Tables 6 and 7).

For offline-tACS comparisons, moderator variable analysis comparing the effects of the different frequency band (i.e., delta vs. theta vs. alpha vs. beta vs. gamma) of tACS protocols failed to show any significant positive effects on cognition-related reaction time (Supplementary Fig. 4): two gamma frequency band comparison from the two studies: SMD = 0.104; SE = 0.170; 95% CI = -0.229-0.437; Z = 0.613; P = 0.540; Q-statistics = 0.161 with P = 0.668; $l^2 = 0.0\%$. For the comparisons of each frequency band of offline-tACS protocols, the third (different targeted brain regions) and fourth (different cognitive domains) moderator variable analyses identified no significant effects on cognition-related reaction time (Supplementary Tables 8 and 9).

DISCUSSION

The current systematic review and meta-analysis investigated the effects of specific tACS protocols on cognitive functions in healthy young adults. We identified 56 total studies that examined potential effects of tACS on cognitive functions using either cognitive performance or cognition-related reaction time variables. Fifty out of 56 qualified studies reported cognitive performance variable comparisons and 18 out of 56 gualified studies reported cognition-related reaction time variable comparisons. Ninety-three total comparisons from the 50 qualified studies indicated small positive overall effects on cognitive performances after active tACS protocols than sham control stimulation. Moreover, the moderator variable analyses revealed that both online- and offline-tACS protocols significantly improved cognitive performances, and further these cognitive performance improvements were observed in three specific frequency bands of tACS protocols including (a) online-tACS with theta frequency band, (b) online-tACS with gamma frequency band, and (c) offline-tACS with theta frequency band. Additional moderator analyses found that cognitive performances were improved in online-tACS with theta frequency band on PFC and PPC and online-tACS with gamma frequency band on PPC. For offline-tACS protocols, stimulation with theta frequency band on PFC significantly improved cognitive performances. Finally, online-tACS with theta frequency band significantly improved executive function and online-tACS with gamma frequency band enhanced executive function and perceptual-motor function. Offline-tACS with theta frequency band significantly improved executive function. However, we found that all specific tACS protocols failed to show any significant reduction of cognitive-related reaction time.

Our meta-analytic findings indicated that tACS protocols improved task performances in various cognitive tasks. These findings support the argument from a recent systematic review study that tACS protocols may be advantageous for improving various cognitive domains such as working memory, executive function, and declarative memory⁴⁰. tACS protocols may induce the synchronization of neural firing timing in the cortical regions by applying low-intensity sinusoidal oscillating electrical stimulation into the scalp^{106,107}. The synchronized neural firing timing in a specific brain region may contribute to improvement in cognitive functions via enhancing information-processing and memory-encoding functions^{56,108,109}. However, we failed to identify a significant reduction of cognitive-related reaction time in healthy young adults. Previous studies suggested that decreased reaction time may be related to greater firing rate of cortical neurons^{110,111}. In fact, greater brain activation appeared in the pre-

supplementary cortex (pre-SMA)¹¹², dorsolateral-prefrontal cortex (DLPFC)^{48,113}, and striatum of the basal ganglia while performing faster motor actions^{48,110}. For example, applying transcranial direct current stimulation (tDCS) significantly reduced reaction time during various cognitive tasks in healthy younger and older adults^{114,115} because of potential effects of tDCS on increased neural firing rate^{116,117}. Potentially, given that tACS protocols may modulate the neural firing timing rather than neural firing rate in the targeted cortical regions¹⁰⁶, the application of tACS may be more beneficial for improving cognitive performances (e.g., task accuracy).

The first moderator variable analysis revealed significant improvements in cognitive performances for both online- and offline-tACS conditions. Previous studies reported that applying online-tACS protocols effectively increased the synchronization between external (i.e., electrical stimulation) and internal oscillations (i.e., neural activation) in the targeted brain areas^{38,40,54}. For example, when online-tACS with alpha frequency range was applied in awake non-human primates¹¹⁸ and human parietooccipital cortex³⁷, the neuron spike timing was significantly synchronized in the alpha frequency band. In addition, the neural synchronization in the occipital lobe after online-tACS protocols improved the perception of healthy younger adults^{60,92}. The benefits of offline-tACS protocols on cognitive performances indicated potential after-effects that may be related to long-term potentiation (LTP) indicating increased synaptic strengthening^{119–121}. Further, greater activation of N-methyl-D-aspartic (NMDA) receptors may be associated with the induction of LTP plasticity¹²². Interestingly, a prior study showed that offline-tACS protocols may cause LTP plasticity via facilitating the NMDA receptors activity in M1, because admistration of the NMDA blocker dextromethorphan diminished the effect¹²³. Overall, the positive effects of both online- and offline-tACS protocols on cognitive performances support a proposition that tACS protocols may be effective for improving cognitive processing via either neural synchronization or LTP plasticity^{37,124}

Common findings from the second moderator variable analysis included that tACS protocols with theta frequency band significantly improved cognitive performances for both online and offline conditions. Further, additional moderator variable findings suggested that both online- and offline-tACS protocols with theta frequency band on either PFC or PPC enhanced cognitive performances. Specifically, we observed significant improvements in executive function after tACS protocols with theta frequency band. These findings are in line with previous findings that tACS protocols with theta frequency band was beneficial for improving various cognitive functions⁴⁰. Specifically, tACS protocols with theta frequency band increased neural activations across the right temporal, dorsolateral-prefrontal, and frontal cortex during information encoding and retrieval processes^{125,126}. Interestingly, brain oscillation patterns in frontal and posterior parietal regions were higher activated at theta frequency band when performing the cognitive tasks^{52,127}, and further improvements in cognitive functions appeared with increased functional connectivity between long-distance cortical regions^{128–130}. Recent functional magnetic resonance imaging studies additionally evidenced that theta-tACS protocols modulated neural connections of the hippocampal-cortical network^{70,131}. These findings suggested that applying tACS protocols with theta frequency band may facilitate neural pathways within cortical regions and between cortical and sub-cortical regions contributing to improved cognitive functions.

