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Minimally sufficient experimental design using identifiability
analysis
Jana L. Gevertz 1✉ and Irina Kareva 2

Mathematical models are increasingly being developed and calibrated in tandem with data collection, empowering scientists to
intervene in real time based on quantitative model predictions. Well-designed experiments can help augment the predictive power
of a mathematical model but the question of when to collect data to maximize its utility for a model is non-trivial. Here we define
data as model-informative if it results in a unique parametrization, assessed through the lens of practical identifiability. The
framework we propose identifies an optimal experimental design (how much data to collect and when to collect it) that ensures
parameter identifiability (permitting confidence in model predictions), while minimizing experimental time and costs. We
demonstrate the power of the method by applying it to a modified version of a classic site-of-action pharmacokinetic/
pharmacodynamic model that describes distribution of a drug into the tumor microenvironment (TME), where its efficacy is
dependent on the level of target occupancy in the TME. In this context, we identify a minimal set of time points when data needs to
be collected that robustly ensures practical identifiability of model parameters. The proposed methodology can be applied broadly
to any mathematical model, allowing for the identification of a minimally sufficient experimental design that collects the most
informative data.

npj Systems Biology and Applications            (2024) 10:2 ; https://doi.org/10.1038/s41540-023-00325-1

INTRODUCTION
Mathematical modeling has become ubiquitous in the natural
sciences, particularly in public health and pharmacology, as a tool
to both understand existing data and make projections about the
future. Specifically, models have been used to retrospectively
analyze experimental data, lending insight into the mechanisms
underlying the data and suggesting possible strategies that
enhance a desired outcome or limit an undesirable one. More
recently, models are being developed and calibrated in tandem
with data collection, allowing for model-based predictions to
inform future experimental design1–7.
Excitingly, in some arenas, such model-based predictions are

empowering scientists to intervene in real time. One example is in
the adaptive treatment of metastatic castration-sensitive prostate
cancer, where personalized model-informed treatment strategies
were adjusted based on a patient’s past and current prostate-
specific antigen levels8. Another example emerged during the
COVID-19 pandemic, wherein model-suggested strategies were
implemented to mitigate disease spread, which in turn necessi-
tated re-calibrating the model as new data emerged5,9.
One of the key benefits of a good model is the ability to

extrapolate from it. However, depending on how the data are
structured and when they are collected, a variety of potential
models or parameter values can potentially describe the data used
to calibrate it. For instance, in ref. 10, the authors selected four
different tumor growth models and evaluated the goodness of fit
of each model to a set of available data. While the authors did
show that some models fit the data better than others, for several
data sets, the differences were marginal. Further, if one were to
extrapolate tumor growth projections from the various models
that well-describe the data, the growth projections would be quite
different. Consequently, model-based decisions can vary signifi-
cantly based on the model used to extrapolate beyond the data.

More recently, Harshe and colleagues11 noted that even for a
simple model, such as the classic logistic model, multiple data
points need to be sampled in order to uniquely parametrize the
tumor growth curve, with the number of necessary points
increasing with the amount of noise in the collected data.
Furthermore, to find parameters that can enable a model to

have predictive utility, one sometimes needs a “critical” piece of
data that allows all the other model pieces to fit into place. One
such example was shown in12, where the authors used a model
that connects drug concentration over time to projected levels of
target occupancy (TO) in the tumor microenvironment (TME) and
parametrized it using published data for the anti-PD-1 checkpoint
inhibitor pembrolizumab13. The authors then used this model to
analyze potential criteria for efficacious dose selection for a
different compound targeting a co-expressed target TIGIT. They
showed the difference between the doses that achieve full TO in
the plasma as compared to doses that achieve full TO in the TME,
and used the model to re-discover doses that were in fact taken
forward in the clinic. A model that does not reasonably capture
the actual relationship between plasma concentration of the drug
and its level of target engagement in the TME would not have
been able to make this assessment.
As these examples show, not all data are created equal. In order

to parametrize a model that can enable decision making, it is
critical to have both the correct data type12 and a sufficient
number of data points11. Unfortunately, not all data can be easily
collected due to financial, logistical, or technical reasons, as is the
case for invasive procedures, such as biopsies. Therefore, it is
particularly important to select appropriate and sufficient data for
parametrization if a model is to be used to guide decision making.
Identifiability analysis allows one to rigorously study if model

parameters can be uniquely determined from available experi-
mental data. A model is considered structurally identifiable if
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parameters can be uniquely determined given perfect data1, a
condition which, of course, can never be satisfied in practice.
However, structural identifiability is a necessary, though not
sufficient, condition for practical identifiability, which answers this
question in the context of real and noisy data. Practical
identifiability analysis has been used to improve experimental
design by suggesting measurements that need to be collected to
resolve parameter non-identifiability issues given some pre-
existing data14. For instance, using a model of tumor spheroid
growth under treatment with taxol, practical identifiability analysis
revealed that an experiment that measures either the maximum
rate of drug-induced death or the drug half-saturation constant is
sufficient to resolve parameter non-identifiability issues and
consequently to increase confidence in model projections1. In a
mathematical model of ligand binding and trafficking, the authors
show how in addition to having measurements of extracellular
and bound ligand concentrations, the absolute concentration of
one pathway species and intracellular ligand concentrations are
needed to make model parameters practically identifiable15.
When such an analysis is used to determine the most

informative targets and time points for the new measurement,
this is referred to as optimal experimental design. Typically, this
entails the identification of an additional measurement (or set of
measurements) that contains maximal information for a para-
meter of interest16. For instance, using a model describing
lactation in cattle, an assessment of practical identifiability was
used to discover four-time samplings across 100 days that provide
high information content for estimating model parameters17. In a
mathematical model of a gene regulatory network, the most
informative experimental conditions were established using a
practical identifiability analysis18. It is of note that methods that do
not use identifiability analysis have also been employed to select
time points for measurement in an optimal way2,19.
Herein, we propose a workflow for utilizing practical identifia-

bility analysis as a tool for experimental planning. The model-
informed method seeks to determine both the minimal number of
experimental measurements needed for a quantity of interest and
when those measurements must be collected, in order to “trust”
predictions of a data-calibrated mathematical model. The
methodology requires developing a model and using it to create

simulated data for a variable of interest such that “complete”
simulated data results in the parameters of interest being
practically identifiable. We then proceed to find the minimal
amount of data needed, and when these data must be collected,
to ensure that the parameters remain practically identifiable.
The paper is organized as follows. In the Methods section

(found after the Discussion, though we recommend reading it
first), we review the well-established profile likelihood method for
assessing the practical identifiability of parameters given available
data. We also introduce a modification of the classic pharmaco-
kinetic/pharmacodynamic (PKPD) model with a TME compart-
ment, where drug distribution into the tumor, as well as target
synthesis in the TME, are not static but are a function of tumor
volume. This model, which we calibrate and validate using
available experimental data on pembrolizumab, will serve as a
case study to demonstrate the execution and applicability of the
proposed minimal experimental design methodology. In the
Methods section, we also introduce in detail the proposed
methodology for model-driven discovery of a minimally sufficient
experimental design. In the Results section, we use the proposed
methodology to recommend a minimal protocol for collecting
data on the experimental variable of interest (in this case, percent
target occupancy in the TME, which is assumed to drive efficacy).
In the Discussion section, we address both the challenges in
employing the method and the benefits of this iterative
experimentation-modeling approach for the efficient and robust
design of experiments.

RESULTS
As summarized in Fig. 1, we developed a modified version of a
two-compartment site-of-action model which describes the drug
concentration of the immune checkpoint inhibitor pembrolizu-
mab over time in the central (plasma), peripheral (tissue), and TME
compartments. Model assumptions, structure, and parameter
values are presented in the “Case Study: Site-of-Action Model
Parametrized for Pembrolizumab” subsection of the Methods and
Table 1 therein. Figure 2 shows the calibration of the model
parameters to pembrolizumab PK data reported in ref. 13 and

Fig. 1 Schematic diagram of model described by system (3). Drug distributes from the central compartment to the peripheral compartment
and the TME, which is the site of action.
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tumor growth inhibition (TGI) data reported in ref. 20, along with
the validation of the model on untrained data.
Here, we apply the workflow proposed in the “Designing

Minimally Sufficient Experimental Protocol” subsection of the
Methods, summarized in Fig. 3, that uses the profile likelihood
method to design a minimally sufficient experimental protocol. In
particular, we determine how much experimental data on percent
target occupancy in the TME is needed to confidently connect PK
in the plasma to PD in the TME. That is, what is the minimal
experimental protocol that would give us confidence in model
predictions? To achieve this goal, we follow the steps set forth in
the Methods :

1. Identify experiment that measures the variable of interest.
Here, the variable of interest is percent target occupancy in
the TME. This is defined in System (3) as TOTME .

2. Model development, parameterization, and validation. We use
the validated model in System (3), parameterized using
values specified in Table 1.

3. Select parameters of interest. We determined that the
parameters to be varied in our analyses are the rate of
drug-target complex formation in TME, konT , and the rate of

target synthesis in TME, ksynt . We arrived at this choice by
first removing parameters from consideration that are
relatively easy to measure experimentally. This eliminated
the PK parameters associated with pembrolizumab, which
are readily calibrated using drug concentration data. The
intrinsic tumor growth rate r was removed from considera-
tion, as it can be readily measured from control growth
experiments. We also removed the maximum rate of tumor
kill by pembrolizumab d and the percent target occupancy
in the TME that results in 50% kill by pembrolizumab TO50,
as these values could conceivably be estimated through in
vitro cell kill assays. The local sensitivity of the remaining
parameters was then assessed (Supplementary Fig. 1). The
four most sensitive parameters, in order, for fitting both the
simulated %TO in the TME data and the TGI data
(pembrolizumab administered on average every 3.5 days
at a dose of 10 mg/kg) are: ksynt , Kx , k1T , konT . We chose ksynt
and konT for our analyses, as these parameters are unlikely to
be estimated using any available experimental techniques
but have proven to be critical in prior work that analyzed a
structurally similar model12.

Table 1. Parameter values used in system (2).

Variable Description Initial condition Reference

Dp Concentration of drug in plasma (mg/L) Dp 0ð Þ ¼ 0 n/a

Tp Concentration of unbound (free) drug-target in plasma (nM) Tp 0ð Þ ¼ 10 (Lindauer et al.13)

DR Concentration of drug-target complex in plasma (nM) DR 0ð Þ ¼ 0 n/a

Dt Concentration of drug in peripheral (mg/L) Dt 0ð Þ ¼ 0 n/a

DTME Concentration of drug in TME (mg/L) DTME 0ð Þ ¼ 0 n/a

TTME Concentration of unbound (free) drug-target in TME (nM) TTME 0ð Þ ¼ 43 (Lindauer et al.13)

DRTME Concentration of drug-target complex in TME (nM) DRTME 0ð Þ ¼ 0 n/a

x Tumor volume (mm3) x 0ð Þ ¼ 38 fit

Parameter Description Value Reference

V1 Volume of distribution, plasma compartment (mL/kg) 70 Calibrated by fitting model to data digitized
from (Lindauer et al.13)V2 Volume of distribution, peripheral compartment (mL/kg) 33

k10 Rate of clearance from plasma compartment ðd�1Þ 5/70

kon Binding rate of drug to target in plasma ðnM�1 d�1Þ 0.005

koff Dissociation rate of drug-target complex ðd�1Þ 1.35e-4

k12 Rate constant for drug distribution from plasma to peripheral
compartment ðd�1Þ

22/70

k21 Rate constant for drug distribution from peripheral to plasma
compartment ðd�1Þ

22/33

k1T Rate constant for drug distribution from plasma to tumor
microenvironment ðd�1Þ

0.3 fit

kT1 Rate constant for drug distribution from tumor microenvironment to
plasma compartment ðd�1Þ

0.3 fit

δ Numerical correction term to avoid division by zero (mm3) 1e-4 n/a

kintP Decay or internalization rate of drug target in plasma ðd�1Þ 4.4 fit

ksyn Rate of target synthesis in plasma ðnM=dÞ 44 Computed: ¼ TP 0ð ÞkintP
konT Binding rate of drug to target in TME ðnM�1 d�1Þ 0.01 fit

ksynt Maximum rate of target synthesis in plasma (nM/h) 14190 fit

Kx Half-maximal volume of free target in the tumor microenvironment
(mm3)

500 fit

kint Decay or internalization rate of drug target in TME ðd�1Þ 4.4 fit

r Intrinsic tumor growth rate ðd�1Þ 0.148542 fit

K Tumor carrying capacity (mm3) 10000 n/a

d Maximum rate of tumor kill by pembrolizumab ðd�1Þ 0.38 fit

TO50 Percent target occupancy in TME that results in 50% kill rate by
pembrolizumab

43 fit
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4. Generate simulated data for the measurement of interest.
Here, we assume that both parameters of interest are
normally distributed with a mean equal to the calibrated
value of the parameter in Table 1. To get the desired
variability in the simulated data, we choose the standard
deviation for konT to be one fifth of its mean value (resulting
in konT�N 0:01; 4 ´ 10�6

� �
) and the standard deviation for

ksynt to be one twentieth of its mean value (resulting in
ksynt�N 14190; 503390:25ð Þ). We generate Kp ¼ 10 random
samplings of these distributions and extract the model-
predicted value of percent target occupancy in the TME at
each day over a one-month period. That is, for k ¼ 1; ¼ ; 10
we compute Yk tð Þ ¼ TOk

TME tð Þ, where t ¼ 0; 1; ¼ ; tfð Þ, tf ¼
30 days. The resulting simulated percent target occupancy
in the TME data are shown in Fig. 4A.