Moreover, online-tACS protocols with gamma frequency band showed beneficial effects on cognitive performances. Interestingly, the additional moderator variable analyses demonstrated potential treatment effects of online-tACS with gamma frequency band stimulating PPC on cognitive performances, and the cognitive improvements appeared in executive function and perceptual-motor function. Previous studies suggested that rapid cortical oscillations at the gamma frequency band contributed to improved cognitive processes^{132–134}. For instance, the gamma neural oscillations were observed in the medial visual cortex and anterior insula while showing better visual perception and decision-making abilities^{135,136}. Moreover, applying gamma tACS protocols showed various cognitive improvements such as faster and accurate auditory and visual perceptions and memory performances^{40,59,137}. Brain oscillations at the gamma frequency band may be activated via the reciprocal connection between GABAergic activity of interneurons and activity of glutamatergic pyramidal neurons^{138–140}. Presumably, the gamma frequency synchronization facilitated by tACS protocols may allow precisely and flexibly transfer the neural information between the targeted brain areas^{16,130,141,142}.

Although the current meta-analytic findings reveal significant positive effects of tACS protocols (i.e., theta and gamma frequency bands) on cognitive performances, the levels of cognitive improvements are relatively small (effect size range from 0.175 to 0.247). Recent findings suggested a proposition that applying tACS protocols using theta-gamma phase-amplitude coupling (PAC) can effectively modulate cognitive functions¹⁴³. According to the cross-frequency coupling phenomenon^{144,145}, cognitive function may improve when low-frequency brain oscillations reflecting information processing across largely distributed brain areas are coupled with high-frequency brain oscillations representing information processing in local brain regions^{146–148}. The PAC is one of cross-frequency coupling phenomena representing that the low-frequency phase modulates the high-frequency amplitude¹⁴⁹⁻¹⁵¹. Several findings posited that inducing thetagamma PAC by delivering simultaneous theta and gamma frequency tACS over multifocal areas may facilitate neural interactions between the cortical and sub-cortical regions contributing to cognitive improvements^{152–154}. In fact, applying co-stimulation protocols with theta and gamma frequency bands to the prefrontal cortex significantly improved working memory functions¹⁴³. Moreover, theta-gamma cross-frequency coupling is important for various cognitive functions such as visual information processing and working memory^{154,155}. These findings suggest that tACS protocols with co-stimulation at theta and gamma frequency bands may be a viable option to increase cognitive improvements by inducing theta-gamma PAC that potentially reinforces neural communications across brain regions¹³⁸

Despite quantitative findings indicating potential effective tACS protocols for cognitive functions in healthy younger adults, these are some limitations. First, given that the current meta-analysis focused on altered cognitive functions in healthy younger adults, the relatively small effects of tACS protocols may be influenced by a ceiling effect⁵⁵. Thus, future studies need to quantity beneficial effects of tACS protocols on cognitive functions for participants with cognitive impairments (e.g., older adults and patients with neurological diseases). Second, 20 studies in this meta-analysis reported potential side effects after tACS protocols. Tingling and itching are frequently observed after transcranial electrical stimulation¹⁵⁶. In particular, tACS may cause phosphenes in which artificial light flashing or shimmering affects visual perceptions and concentration. Phosphenes often appeared when either tACS applied adjacent to occipital cortex or the stimulation intensity greater than 1.5 mA provided¹⁵⁷. To minimize these potential side effects, providing individualized current intensity thresholds and electrode montage positions should be considered in future studies.

The current systematic review and meta-analysis revealed that applying tACS protocols significantly improved cognitive performances in healthy younger adults. Moreover, moderator variable analyses found the positive effects on cognitive performances for both online- and offline-tACS conditions. Specifically, significant improved cognitive performances after tACS protocols were

observed in following frequency bands: (a) online-tACS with theta frequency band, (b) online-tACS with gamma frequency band, and (c) offline-tACS with theta frequency band. Further, cognitive performances were improved in online- and offline-tACS with theta frequency band on either PFC or PPC, and further both online- and offline-tACS with theta frequency band enhanced executive function. Online-tACS with gamma frequency band on PPC was effective for improving cognitive performances, and the cognitive improvements appeared in executive function and perceptual-motor function. These meta-analytic findings suggest that applying specific tACS protocols can facilitate improvements in various cognitive performances for healthy young adults. Importantly, previous studies revealed that the changes in PAC characteristics caused by decreased theta frequency band may be related to cognitive impairments in older adults as well as patients with neurologic diseases such as schizophrenia, Alzheimer's disease, and epilepsy^{150,158,159}. Thus, future studies should investigate whether tACS protocols with co-stimulation at theta and gamma frequency bands are beneficial for improving cognitive functions in older adults and patients with neurological diseases.

METHODS

Literature search and study inclusion

Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement¹⁶⁰, we conducted a systematic review and meta-analysis. The computerized literature search from November 15, 2020 to October 29, 2021 identified potential studies via PubMed and Web of Science. We used the following keywords: (tACS or transcranial alternating current stimulation) and (reaction time or response time or RT or cognitive or cognition or cognitive performance or cognitive function) and (healthy and adults). The inclusion criteria for this meta-analysis were: (a) studies recruiting cognitively healthy young adults, (b) studies performed quantitative evaluation on either cognitive performance or cognition-related reaction time. (c) studies included sham stimulation controls, and (d) studies with a randomized control trial or crossover design. We excluded review articles, case studies, animal studies, and articles that were not related to our main topic (e.g., elderly population, participants with specific disorder, and no tACS effects reported).