5. Practical identifiability using the data from “complete”
simulated experiments. Figure 4B, C shows that both konT
and ksynt are practically identifiable when %TO in the TME is
measured daily, given the parabolic shape of their profile
likelihood curves.

As we have verified that the parameter set p ¼ konT ; ksynt
� �

is
practically identifiable when percent target occupancy in the TME

data is collected every day for the duration of the experiment
(complete data), we are ready to move to Step 6 of the method to
search for the minimal number of data points that ensures
practical identifiability of the parameters in p.

Insufficient predictability with a 1-day experimental protocol
We first sought to determine if the identifiability of p ¼
konT ; ksynt
� �

can be ensured with only a single measurement of
percent target occupancy in the TME. To achieve this goal, we
computed the profile likelihood curves for both konT and ksynt and
examined whether practical identifiability is ensured if we only
had a single time point available from the simulated dataset. If a
single measurement is sufficient, we can also determine if the
timing of the measurement (that is, what day it is taken) matters
for preserving identifiability. The results of this analysis are shown
in Fig. 5.
In all cases, we find that konT is not practically identifiable over

the domain of interest. In fact, with one exception, the profiles
appear flat (structurally non-identifiable) on a linear scale, though
viewing the parameters on a log scale does reveal the profiles are
not completely flat (see Supplementary Fig. 2A). If the experiment
were conducted on day 1, konT would clearly be structurally

Fig. 2 Model calibration and validation. A, B Calibrated fits of model in System (3) to A PK curves for three doses of 10mg/kg of
pembrolizumab given weekly13, B TGI data for five doses of 10mg/kg of pembrolizumab given on average every 3.5 days20. C Corresponding
projected levels of %TO in plasma and the TME. D, E Validation of model in System (3) on untrained data. D PK curves for three doses of 1 mg/
kg of pembrolizumab given weekly13, E TGI data for five doses of 2mg/kg of pembrolizumab given on average every 3.5 days20. F Percent
target occupancy in TME data, with data digitized from (Lindauer et al.13).
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identifiable, though it is still not practically identifiable. In contrast,
we find that generally ksynt is structurally identifiable, as the
profiles are not flat. However, the parameter does not achieve
practical identifiability independent of when the single measure-
ment of target occupancy in the TME is taken. This is evident in
Fig. 5B as none of the profiles exceed the 95% confidence
threshold as we both decrease and increase the parameter from
its global minimum value.
These profiles lead us to conclude that a single experimental

measurement of percent target occupancy in the TME is
insufficient to confidently identify the values of either konT (rate
of complex formation in the TME) or ksynt (rate of target synthesis
in the TME). In other words, the practical identifiability of these
parameters is lost (compared to the case of complete data) if we
only have a single measurement of %TO in the TME, regardless of
when that measurement is collected.
It is known that “parameter unidentifiability can lead to

erroneous conclusions in the model inferences, predictions, and
parameter estimates”1. For this reason, we next explored the
consequences of parameter non-identifiability on the proposed
model’s predictive abilities. We do this by comparing the
projected tumor volume over a parameter’s 95% confidence
interval to the actual tumor volume in the experimental data to
which the model was calibrated. These parameter sets are found
by considering each profile likelihood curve generated from the
experimental collection day of interest and identifying each value
of the profiled parameter that falls below its 95% confidence
threshold (see Supplementary Fig. 2A, C). For each such parameter
value, pairing it with the corresponding best-fit value of the non-
profiled parameter (see Supplementary Fig. 2B, D) forms what we
call a “plausible parameter set” for the model, given the available
data. We do note that other methods have been proposed for

identifying the prediction confidence interval, including the
prediction profile likelihood approach21.
As shown in Fig. 6A, when percent target occupancy in the TME

is collected early (day 1), the range of predicted tumor volumes
over its plausible parameter set is very large: the tumor is
predicted to be anywhere from eradicated to more than 34 times
the initial volume by day 30. Although the experimental data are
all contained within these bounds, the model essentially has no
predictive abilities if our single percent target occupancy in the
TME data point is collected early, as the model cannot even infer
whether the tumor volume decreases or increases due to
treatment.
If instead percent target occupancy in the TME was measured at

an intermediate time (day 15), the range of predicted tumor
volumes over the plausible parameter set narrows significantly, as
shown in Fig. 6B. While a narrower predicted range is desirable,
most of the experimental data do not lie within the model-
predicted range for tumor volume. Thus, collecting percent target
occupancy in the TME at an intermediate time point is also
problematic. The best-case scenario occurs when the single
measurement is collected near the end of the one-month period
(Fig. 6C). In this case, all plausible parameter sets predict that the
tumor volume increases during and after treatment, and the
experimental data are largely contained within the predicted
range. That said, the tumor size at the end of the month is
predicted to be anywhere from 441–1700mm3. This large
variation still highlights the problematic nature of using the
model to predict treatment response when only a single
measurement of percent target occupancy in the TME is available
to calibrate model parameters.
In conclusion, we find that collecting a single measurement of

percent target occupancy in the TME is insufficient for calibrating
the model described in System (3) that bridges PK and PD

Fig. 3 Flowchart of the proposed method of using practical identifiability for model-driven minimal experimental design. This details
how to progress from a variable (experiment) of interest, through model design and analysis, to the final step of making a minimal
experimental design recommendation.
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components using a TME compartment. If we are in a situation
where only a single measurement can be obtained, the
experimental design recommendation is to collect that measure-
ment as late in the month as possible. However, this experimental
design is far from ideal, as the unidentifiable parameters greatly
limit our confidence in the model’s predictions.

Non-robust predictability over a subset of 2-day experimental
protocols
We next sought to determine if the identifiability of p ¼
konT ; ksynt
� �

can be ensured using two measurements of percent
target occupancy in the TME. Thus, we computed the profile
likelihood curves for konT and ksynt when experimental data is
collected at days t1; t2ð Þ; 0< t1<t2 � 30. The resulting 30

2

� � ¼ 435
profile likelihood curves for each parameter are shown in
Supplementary Fig. 3. We find that the structural non-
identifiability issues that konT had using only a single measure-
ment have been resolved, as none of the profiles are flat over their
domain (Supplementary Fig. 3A). Further, it appears that some
profiles for both konT and ksynt cross over the 95% confidence
threshold, suggesting that some experiments that collect two

measurements of percent target occupancy in the TME ensure
practical identifiability.
To further investigate this, we classified all possible 2-day

protocols for collecting %TO in TME at days t1; t2ð Þ by whether
they result in both, one of, or none of konT and ksynt being
practically identifiable (Fig. 7A). We find that only six of the 435
possible 2-day protocols result in both parameters being
practically identifiable: t1; t2ð Þ ¼ ð1; 3Þ; ð3; 4Þ; ð4; 6Þ; ð4; 7Þ; ð4; 10Þ;
ð4; 13Þ. The profiles for konT and ksynt corresponding to these 2-day
protocols are shown in Fig. 7B, C. Those profiles all have global
minimum values that are very close to the true best-fit value of the
parameter if complete experimental data were used (that is, if the
percent target occupancy in the TME were collected daily). Thus, if
these data were collected using one of the six identifiable 2-day
protocols, we can confidently estimate the value of parameters
p ¼ konT ; ksynt

� �
.

We next explore the validity of model TGI predictions using the
2-day experimental protocols which resulted in practically
identifiable parameters. As with the 1-day protocols, we do this
by simulating the predicted tumor volume over the “plausible
parameter sets”. However, this time, we restrict ourselves to
considering the 2-day protocols that correspond to both

Fig. 4 Simulated percent target occupancy data and parameter identifiability given this “complete” simulated data. A shows 10
simulated data sets of percent target occupancy in the TME, generated using model parameters in Table 1 under assumptions
konT�N 0:01; 4 ´ 10�6

� �
and ksynt�N 14190; 503390:25ð Þ. Profile likelihood curve for B konT and C ksynt when percent target occupancy in the

TME is available every day (markers shown in A) indicate that both parameters are practically identifiable in this “complete” experimental
scenario.

Fig. 5 Profile likelihood curves using only a single experimental measurement of percent target occupancy in the TME. A displays all konT
profiles and B displays all ksynt profiles. The color indicates which day (from day 1 to 30) the single experimental measurement was “collected”.
The solid black curve is the profile likelihood curve for the specified parameter when complete data (that is, daily measurements) are used,
and the black dashed line is the corresponding 95% confidence threshold.
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parameters being practically identifiable. As shown in Fig. 7D–F,
the predicted tumor region is highly constrained, and most of the
experimental data lay within this model-predicted range. This
demonstrates that the model can well predict the experimental
tumor volume measurements, provided one of the identified
2-day protocols was used to collect percent target occupancy in
the TME.
Notably, even though our approach has identified six 2-day

experimental protocols that achieve our goal of preserving the
identifiability of konT and ksynt (and thus result in confident model
predictions of TGI), we are disinclined to recommend designing an
experiment based around them, as the identified protocols are not
robust. To detail, if we perturb any of the recommended 2-day
protocols by a single day (that is, if we consider
t1 ± 1; t2ð Þ; t1; t2 ± 1ð Þ for any of the recommended protocols),
only two of the perturbed protocols ensure the practical
identifiability of both parameters. This can be clearly seen in Fig.
7A, which shows that experiments with both parameters classified
as practically identifiable (blue circles) generally have neighboring
points for which either none (orange squares) or one (red
diamonds) of the parameters are identifiable. Thus, even though
there do exist protocols that collect percent target occupancy in
the TME at two days that can well-inform model parametrization,
we recommend against this experimental design given its
sensitivity to the precise timing for when the data must be
collected.

Robust identifiability over a subset of 3-day experimental
protocols
Given the lack of robustness of the discovered 2-day protocols, we
next sought to determine if identifiability of p ¼ konT ; ksynt

� �
can

be ensured using three measurements of percent target
occupancy in the TME. There are 30

2

� � ¼ 4060 such 3-day
protocols. Generating the profile likelihood for each of these
protocols becomes computationally expensive, even in our
scenario where only two parameters are being profiled. Thus,
rather than generate profile likelihood curves for all 4060
protocols, we instead select a random third of the protocols for

our analysis and assume that this sampling is sufficient to
understand the entirety of the 3-day protocol space. The
sufficiency of analyzing only a fraction of the possible protocols
is verified below (Fig. 8E, F). Removing any non-unique random
samplings resulted in the consideration of 1126 3-day protocols.
The profile likelihood curves corresponding to each of these 3-day
protocols are found in Supplementary Fig. 4. We observe that a
number of these protocols appear practically identifiable.
To investigate further, we classified all possible 3-day protocols

t1; t2; t3ð Þ by whether they result in both konT and ksynt being
practically identifiable (Fig. 8A). We find that 80 of the 1126 3-day
protocols considered result in both model parameters being
practically identifiable. The profiles for konT and ksynt correspond-
ing to these 3-day protocols are shown in Fig. 8B, C. Those profiles
all have global minimum values that are very close to the true
best-fit value of the parameter if complete experimental data were
used (that is, if the percent target occupancy in the TME were
collected daily). Thus, if these data were collected using any of the
80 identifiable 3-day protocols, we can confidently estimate the
value of parameters p ¼ konT ; ksynt

� �
.

An analysis of the data in Fig. 8A shows that 73.75% of the
3-day protocols that correspond to practically identifiable para-
meters (59 of 80) collect the first measurement of percent target
occupancy in the TME at day t1 ¼ 4. Further, the second
measurement must be taken after the first, but by day t2 ¼ 16 if
we want to ensure parameter identifiability. Fixing t1 ¼ 4 in
protocol space allows us to project our results into a two-
dimension plot in t2 � t3 space (Fig. 8D, where we also impose
5 � t2 � 16). This region contains 65 of our tested 3-day
protocols, 90.77% of which are practically identifiable. Thus, an
experimental protocol with t1 ¼ 4; 5 � t2 � 16; t3>t2 is very likely
to result in identifiability of both parameters, but it is not
guaranteed to do so. In Fig. 8E, we show that if we further narrow
down protocol space to

P ¼ t1; t2; t3ð Þ : t1 ¼ 4; 5 � t2 � 10; 16 � t3 � 30f g; (1)

then, every 3-day protocol we had randomly sampled in the
region P results in practically identifiable parameters. We note that

Fig. 6 Predicted tumor volume over plausible parameter sets using a single measurement of percent target occupancy. Shaded blue
region indicates the model-predicted range for the tumor volume when percent target occupancy in the TME is only measured at A the
beginning of week 1 (day 1), B the beginning of week 3 (day 15), and C the beginning of week 5 (day 29). The true experimental measurement
for tumor volume from ref. 20 is indicated with *s.

J.L. Gevertz and I. Kareva

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2024)     2 



there are many practically identifiable protocols outside of P, as
this region only contains 40% of all the practically identifiable
3-day protocols we tested. That said, we find using a protocol in P
to be highly desirable, as the experimental design is robust to
small changes on the day the measurements are collected. We
confirm this robustness in Fig. 8F, where we tested the
identifiability associated with every protocol in P, not just the
ones that had been randomly sampled during our analysis. As
predicted from the random sampling, every protocol in P
corresponds to both model parameters being practically identifi-
able. This also confirms the sufficiency of using a random
sampling of possible protocols in the proposed minimal experi-
mental design methodology.
In conclusion, our identifiability analysis has led to a robust,

minimally sufficient, experimental design recommendation. We
suggest an experimental protocol where percent target occu-
pancy in the TME is collected three times over a one-month
period. The first sample should be collected on day t1 ¼ 4. The
second sample can be taken anywhere from day 5 to day 10,
5 � t2 � 10. The third sample should be taken on day 16 or later,
16 � t3 � 30. Even though ~60% of 3-day protocols that result in
practically identifiable parameters lie outside the recommended
region, we have shown that this experimental design guarantees
that every choice made using these specifications results in
practically identifiable parameters. Using any experimental design
away from the boundary of this region is thus predicted to
robustly provide sufficient data for confidently estimating the
values of the parameters p ¼ konT ; ksynt

� �
.