Cognitive function outcome measures

To investigate changes in cognitive function after tACS protocols, we focused on two primary outcome measures including (a) cognitive performance variable (i.e., accuracy, precision, correct response, error rated, score, and hit rated) and (b) cognition-related reaction time variable (i.e., time interval between stimuli and the completion of the cognitive task). To examine the effects of tACS on specific cognitive domains, we categorized cognitive functions into five components^{51,114,161}: (a) perceptual-motor function (e.g., visual perception and perceptual-motor integration), (b) learning and memory (e.g., free recall, recognition, long-term memory, and implicit learning), (c) executive function / complex attention (e.g., planning, decision-making, working memory, selective attention, and inhibition), (d) language (e.g., object naming, fluency, and receptive language), and (e) social cognition (e.g., recognition of emotions, theory of mind, and insight).

Meta-analytic approaches for data synthesis

Using the meta-analysis software (Comprehensive Meta-Analysis software ver. 3.2, Englewood, NJ, USA), we performed all metaanalysis procedures. The effect sizes for the parallel group studies were quantified by the difference in task performance and reaction time between the active tACS and sham control groups

T.L. Lee et al.

at the post-test using standardized mean difference (SMD) with a 95% confidence interval (Cl)¹⁶². Consistent with previous suggestions^{162–165}, we used a paired analysis for crossover studies to calculate the SMD (e.g., values of sample size and mean difference with *P*-values or sample size and mean difference with standard error). This approach may correctly report clinically important heterogeneity in the meta-analysis while including crossover trials into a meta-analysis^{114,165}. More positive values of SMD denoted greater positive effects on cognitive functions after active tACS than the sham control stimulation. Finally, all effect size calculations were based on the random-effects meta-analysis models because of the conventional assumption that individual studies have various experiment characteristics (e.g., participants and experimental protocols)¹⁶⁶.

To estimate the heterogeneity levels across multiple comparisons, we conducted the Higgins and Green l^2 test that demonstrates the percentage of heterogeneity between 0 to $100\%^{167}$. The heterogeneity levels with 25, 50, and 75% of l^2 indicate low, moderate, and high variability across studies, respectively¹⁶⁸. In addition, we used Cochran's Q and P-value, the heterogeneity significance test based on the chi-squared distribution. A P-value less than 0.05 for the Q-statistic indicates significant levels of heterogeneity between studies¹⁶². To quantify potential publication bias, we applied two methods. First, an original funnel plot and a revised funnel plot after the trim and fill technique were compared as a visual estimation of the changes in the overall effect sizes¹⁶⁹. When no values overlapped between the original overall effect size and corrected overall effect size, a significant publication bias may exist. Second, we conducted Egger's regression test providing the degree of asymmetry for the funnel plot by quantifying the intercept in the regression of standard normal deviates against precision 170. The *P*-value for the intercept (β 0) less than 0.05 implicates a significant publication bias across the comparisons.

To specify the effects of various tACS protocols on cognitive function, we performed moderator variable analyses. The first moderator variable analysis estimated different timing of tACS protocols: (a) online-tACS (i.e., applied tACS protocols during cognitive tasks) and (b) offline-tACS (i.e., using tACS protocols before executing cognitive tasks). In the second moderator variable analysis, we determined whether the effect sizes of specific frequency bands for tACS protocols were different: (a) delta band (1-3 Hz), (b) theta band (4-7 Hz), (c) alpha band (8–12 Hz), (d) beta band (13–30 Hz), (e) gamma band (31–139 Hz), and (f) ripple band (140 Hz). The third moderator variable analysis examined the potential effects of targeted brain regions for tACS protocols on cognitive functions: (a) PFC, (b) PPC, (c) TC, and (d) Multi. The fourth moderator variable analysis investigated the effects of tACS protocols on different cognitive domains: (a) perceptual-motor function, (b) learning and memory (c) executive function / complex attention, (d) language, and (e) social cognition.

Methodological quality assessment

Two authors (TLL and HAL) independently conducted the methodological quality of the included studies in the current meta-analysis using version 2 of a revised Cochrane risk of bias tool¹⁷¹. The assessment tool consists of six questionnaire domains: (a) randomization process, (b) timing of identification or recruitment of participants, (c) deviations from intended interventions, (d) missing outcome data, (e) measurement of the outcome, and (f) selection of the reported result. The methodological quality questionnaire can be evaluated on three levels: (a) low risk of bias, (b) high-risk bias, and (c) some concern.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

DATA AVAILABILITY

All data generated or analyzed during this study are included in this manuscript.

Received: 11 July 2022; Accepted: 12 December 2022; Published online: 03 January 2023

REFERENCES

- 1. Crick, F. & Koch, C. A framework for consciousness. *Nat. Neurosci.* 6, 119–126 (2003).
- Siegel, M., Donner, T. H. & Engel, A. K. Spectral fingerprints of large-scale neuronal interactions. *Nat. Rev. Neurosci.* 13, 121–134 (2012).
- Horwitz, B., McIntosh, A. R., Haxby, J. V. & Grady, C. L. Network analysis of brain cognitive function using metabolic and blood flow data. *Behav. Brain Res.* 66, 187–193 (1995).
- 4. Tononi, G., Sporns, O. & Edelman, G. M. Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. *Cereb. Cortex* **2**, 310–335 (1992).
- 5. Uhlhaas, P. et al. Neural synchrony in cortical networks: history, concept and current status. *Front. Integr. Neurosci.* **3**, 17 (2009).
- Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. *Nat. Rev. Neurosci.* 2, 229–239 (2001).
- 7. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. *Trends Cogn. Sci.* **9**, 474–480 (2005).
- 8. Buzsaki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).
- Atasoy, S., Donnelly, I. & Pearson, J. Human brain networks function in connectome-specific harmonic waves. *Nat. Commun.* 7, 10340 (2016).
- Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. *Nat. Rev. Neurosci.* 2, 539–550 (2001).
- Abeles, M. Role of the cortical neuron: integrator or coincidence detector? Isr. J. Med. 18, 83–92 (1982).
- König, P., Engel, A. K. & Singer, W. Integrator or coincidence detector? The role of the cortical neuron revisited. *Trends Neurosci.* 19, 130–137 (1996).
- Grover, S., Nguyen, J. A. & Reinhart, R. M. G. Synchronizing brain rhythms to improve cognition. Annu. Rev. Med. 72, 29–43 (2021).
- Schutter, D. J. & Wischnewski, M. A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. *Neuropsychologia* 86, 110–118 (2016).
- Thut, G., Miniussi, C. & Gross, J. The functional importance of rhythmic activity in the brain. *Curr. Biol.* 22, R658–R663 (2012).
- Fries, P. Rhythms for cognition: communication through coherence. *Neuron* 88, 220–235 (2015).
- Hasselmo, M. E. What is the function of hippocampal theta rhythm?-Linking behavioral data to phasic properties of field potential and unit recording data. *Hippocampus* 15, 936–949 (2005).
- Wang, X. J. Neurophysiological and computational principles of cortical rhythms in cognition. *Physiol. Rev.* 90, 1195–1268 (2010).
- O'Keefe, J. & Conway, D. H. Hippocampal place units in the freely moving rat: why they fire where they fire. *Exp. Brain Res.* **31**, 573–590 (1978).
- Raghavachari, S. et al. Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175–3183 (2001).
- 21. Meltzer, J. A. et al. Effects of working memory load on oscillatory power in human intracranial EEG. *Cereb. Cortex* **18**, 1843–1855 (2008).
- Kim, N. Y., Wittenberg, E. & Nam, C. S. Behavioral and neural correlates of executive function: interplay between inhibition and updating processes. *Front. Neurosci.* 11, 378 (2017).
- 23. Fink, A., Benedek, M., Grabner, R. H., Staudt, B. & Neubauer, A. C. Creativity meets neuroscience: experimental tasks for the neuroscientific study of creative thinking. *Methods* **42**, 68–76 (2007).
- Benedek, M., Franz, F., Heene, M. & Neubauer, A. C. Differential effects of cognitive inhibition and intelligence on creativity. *Pers. Individ. Dif.* 53–334, 480–485 (2012).
- Borghini, G. et al. Alpha oscillations are causally linked to inhibitory abilities in ageing. J. Neurosci. 38, 4418–4429 (2018).
- 26. Haegens, S., Nácher, V., Luna, R., Romo, R. & Jensen, O. α -Oscillations in the monkey sensorimotor network influence discrimination performance by

rhythmical inhibition of neuronal spiking. Proc. Natl Acad. Sci. USA 108, 19377–19382 (2011).

- Engel, A. K. & Fries, P. Beta-band oscillations-signalling the status quo? Curr. Opin. Neurobiol. 20, 156–165 (2010).
- Schmidt, R. et al. Beta oscillations in working memory, executive control of movement and thought, and sensorimotor function. *J. Neurosci.* **39**, 8231–8238 (2019).
- Swann, N. et al. Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. J. Neurosci. 29, 12675–12685 (2009).
- Sanes, J. N. & Donoghue, J. P. Oscillations in local field potentials of the primate motor cortex during voluntary movement. *Proc. Natl Acad. Sci. USA* 90, 4470–4474 (1993).
- Murthy, V. N. & Fetz, E. E. Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. J. Neurophysiol. 76, 3949–3967 (1996).
- Bouyer, J. J., Montaron, M. F. & Rougeul, A. Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: cortical and thalamic localizations. *Electroencephalogr. Clin. Neurophysiol.* 51, 244–252 (1981).
- Gray, C. M. Synchronous oscillations in neuronal systems: mechanisms and functions. J. Comput. Neurosci. 1, 11–38 (1994).
- Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. *Annu. Rev. Neurosci.* 18, 555–586 (1995).
- Antal, A. & Herrmann, C. S. Transcranial alternating current and random noise stimulation: possible mechanisms. *Neural Plast.* 2016, 3616807 (2016).
- Schutter, D. J. Syncing your brain: electric currents to enhance cognition. *Trends Cogn. Sci.* 18, 331–333 (2014).
- Helfrich, R. F. et al. Entrainment of brain oscillations by transcranial alternating current stimulation. *Curr. Biol.* 24, 333–339 (2014).
- Tavakoli, A. V. & Yun, K. Transcranial alternating current stimulation (tACS) mechanisms and protocols. Front. Cell. Neurosci. 11, 214 (2017).
- Kasten, F. H. & Herrmann, C. S. Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation. *Front. Hum. Neurosci.* 11, 2 (2017).
- Klink, K., Paßmann, S., Kasten, F. H. & Peter, J. The modulation of cognitive performance with transcranial alternating current stimulation: a systematic review of frequency-specific effects. *Brain Sci.* 10, 932 (2020).
- Fröhlich, F. & McCormick, D. A. Endogenous electric fields may guide neocortical network activity. *Neuron* 67, 129–143 (2010).
- Helfrich, R. F. et al. Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. *PLoS Biol.* 12, e1002031 (2014).
- Wischnewski, M., Schutter, D. & Nitsche, M. A. Effects of beta-tACS on corticospinal excitability: a meta-analysis. *Brain Stimul.* 12, 1381–1389 (2019).
- Fröhlich, F., Sellers, K. K. & Cordle, A. L. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. *Expert. Rev. Neurother.* 15, 145–167 (2015).
- Feurra, M., Galli, G., Pavone, E. F., Rossi, A. & Rossi, S. Frequency-specific insight into short-term memory capacity. J. Neurophysiol. 116, 153–158 (2016).
- Vosskuhl, J., Huster, R. J. & Herrmann, C. S. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. *Front. Hum. Neurosci.* 9, 257 (2015).
- Bland, N. S. & Sale, M. V. Current challenges: the ups and downs of tACS. *Exp. Brain Res.* 237, 3071–3088 (2019).
- van Veen, V., Krug, M. K. & Carter, C. S. The neural and computational basis of controlled speed-accuracy tradeoff during task performance. *J. Cogn. Neurosci.* 20, 1952–1965 (2008).
- Spieser, L., Servant, M., Hasbroucq, T. & Burle, B. Beyond decision! Motor contribution to speed-accuracy trade-off in decision-making. *Psychon. Bull. Rev.* 24, 950–956 (2017).
- Standage, D., Blohm, G. & Dorris, M. C. On the neural implementation of the speed-accuracy trade-off. *Front. Neurosci.* 8, 236 (2014).
- Sachdev, P. S. et al. Classifying neurocognitive disorders: the DSM-5 approach. Nat. Rev. Neurol. 10, 634–642 (2014).
- Alekseichuk, I., Pabel, S. C., Antal, A. & Paulus, W. Intrahemispheric theta rhythm desynchronization impairs working memory. *Restor. Neurol. Neurosci.* 35, 147–158 (2017).
- Ambrus, G. G. et al. Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting. *Front. Cell. Neurosci.* 9, 374 (2015).
- Antonenko, D., Faxel, M., Grittner, U., Lavidor, M. & Flöel, A. Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults. *Neural Plast.* **2016**, 4274127 (2016).
- Brauer, H., Kadish, N. E., Pedersen, A., Siniatchkin, M. & Moliadze, V. No modulatory effects when stimulating the right inferior frontal gyrus with continuous 6 Hz tACS and tRNS on response inhibition: a behavioral study. *Neural Plast.* 2018, 3156796 (2018).