Sensitivity of experimental design recommendation to
methodological assumptions
A number of decisions must be made to implement the proposed
minimal experimental design algorithm. Beyond the standard
decisions that go into model development (building the right-
sized model for the problem at hand, given the available data), a
subset of model parameters must be chosen for further study
using a combination of experimental knowledge and sensitivity
results (see Supplementary Fig. 1). Once these parameters have
been selected, the modeler has another decision to make: from
what underlying distribution should the parameter values be
sampled to generate the simulated data needed at the fourth step
(see Fig. 3) of the workflow?
In the results presented thus far, we assumed that the

parameters are normally distributed. The mean of each distribu-
tion is the best-fit value of the parameter when the model is fit to
TGI data (10 mg/kg of pembrolizumab administered on average
every 3.5 days). The standard deviations were selected to strike a
balance between being too “optimistic” (i.e., having such low
variability that it is unlikely to represent real data) and being too
“pessimistic” (i.e., having such high variability that the experi-
mental data are too noisy to be informative). In Table 2, we
explore what happens if we change the assumptions placed on
the parameter distributions. We particularly ask how the experi-
mental design recommendation changes if: (1) parameters are
lognormally distributed instead of normally distributed (keeping
the mean and standard deviation fixed), (2) parameters remain
normally distributed about the same mean, but the standard

Fig. 7 Exploration of two-day experimental design protocols. A Classification of all possible 2-day protocols t1; t2ð Þ by whether they result in
both (blue circles), one (red diamonds) or none (orange squares) of the parameters being practically identifiable. The profile likelihood curves
using all 2-day protocols that result in practically identifiable parameters are shown in B for konT and C for ksynt . D–F Blue region shows the
range for the predicted tumor volume over the plausible parameter sets for three of the six 2-day experimental protocols that correspond to
practically identifiable parameters. t1; t2ð Þ ¼ ð1; 3Þ in D, ð3; 4Þ in E and ð4; 6Þ in F. Note the y scale is the same as in Fig. 6 to clearly highlight the
predictive differences when using protocols that do not result in parameter identifiable, versus protocols that do.
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deviation is decreased by 25%, and (3) parameters remain
normally distributed about the same mean but the standard
deviation is increased by 25%.
One conclusion is consistent across all cases considered:

measuring %TO in the TME at a single time point is not a
sufficient experimental design, as it never results in practically
identifiable parameters. Focusing next on changing the shape of
the distribution, we find that shifting from a normal to a lognormal
distribution (with the same mean and standard deviation) has
minimal impact. Table 2 shows that a very similar set of 2-day
protocols results in practically identifiable parameters, and a very
similar percentage of 3-day protocols results in practically
identifiable parameters. Supplementary Fig. 5A shows the
classification of all tested 3-day protocols, and Supplementary
Fig. 5B demonstrates that all protocols in the experimentally-
recommended region P identified using a normal distribution
result in practically identifiable parameters when the simulated
data is generated from a lognormal distribution. Thus, the
experimental design recommendation made using normally
distributed parameters holds if we change the distribution to
lognormal.
We next consider the impact of keeping the parameters

normally distributed about the same mean but changing the
standard deviation. The experimental design recommendation is
influenced by the standard deviation in the following way: the
smaller the standard deviation, the larger the set of experimental
protocols that result in practically identifiable parameters. To
detail, 2.99% of 2-day protocols result in practically identifiable
parameters when the standard deviation is 25% smaller than the
default value. That number drops to 1.38% at the default standard
deviation, and 0.02% when the standard deviation is 25% larger
than the default value. The decrease in the number of identifiable
protocols as a function of standard deviation is to be expected, as

more noisy data should necessitate the collection of more data
(Harshe et al. 2023). Table 2 shows that every protocol that
resulted in practically identifiable parameters using the default
value of σ also results in practically identifiable parameters at 0.75
σ. Thus, a smaller standard deviation means more experimental
designs are allowable, but it also preserves the recommendations
made using (somewhat) more noisy data.
Looking at the randomly sampled 3-day protocols, we see the

same qualitative trend as a function of standard deviation as with
the 2-day protocols. In total, 16.16% of protocols result in
practically identifiable parameters at 0.75σ (see Supplementary
Fig. 5C), compared to 7.10% at σ and 3.46% at 1.25σ (see
Supplementary Fig. 5E). All protocols in region P identified using
the default value of σ still result in practically identifiable
parameters using 0:75σ (Supplementary Fig. 5D). At 1:25σ, only
a subset of the protocols in region P result in practically
identifiable parameters. In particular, collecting the second sample
on day 5 or 8 is no longer a recommended experimental design.
Thus, a larger standard deviation imposes more restrictions on
when data should be collected.

DISCUSSION
As mathematical models continue to be used for real time
interventions, it becomes increasingly important to design
experiments that collect the right data, at the right time, to
maximize the model’s predictive power. In this work, we propose
an approach for using identifiability analysis to design a minimally
sufficient set of experiments. The approach involves generating
simulated data from the model, and then identifying a set of
parameters that would be practically identifiable in the ideal
scenario of “complete” experimental data (i.e., conducting an
experiment daily). Then, we work backwards, seeking to find the

Fig. 8 Exploration of three-day experimental design protocols. A Classification of a random sampling of 3-day protocols t1; t2; t3ð Þ by
whether they result in both parameters being practically identifiable (blue circles) or not (red circles). The profile likelihood curves from the
randomly sampled 3-day protocols that result in practically identifiable parameters are shown in B for konT and C for ksynt . D Projection of plot
in A with t1 ¼ 4 and t2 � 5. E Further narrowing the protocol space to the region P defined in Eq. (1) results in all sampled protocols contained
in P being practically identifiable. F Testing all protocols in P, not just randomly sampled ones, confirms that any protocol in P results in both
parameters being practically identifiable.