- Brignani, D., Ruzzoli, M., Mauri, P. & Miniussi, C. Is transcranial alternating current stimulation effective in modulating brain oscillations? *PLoS ONE* 8, e56589 (2013).
- Fusco, G. et al. Midfrontal theta transcranial alternating current stimulation modulates behavioural adjustment after error execution. *Eur. J. Neurosci.* 48, 3159–3170 (2018).
- Giustiniani, A. et al. Effects of low-gamma tACS on primary motor cortex in implicit motor learning. *Behav. Brain Res.* 376, 112170 (2019).
- Hoy, K. E. et al. The effect of γ-tACS on working memory performance in healthy controls. *Brain Cogn.* **101**, 51–56 (2015).
- Janik, A. B., Rezlescu, C. & Banissy, M. J. Enhancing anger perception with transcranial alternating current stimulation induced gamma oscillations. *Brain Stimul.* 8, 1138–1143 (2015).
- Jaušovec, N. & Jaušovec, K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). *Biol. Psychol.* 96, 42–47 (2014).
- Jaušovec, N., Jaušovec, K. & Pahor, A. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. *Acta Psychol.* **146**, 1–6 (2014).
- Lang, S., Gan, L. S., Alrazi, T. & Monchi, O. Theta band high definition transcranial alternating current stimulation, but not transcranial direct current stimulation, improves associative memory performance. *Sci. Rep.* 9, 8562 (2019).
- Loffler, B. S. et al. Counteracting the slowdown of reaction times in a vigilance experiment with 40-Hz transcranial alternating current stimulation. *IEEE Trans. Neural Syst. Rehabil. Eng.* 26, 2053–2061 (2018).
- Luft, C. D. B., Zioga, I., Thompson, N. M., Banissy, M. J. & Bhattacharya, J. Right temporal alpha oscillations as a neural mechanism for inhibiting obvious associations. *Proc. Natl Acad. Sci. USA* **115**, E12144–E12152 (2018).
- Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M. & Fröhlich, F. Functional role of frontal alpha oscillations in creativity. *Cortex* 67, 74–82 (2015).
- Marchesotti, S. et al. Selective enhancement of low-gamma activity by tACS improves phonemic processing and reading accuracy in dyslexia. *PLoS Biol.* 18, e3000833 (2020).
- Meier, J. et al. Intrinsic 40 Hz-phase asymmetries predict tACS effects during conscious auditory perception. *PLoS ONE* 14, e0213996 (2019).
- Meiron, O. & Lavidor, M. Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. *Clin. Neurophysiol.* **125**, 77–82 (2014).
- Meng, A. et al. Transcranial alternating current stimulation at theta frequency to left parietal cortex impairs associative, but not perceptual, memory encoding. *Neurobiol. Learn. Mem.* **182**, 107444 (2021).
- Nomura, T., Asao, A. & Kumasaka, A. Transcranial alternating current stimulation over the prefrontal cortex enhances episodic memory recognition. *Exp. Brain Res.* 237, 1709–1715 (2019).
- Pahor, A. & Jaušovec, N. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence. *Int. J. Psychophysiol.* 93, 322–331 (2014).
- Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G. & Paulus, W. The importance of timing in segregated theta phase-coupling for cognitive performance. *Curr. Biol.* 22, 1314–1318 (2012).
- Polanía, R., Moisa, M., Opitz, A., Grueschow, M. & Ruff, C. C. The precision of value-based choices depends causally on fronto-parietal phase coupling. *Nat. Commun.* 6, 8090 (2015).
- Pollok, B., Boysen, A. C. & Krause, V. The effect of transcranial alternating current stimulation (tACS) at alpha and beta frequency on motor learning. *Behav. Brain Res.* 293, 234–240 (2015).
- Santarnecchi, E. et al. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. *Curr. Biol.* 23, 1449–1453 (2013).
- Santarnecchi, E. et al. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. *Cortex* 75, 33–43 (2016).
- Santarnecchi, E. et al. Gamma tACS over the temporal lobe increases the occurrence of Eureka! moments. Sci. Rep. 9, 5778 (2019).
- 79. Schuhmann, T. et al. Left parietal tACS at alpha frequency induces a shift of visuospatial attention. *PloS One* **14**, e0217729 (2019).
- Sela, T., Kilim, A. & Lavidor, M. Transcranial alternating current stimulation increases risk-taking behavior in the balloon analog risk task. *Front. Neurosci.* 6, 22 (2012).
- Violante, I. R. et al. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. *ELife* 6, e22001 (2017).
- Wischnewski, M., Zerr, P. & Schutter, D. Effects of theta transcranial alternating current stimulation over the frontal cortex on reversal learning. *Brain Stimul.* 9, 705–711 (2016).
- Wynn, S. C., Kessels, R. P. C. & Schutter, D. Effects of parietal exogenous oscillatory field potentials on subjectively perceived memory confidence. *Neurobiol. Learn. Mem.* 168, 107140 (2020).

- Alekseichuk, I., Turi, Z., Veit, S. & Paulus, W. Model-driven neuromodulation of the right posterior region promotes encoding of long-term memories. *Brain Stimul.* 13, 474–483 (2020).
- Braun, V., Sokoliuk, R. & Hanslmayr, S. On the effectiveness of event-related beta tACS on episodic memory formation and motor cortex excitability. *Brain Stimul.* 10, 910–918 (2017).
- Deng, Y., Reinhart, R. M., Choi, I. & Shinn-Cunningham, B. G. Causal links between parietal alpha activity and spatial auditory attention. *ELife* 8, e51184 (2019).
- Grabner, R. H., Krenn, J., Fink, A., Arendasy, M. & Benedek, M. Effects of alpha and gamma transcranial alternating current stimulation (tACS) on verbal creativity and intelligence test performance. *Neuropsychologia* **118**, 91–98 (2018).
- Gutteling, T. P., Schutter, D. & Medendorp, W. P. Alpha-band transcranial alternating current stimulation modulates precision, but not gain during whole-body spatial updating. *Neuropsychologia* **106**, 52–59 (2017).
- Hopfinger, J. B., Parsons, J. & Fröhlich, F. Differential effects of 10-Hz and 40-Hz transcranial alternating current stimulation (tACS) on endogenous versus exogenous attention. *Cogn. Neurosci.* 8, 102–111 (2017).
- Javadi, A. H., Glen, J. C., Halkiopoulos, S., Schulz, M. & Spiers, H. J. Oscillatory reinstatement enhances declarative memory. J. Neurosci. 37, 9939–9944 (2017).
- Kasten, F. H., Maess, B. & Herrmann, C. S. Facilitated event-related power modulations during transcranial alternating current stimulation (tACS) revealed by concurrent tACS-MEG. *eNeuro* 5, 1–15 (2018).
- Laczó, B., Antal, A., Niebergall, R., Treue, S. & Paulus, W. Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. *Brain Stimul.* 5, 484–491 (2012).
- Moliadze, V. et al. After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions. *Brain Stimul.* 12, 1464–1474 (2019).
- Neubauer, A. C., Wammerl, M., Benedek, M., Jauk, E. & Jaušovec, N. The influence of transcranial alternating current stimulation (tACS) on fluid intelligence: an fMRI study. *Pers. Individ. Dif.* **118**, 50–55 (2017).
- Pahor, A. & Jaušovec, N. Making brains run faster: are they becoming smarter? Span. J. Psychol. 19, E88 (2016).
- Reinhart, R. M. G. Disruption and rescue of interareal theta phase coupling and adaptive behavior. *Proc. Natl Acad. Sci. USA* 114, 11542–11547 (2017).
- Riecke, L., Sack, A. T. & Schroeder, C. E. Endogenous delta/theta sound-brain phase entrainment accelerates the buildup of auditory streaming. *Curr. Biol.* 25, 3196–3201 (2015).
- Riecke, L., Formisano, E., Sorger, B., Başkent, D. & Gaudrain, E. Neural entrainment to speech modulates speech intelligibility. *Curr. Biol.* 28, 161–169 (2018).
- Strüber, D., Rach, S., Trautmann-Lengsfeld, S. A., Engel, A. K. & Herrmann, C. S. Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. *Brain Topogr.* 27, 158–171 (2014).
- 100. Tseng, P., Chang, Y. T., Chang, C. F., Liang, W. K. & Juan, C. H. The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. *Sci. Rep.* **6**, 32138 (2016).
- Tseng, P., Iu, K. C. & Juan, C. H. The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. *Sci. Rep.* 8, 349 (2018).
- Wöstmann, M., Vosskuhl, J., Obleser, J. & Herrmann, C. S. Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention. *Brain Stimul.* 11, 752–758 (2018).
- Zavecz, Z., Horváth, K., Solymosi, P., Janacsek, K. & Nemeth, D. Frontal-midline theta frequency and probabilistic learning: a transcranial alternating current stimulation study. *Behav. Brain Res.* 393, 112733 (2020).
- Zoefel, B., Archer-Boyd, A. & Davis, M. H. Phase entrainment of brain oscillations causally modulates neural responses to intelligible speech. *Curr. Biol.* 28, 401–408 (2018).
- Zoefel, B., Allard, I., Anil, M. & Davis, M. H. Perception of rhythmic speech is modulated by focal bilateral transcranial alternating current stimulation. J. Cogn. Neurosci. 32, 226–240 (2020).
- Herrmann, C. S., Rach, S., Neuling, T. & Strüber, D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. *Front. Hum. Neurosci.* 7, 279 (2013).
- Reato, D., Rahman, A., Bikson, M. & Parra, L. C. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. *J. Neurosci.* **30**, 15067–15079 (2010).
- Klimesch, W., Doppelmayr, M., Russegger, H. & Pachinger, T. Theta band power in the human scalp EEG and the encoding of new information. *Neuroreport* 7, 1235–1240 (1996).
- Klimesch, W., Doppelmayr, M., Schimke, H. & Ripper, B. Theta synchronization and alpha desynchronization in a memory task. *Psychophysiology* 34, 169–176 (1997).
- Bogacz, R., Wagenmakers, E. J., Forstmann, B. U. & Nieuwenhuis, S. The neural basis of the speed-accuracy tradeoff. *Trends Neurosci.* 33, 10–16 (2010).