J.L. Gevertz and I. Kareva

9

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2024)     2 



minimal number of data points that must be collected to ensure
the practical identifiability of selected model parameters. We
applied the proposed minimal experimental design technique to a
site-of-action PKPD model of tumor growth in response to
treatment with pembrolizumab that explicitly accounts for drug-
target binding in the TME. We were particularly interested in
identifying two very specific quantities that are difficult to
measure experimentally, but that significantly affect model
dynamics—target synthesis in the TME and apparent drug-
target affinity in the TME.
Applying our minimally sufficient experimental design algo-

rithm led to the conclusion that, even if all other parameters are
estimated using other methods and experiments, no single
measurement of percent TO in the TME can result in parameter
practical identifiability. Consequently, the model cannot be
confidently parameterized, and the resulting predictions about
tumor response to treatment cannot be trusted. We did identify a
small number of 2-day experimental protocols for collecting %TO
in the TME that ensure parameter practical identifiability.
However, these protocols are not robust to small perturbations
in when the data is collected. Further, if the experimental data
were somewhat noisier (25% more) than assumed, only one of the
identified 2-day protocols resulted in practically identifiable
parameters. It took considering 3-day protocols to identify a
robust set of experimental designs that ensure parameter
identifiability: the first measurement of %TO in the TME must be
collected on day 4, the second can be collected any time between
days 5 and 10 (inclusive), and the third taken any time from day 16
until the end of the 30-day experiment. Any such set of three
measurements is sufficiently informative for the selected para-
meters to be practically identifiable, which lends strong con-
fidence to predictions made by the model. This recommendation
is fairly robust to the underlying assumptions about the simulated
data: the recommendation holds if the data is lognormally
distributed instead of normally distributed and if the data is
normally distributed but 25% less noisy than assumed. If the data
is normally distributed and 25% noisier than assumed, a subset of
the recommended protocols will result in practically identifiable
parameters.
While the sampling schedule recommended here is particular to

the model and experimental system under consideration, the
proposed minimally sufficient experimental design methodology
can be applied broadly to other biological systems. The method is
best applied, however, to design an experiment that yields
important data for model parametrization but is challenging/
invasive/expensive to perform. For instance, there is no need to
optimize the experimental design for measuring percent target
occupancy in the TME if sufficient dynamics can be inferred from
the correlation between plasma PK and tumor burden reduction.

Similarly, since collecting volumetric data in mice is straightfor-
ward and non-invasive, there is no need to design a minimally
sufficient experiment for this task. Conversely, there are times
when a reliable understanding of TO dynamics in the TME is
critical, as would be the case for bispecific T-cell engagers (BiTes),
whose efficacy is contingent on the drug binding to both targets
explicitly in the TME22. Additionally, assessing levels of target
engagement can be very important for addressing safety
considerations, both for BiTEs23, and for broader classes of drugs,
such as immune cell agonists24. For these cases, the additional
investment of resources in data collection, even for an invasive
procedure, may prove indispensable. The proposed methodology
enables collecting the minimal amount of data sufficient to inform
an associated mathematical model.
A key to successful implementation of the proposed minimally

sufficient experimental design methodology is determining an
appropriate model for the data, and then selecting the subset of
parameters for analysis. Herein, we chose to validate our model by
fitting data for a high dose of drug and comparing model
predictions to data at a low dose. Alternatively, one could consider
multiple random splits of the data into training and validation sets,
and select the model that best describes the average predictive
abilities in the validation sets25. Once a model has been selected, a
parameter subset must be identified. The set must be small
enough to ensure that all parameters are practically identifiable
under the “ideal” experimental conditions; for instance, if the data
of interest could be collected daily over the entire course of the
experiment. Any parameters not in the analysis set must be fixed,
thus posing the challenge of how to approximate the value of
such fixed parameters. Fortunately, for PKPD models, some
common approaches exist for parameter estimation. In the
proposed example, for instance, PK parameters can be estimated
using standard software, such as Monolix or WinNonLin; kon and
koff can be assessed using Biacore26,27 as a first step and then
refined using in vitro assays to further capture the expected PK-TO
relationships. Target clearance rates can be estimated using
internalization assays, and normal synthesis rates can be
calculated from the expected normal steady-state levels of the
target. With such careful preparatory work, this technique enables
the estimation of the few remaining elusive parameters that may
be essential to a model’s predictive value.
The benefits of the proposed experimental design methodology

are best realized when experimentalists and modelers are working
in close collaboration. Such a partnership ensures alignment of
key measurable aspects of the mechanism of interest, while
ensuring that modelers have a clear understanding of what
experiments are feasible. Constraints on what experiments can be
conducted include experiment duration, the possible number of
measurements that can be collected, and any constraints on when

Table 2. Robustness of experimental design recommendation to parameter distributions.

Protocol Measure %TO in TME at 1
time point

Measure %TO in TME at 2 time points Measure %TO in TME at 3
time points

Distribution

Normal (default) 0% 1.38%
Identifiable protocols: (1,3), (3,4), (4,6), (4,7), (4.10), (4.13)

7.10%

Lognormal (μ, σ
unchanged)

0% 1.61%
Identifiable protocols: (1,3), (3,4), (4,7), (4,9), (4,10), (4,13)

7.02%

Normal (0:75σ) 0% 2.99%
Identifiable protocols: (1,3), (1,6), (1,7), (1,9), (1,10), (1,13),
(1,14), (3,4), (4,6), (4,7), (4,10), (4,13), (4,14)

16.16%

Normal (1:25σ) 0% 0.02%
Identifiable protocol: (4,7)

3.46%

Number in the table is the percent of protocols for which parameters are practically identifiable.
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the samples can be collected (due to costs, implementation issues,
animal welfare, etc.). While optimizing time point collection does
not answer all experimental design questions—for instance, it
does not answer questions related to selecting sample size—the
proposed methodology can be used in combination with other
optimal experimental design approaches to maximize the utility of
collected data.
More broadly, this work reinforces the idea that there is no

“correct” model in absolute; instead, there are data for the model
and models for the data. Indeed, when we talk about fit-for-
purpose models, we typically talk about models that are just
complex enough to answer the question of interest. This work
arguably adds another dimension to fit-for-purpose modeling,
where fit-for-purpose data are collected to inform the model and
then enable it to answer the underlying question. Therefore, the
structure of a model, even for the same question, can conceivably
be different but equally useful depending on the data available to
identifiably parametrize it. Once a research team has identified a
motivating question and built and parameterized a fit-for-purpose
model for the question of interest, the proposed experimental
design framework can be a powerful tool for identifying the
minimal amount of experimental data required to maximize the
model’s predictive power.