- 111. Hanks, T., Kiani, R. & Shadlen, M. N. A neural mechanism of speed-accuracy tradeoff in macaque area LIP. *eLife* **3**, e02260 (2014).
- 112. Forstmann, B. U. et al. Striatum and pre-SMA facilitate decision-making under time pressure. *Proc. Natl Acad. Sci. USA* **105**, 17538–17542 (2008).
- Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).
- Lee, J. H., Lee, T. L. & Kang, N. Transcranial direct current stimulation decreased cognition-related reaction time in older adults: a systematic review and metaanalysis. *Ageing Res. Rev.* **70**, 101377 (2021).
- 115. Teo, F., Hoy, K., Daskalakis, Z. & Fitzgerald, P. Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. *Front. Psychiatry* **2**, 45 (2011).
- Francis, J. T., Gluckman, B. J. & Schiff, S. J. Sensitivity of neurons to weak electric fields. J. Neurosci. 23, 7255–7261 (2003).
- Bonaiuto, J. J. & Bestmann, S. Understanding the nonlinear physiological and behavioral effects of tDCS through computational neurostimulation. *Prog. Brain Res.* 222, 75–103 (2015).
- Johnson, L. et al. Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. *Sci. Adv.* 6, eaaz2747 (2020).
- Zaehle, T., Rach, S. & Herrmann, C. S. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. *PLoS ONE* 5, e13766 (2010).
- Veniero, D., Vossen, A., Gross, J. & Thut, G. Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity. *Front. Cell. Neurosci.* 9, 477 (2015).
- 121. Vossen, A., Gross, J. & Thut, G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. *Brain Stimul.* 8, 499–508 (2015).
- Dan, Y. & Poo, M. M. Spike timing-dependent plasticity of neural circuits. *Neuron* 44, 23–30 (2004).
- Wischnewski, M. et al. NMDA receptor-mediated motor cortex plasticity after 20 Hz transcranial alternating current stimulation. *Cereb. Cortex* 29, 2924–2931 (2019).
- 124. Kasten, F. H., Dowsett, J. & Herrmann, C. S. Sustained aftereffect of α-tACS lasts up to 70 min after stimulation. *Front. Hum. Neurosci.* **10**, 245 (2016).
- 125. Sauseng, P., Griesmayr, B., Freunberger, R. & Klimesch, W. Control mechanisms in working memory: a possible function of EEG theta oscillations. *Neurosci. Biobehav. Rev.* 34, 1015–1022 (2010).
- 126. Adelhöfer, N. & Beste, C. Pre-trial theta band activity in the ventromedial prefrontal cortex correlates with inhibition-related theta band activity in the right inferior frontal cortex. *NeuroImage* **219**, 117052 (2020).
- Ryu, K., Choi, Y., Kim, J., Kim, Y. & Chio, S. Differential frontal theta activity during cognitive and motor tasks. J. Integr. Neurosci. 15, 295–303 (2016).
- Crespo-Garcia, M., Cantero, J. L., Pomyalov, A., Boccaletti, S. & Atienza, M. Functional neural networks underlying semantic encoding of associative memories. *NeuroImage* 50, 1258–1270 (2010).
- 129. Hosseinian, T., Yavari, F., Kuo, M. F., Nitsche, M. A. & Jamil, A. Phase synchronized 6 Hz transcranial electric and magnetic stimulation boosts frontal theta activity and enhances working memory. *NeuroImage* **245**, 118772 (2021).
- Jensen, O. & Colgin, L. L. Cross-frequency coupling between neuronal oscillations. *Trends Cogn. Sci.* 11, 267–269 (2007).
- Abellaneda-Pérez, K. et al. Differential tDCS and tACS effects on working memory-related neural activity and resting-state connectivity. *Front. Neurosci.* 13, 1440 (2019).
- Jensen, O., Kaiser, J. & Lachaux, J. P. Human gamma-frequency oscillations associated with attention and memory. *Trends Neurosci.* 30, 317–324 (2007).
- 133. Honkanen, R., Rouhinen, S., Wang, S. H., Palva, J. M. & Palva, S. Gamma oscillations underlie the maintenance of feature-specific information and the contents of visual working memory. *Cereb. Cortex* 25, 3788–3801 (2015).
- Roux, F., Wibral, M., Mohr, H. M., Singer, W. & Uhlhaas, P. J. Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. *J. Neurosci.* **32**, 12411–12420 (2012).
- 135. Castelhano, J., Duarte, I. C., Wibral, M., Rodriguez, E. & Castelo-Branco, M. The dual facet of gamma oscillations: separate visual and decision making circuits as revealed by simultaneous EEG/fMRI. *Hum. Brain Mapp.* **35**, 5219–5235 (2014).
- Rebola, J., Castelhano, J., Ferreira, C. & Castelo-Branco, M. Functional parcellation of the operculo-insular cortex in perceptual decision making: an fMRI study. *Neuropsychologia* 50, 3693–3701 (2012).
- Baltus, A. & Herrmann, C. S. The importance of individual frequencies of endogenous brain oscillations for auditory cognition—a short review. *Brain Res* 1640, 243–250 (2016).
- Abubaker, M., Al Qasem, W. & Kvašňák, E. Working memory and cross-frequency coupling of neuronal oscillations. *Front. Psychol.* 12, 756661 (2021).
- Buzsáki, G. & Wang, X. J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