METHODS
Profile likelihood for practical identifiability
Let p be the parameter vector for our differential equation model
and let ydataðtÞ and σ2ðtÞ represent the average and variance,
respectively, in the data at time point t. For normally distributed
measurement noise, the likelihood function is defined as follows28:

L ydata tð Þj pð Þ ¼
YN
t¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2 tð Þp exp � ymodel tð Þ � ydata tð Þð Þ2

2σ2 tð Þ

 !
:

To find the parameter set that gives the best-fit to the data, the
likelihood function is maximized:

p� ¼ argmaxpL ydata tð Þ j pð Þ:

For computational simplicity, the negative of log-likelihood
function is often minimized instead, which can be shown to be
equivalent to minimizing the cost function ζ that describes the
normalized discrepancy between model predictions and data28:

ζ ¼ 1
2

XN
t¼1

ymodel tð Þ � ydata tð Þð Þ2
σ2 tð Þ : (2)

The function g pið Þ that gives the maximum possible likelihood
value for each parameter pi is called the profile likelihood function.
To assess the practical identifiability of model parameters given
available data, we will compute the profile likelihood function of
each parameter pi as follows

14:

1. Determine a range for the value of pi from any available
theoretical or physiological considerations.

2. Fix pi ¼ p�i , where p�i is a value in the range defined in
Step 1.

3. For the fixed value of pi in Step 2, find the parameter set
that minimizes the cost function ζ defined in Eq. (2).

4. Save the optimal value of the cost function, ζ p�i
� �

.
5. Repeat Steps 2–4 for a discrete set of values in the range of

parameter pi .
6. Plot ζ pið Þ to arrive at the profile likelihood curve for

parameter pi .

The three possible scenarios for the profile of pi are shown in
Supplementary Fig. 6. Supplementary Fig. 6A shows a practically
identifiable parameter, as the profile likelihood curve is parabolic

with a clear minimum at the optimal value of pi . Further, the range
of pi values within the 95% confidence interval (dashed red line) is
finite. Supplementary Fig. 6B represents a parameter that lacks
structural identifiability. This is indicated by a flat profile for which
an infinite set of parameter values give equally good fits to the
data. Supplementary Fig. 6C is indicative of a parameter that is
structurally identifiable, but not practically identifiable. While the
profile does have a global minimum, it is insensitive to changing
the parameter value in one direction. This can be seen in
Supplementary Fig. 6C by observing that the profile does not
twice cross its 95% confidence threshold over its domain.
In this work, the profile likelihood method has been imple-

mented in MATLAB® using ode45 as the numerical differential
equation solver with a relative error tolerance of 10–6. Parameter
fitting is performed using MATLAB’s fmincon function with a first-
order optimality termination tolerance of 10–10. This built-in
function executes an interior-point method for solving con-
strained minimization problems29. As we are only fitting a single
parameter in all profile likelihood curves generated in this
manuscript, the fit parameter is kept on a linear scale. However,
we note that when fitting multiple parameters simultaneously, a
log scale should be used in the parameter estimation (provided
the parameters are non-negative) to avoid potential numerical
complications28.

Case study: site-of-action model parametrized for
pembrolizumab
Experiments aimed at characterizing the dose-dependent relation-
ship between drug concentration and tumor size form the
backbone of pre-clinical studies in oncology. Typically, the
collected time-course measurements are tumor volume and drug
concentration in the plasma, which are phenomenologically
captured by a simple indirect response model, such as ref. 30.
This correlation might be sufficient for assessing the general dose-
response relationship but cannot answer the question of whether
the underlying mechanism of action of the drug has been fully
engaged.
For this question, we often use pharmacobinding (PB) models31,

which describe the dynamics of the target (such as PD-1 for
pembrolizumab), and the reversible binding kinetics between the
drug and its target. This allows calculating levels of projected
target occupancy, and it is typically expected that if over 90% of
the target has been engaged without an effect, then the target
may not be the correct one for the selected indication31. Such PK-
PB models can facilitate the development of a mechanistic
understanding of the dose-response relationship between the
drug and the tumor size.
A step further can be taken with site-of-action models32–34 that

take into account the drug-target dynamics not only in the plasma
but also, as the name suggests, at the site of action, such as the
TME. These models can vary in degrees of complexity from more
mechanistic35 to more detailed physiologically based pharmaco-
kinetic models36,37. While such models can be used to calculate
projected levels of target occupancy in the TME, it is unclear
whether these estimates are truly reliable without actually
sampling the TME, the question we will be addressing here.
For that, we developed a modified version of a two-

compartment site-of-action model which describes drug concen-
tration over time in the central (plasma), peripheral (tissue), and
TME compartments. We assume that pharmacobinding occurs in
the plasma and TME compartments; while it is possible that some
drug-target dynamics occur in the peripheral compartment as
well, we assume that it is either negligible with regards to overall
dose-response dynamics or cannot be measured; these assump-
tions can be relaxed if needed.
The model has a standard structure in the plasma compartment,

with an assumption of intravenous drug administration that is
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cleared at a rate k10; the drug distributes to the peripheral
compartment at a rate V1=V2ð Þk12 and back at a rate V2=V1ð Þk21,
where V1 is the volume of distribution in the central compartment,
and V2 is the volume of distribution in the peripheral compart-
ment. We assume that the free target Tp is synthesized in the
plasma at a rate ksyn and, since the model is calibrated to
pembrolizumab data whose target PD-1 is membrane-bound, we
assume that it is cleared primarily through internalization at a rate
kintP. We also assume reversible binding kinetics between the drug
and its target, with the drug-target complex in the plasma forming
at a rate kon, dissociating at a rate koff ; and clearing at the rate
kintP.
The PK-PB dynamics in the TME compartment are largely

similar, with several proposed modifications. Firstly, we assume
that the rate of drug distribution into the TME is not constant but
is a function of the tumor volume, namely, V1= x þ δð Þð Þk1T , where
x is tumor volume and δ is introduced to prevent division by zero
in the limiting case, where the tumor volume tends to zero. We
propose that while V1 and V2 are treated as constant volumes of
distribution (as is standard), the volume of distribution into the
tumor be treated as variable, thereby capturing the higher or
lower distribution of the drug into the TME depending on tumor
size. As a consequence of this assumption, we further propose
that the rate of target synthesis in the tumor is not constant or at
equilibrium as would likely be in the plasma or non-disease
compartment, but instead is treated as a function of tumor size. In
particular, we assume this rate increases according to a saturating
function ksyntx

xþKx
, where ksynt is the rate of target synthesis in the

tumor (which is likely higher than in the plasma), and Kx is the
half-maximal concentration of free target TTME in the TME.
Additionally, we hypothesize that the apparent rate of drug-

target binding in the TME is not necessarily the same as in the
plasma, i.e., that konT may be different from kon . That said, we
expect that once the drug-target complex has been formed, the
dissociation rate koff will remain the same, as that is more likely to
be an intrinsic property38. Finally, we assume that the tumor
grows logistically and is killed as a function of the percent target
occupancy in the tumor, which is calculated as DRTME