- Nowak, M., Zich, C. & Stagg, C. J. Motor cortical gamma oscillations: what have we learnt and where are we headed? *Curr. Behav. Neurosci. Rep.* 5, 136–142 (2018).
- 141. Griffiths, B. J. et al. Directional coupling of slow and fast hippocampal gamma with neocortical alpha/beta oscillations in human episodic memory. Proc. Natl Acad. Sci. USA 116, 21834–21842 (2019).
- Wildie, M. & Shanahan, M. Establishing communication between neuronal populations through competitive entrainment. *Front. Comput. Neurosci.* 5, 62 (2011).
- Alekseichuk, I., Turi, Z., Amador de Lara, G., Antal, A. & Paulus, W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. *Curr. Biol.* 26, 1513–1521 (2016).
- Florin, E. & Baillet, S. The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations. *NeuroImage* 111, 26–35 (2015).
- 145. Jirsa, V. & Müller, V. Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci. 7, 78 (2013).
- 146. Stankovski, T., Ticcinelli, V., McClintock, P. V. E. & Stefanovska, A. Neural crossfrequency coupling functions. *Front. Syst. Neurosci.* **11**, 33 (2017).
- 147. Aru, J. et al. Untangling cross-frequency coupling in neuroscience. *Curr. Opin. Neurobiol.* **31**, 51–61 (2015).
- Fujisawa, S. & Buzsáki, G. A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. *Neuron* 72, 153–165 (2011).
- 149. Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. *Trends Cogn. Sci.* 14, 506–515 (2010).
- Salimpour, Y. & Anderson, W. S. Cross-frequency coupling based neuromodulation for treating neurological disorders. *Front. Neurosci.* 13, 125 (2019).
- 151. Radiske, A. et al. Cross-frequency phase-amplitude coupling between hippocampal theta and gamma oscillations during recall destabilizes memory and renders it susceptible to reconsolidation disruption. J. Neurosci. 40, 6398–6408 (2020).
- Zeng, K. et al. Fronto-subthalamic phase synchronization and cross-frequency coupling during conflict processing. *NeuroImage* 238, 118205 (2021).
- Sweeney-Reed, C. M. et al. Corticothalamic phase synchrony and crossfrequency coupling predict human memory formation. *ELife* 3, e05352 (2014).
- Axmacher, N. et al. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc. Natl Acad. Sci. USA 107, 3228–3233 (2010).
- Meehan, C. E. & Spooner, R. K. Utilizing transcranial alternating current stimulation and functional neuroimaging to investigate human sensory adaptation. J. Neurophysiol. **124**, 1010–1012 (2020).
- Antal, A. et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. *Clin. Neurophysiol.* **128**, 1774–1809 (2017).
- Kanai, R., Chaieb, L., Antal, A., Walsh, V. & Paulus, W. Frequency-dependent electrical stimulation of the visual cortex. *Curr. Biol.* 18, 1839–1843 (2008).
- 158. Goutagny, R. et al. Alterations in hippocampal network oscillations and thetagamma coupling arise before Aβ overproduction in a mouse model of Alzheimer's disease. *Eur. J. Neurosci.* **37**, 1896–1902 (2013).
- Hirano, S. et al. Phase-amplitude coupling of the electroencephalogram in the auditory cortex in schizophrenia. *Biol. Psychiatry Cogn. Neurosci. Neuroimaging* 3, 69–76 (2018).
- Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Open. Med.* 3, e123–e130 (2009).
- Peterson, D. S., King, L. A., Cohen, R. G. & Horak, F. B. Cognitive contributions to freezing of gait in Parkinson disease: implications for physical rehabilitation. *Phys. Ther.* 96, 659–670 (2016).
- Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. Introduction to Meta-Analysis (John Wiley & Sons, 2009).
- 163. Miller, J. R. et al. A systematic review and meta-analysis of crossover studies comparing physiological, perceptual and performance measures between treadmill and overground running. *Sports Med.* **49**, 763–782 (2019).
- 164. Stedman, M. R., Curtin, F., Elbourne, D. R., Kesselheim, A. S. & Brookhart, M. A. Meta-analyses involving cross-over trials: methodological issues. *Int. J. Epidemiol.* 40, 1732–1734 (2011).
- Nasser, M. Cochrane handbook for systematic reviews of interventions. Am. J. Public. Health 110, 753–754 (2020).

- Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. A basic introduction to fixed-effect and random-effects models for meta-analysis. *Res. Synth. Methods* 1, 97–111 (2010).
- Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).
- Higgins, J. P., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. *Br. Med. J.* 327, 557–560 (2003).
- Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics* 56, 455–463 (2000).
- 170. Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. *Br. Med. J.* **315**, 629–634 (1997).
- 171. Cumpston, M. et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane handbook for systematic reviews of interventions. *Cochrane Database Syst. Rev.* **10**, ED000142 (2019).

ACKNOWLEDGEMENTS

This work was supported by a grant from the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF- 2020S1A5A8041203 to N.K.).

AUTHOR CONTRIBUTIONS

T.L.L. contributed to data collection, statistical analyses, data interpretation, and manuscript drafts. H.L. contributed to data collection, statistical analyses, and manuscript drafts. N.K. conceived and designed the study, conducted data collection, statistical analyses, data interpretation, and manuscript drafts. All authors approved the final manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41539-022-00152-9.

Correspondence and requests for materials should be addressed to Nyeonju Kang.

Reprints and permission information is available at http://www.nature.com/ reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http:// creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023