DRTMEþTTME
, where

DRTME is the concentration of the drug-target complex in the
tumor and TTME is the free target in the TME.
The resulting system of equations is as follows:

dDp

dt ¼ u tð Þ � k10Dp � konDPTp þ koff DR � k12Dp þ k21
V2
V1
Dt

�k1TDp þ kT1xþδ
V1

D
TME

dTp
dt ¼ ksyn � kintPTp � konDpTP þ koff DR

dDR
dt ¼ konDpTP � koff DR � kintPDR

dDt
dt ¼ k12

V1
V2
Dp � k21Dt

9>>>>>>>>=
>>>>>>>>;
Non� tumor compartments

(3)

dDTME
dt ¼ k1T

V1
xþδDP

� kT1DTME � konTDTMETTME þ koff DRTME

dTTME
dt ¼ ksyntx

xþKx
� kintTTME � konTDTMETTME þ koff DRTME

dDRTME
dt ¼ konTDTMETTME � koff DRTME � kintDRTME

TOTME ¼ 100 ´ DRTME
DRTMEþTTME

dx
dt ¼ rx 1� x

K

� �� d TOTME
TOTMEþTO50

x

9>>>>>>>>=
>>>>>>>>;
TME compartment

The structure of the model is summarized in Fig. 1. Variable
definitions, initial conditions, and calibrated parameter values are
summarized in Table 1.
The model was calibrated to digitized PK data (Fig. 2A) for

pembrolizumab reported in ref. 13 and TGI data reported in ref. 20.
The reason this particular PK dataset was chosen is that it includes
measurements of percent TO in the TME, which is typically not
available. TGI curves in20 are measured for 2mg/kg and 10mg/kg of
pembrolizumab, administered on average 3.5 days apart, for C57BL/6
mice implanted with MC38 syngeneic colon adenocarcinoma cells.
We further calibrated model parameters to fit the PK-TGI relationship

for the dose of 10mg/kg (Fig. 2B). We also report the projected levels
of percent TO in plasma as compared to the TME (Fig. 2C) to
emphasize the importance of capturing drug-target dynamics in the
TME, as this is where it is expected to drive efficacy.
Model parameterization was validated using untrained data.

Figure 2D demonstrates that we were able to successfully
recapitulate the PK curves for three doses of 1 mg/kg of
pembrolizumab given weekly13, and Fig. 2E shows that we were
able to describe the TGI data for five doses of 2 mg/kg of
pembrolizumab given on average every 3.5 days20. We note that,
without the %TO in TME data (Fig. 2F), there was a large number
of parameter sets that could recapitulate the PK and TGI equally
well, further emphasizing that this piece of data was critical to
model parameterization.

Designing minimally sufficient experimental protocol
We propose the following workflow, summarized in Fig. 3, for
using the profile likelihood method to design a minimally
sufficient experimental protocol:

1. Identify experiment that measures the variable of interest. We
recommend focusing on an experiment that, while poten-
tially expensive and/or invasive, provides data needed to
inform decision making from your modeling work.

2. Model development, parameterization, and validation. As is
always the case in modeling, the validity of its predictions is
constrained by the accuracy of the model. Best-practices for
designing a fit-for-purpose model have been extensively
reviewed elsewhere39–41.

3. Select parameters of interest. As fit-for-purpose biological
models often contain double digit numbers of parameters, it
is often not feasible or desirable to allow all parameters in a
model M to vary. If M has r parameters, the goal of this
step is to identify a subset of n < r model parameters for
further analysis. This can be done via the following
considerations:

a. Work closely with experimental colleagues, and consult
the literature, to identify values for as many parameters
as possible.

b. For those parameters that cannot be easily estimated
from experimental data, conduct a sensitivity analy-
sis42–44. Those parameters the model is least sensitive to
should be fixed.

c. Let q ¼ q1; ¼ ; qmð Þ be the set of m< r model para-
meters that are fixed based on (a) and (b).

d. Let p ¼ p1; ¼ ; pnð Þ be the set of parameters that have
not been fixed in the prior step, where n ¼ r �m. This
parameter set will be used in the subsequent analysis.

4. Generate simulated data for the measurement of interest.
Define an underlying distribution for each parameter in p.
Randomly sample Kp values of each parameter from its
corresponding distribution and determine the model-
predicted response by solving M q; pk ; tð Þ; k ¼ 1; ¼ ; Kp .
From the model-predicted response, extract the value of
the variable of interest Yk tð Þ at the time points of interest t.
For instance, it is often only feasible to conduct a maximum
of one experiment per day, so t might represent the vector
of all days during the experimental time frame; that is,
t ¼ 0;1;¼ ;tfð Þ.

a. These distributions could be the output of a fitting
procedure, i.e., if nonlinear mixed effects modeling45,46 or
Approximate Bayesian Computation47,48 is utilized.

b. Alternatively, one can assume that each parameter is
normally or lognormally (to avoid the possibility of
negative parameter values) distributed about its
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calibrated value. The choice of distribution and its
standard deviation should be guided by biological
considerations and/or historical data (for instance, how
much noise is observed in experimental data), where
possible.

5. Practical identifiability using the data from “complete”
simulated experiments. Use the profile likelihood approach
to assess the practical identifiability of all parameters in p
using the simulated data Yk tð Þ from Step 4. We note that the
use of noisy simulated data to explore model identifiability
has been considered by others1,15,18,49. The goal at this step
is for all parameters in p to be practically identifiable, so if
this is not the case, revisit Steps 2 and 3 to right-size your
model and reconsider which parameters in the vector p
could be fixed. Proceed to the next step once all parameters
in p are practically identifiable given the simulated data
Yk tð Þ.

6. Determine the minimal number of data points needed to
ensure practical identifiability. Start by asking if it is possible
to only conduct j ¼ 1 experiment to collect data on the
variable of interest while preserving the practical identifia-
bility of parameters in p. That is, does any ti 2 t exist for
which model parameters p remain practically identifiable
given only the measurement Yk tið Þ?

a. If yes, proceed to Step 7.
b. If no, repeat the analysis in Step 6 by considering if

practical identifiability is ensured if instead you could
conduct j þ 1 experiments to collect data for Yk .

7. Make minimal experimental design recommendation. The
value of j in Step 6 for which practical identifiability of all
parameters in p can be ensured determines the number of
experiments that must be conducted and the time when
they need to occur. Such a j is guaranteed to exist because
Step 5 ensured that the parameters in p are practically
identifiable using all the simulated data Yk tð Þ. For instance,
if j ¼ 1 ensured practical identifiability of all parameters in p,
only a single experiment needs to be conducted. However,
this does not mean that just any single experiment can be
conducted. The results in Step 6 can also be used to
determine which subset of experiments ensure practical
identifiability. That is, the method can determine not only
the minimal number of experiments to conduct, but when
those experiments must be conducted.

We note that while it may appear counterintuitive that the
experimental design precedes the modeling step in the
proposed workflow, often it is the experimental constraints that
will determine the structure of a useful model. For instance, if
the only data available to a modeler is TO in the plasma but not
in the TME, modeling TO in other compartments will likely not
be instructive. In fact, it is likely to introduce a source of
additional uncertainty. It is thus the understanding of experi-
mental constraints that guides the development of a practically
useful model that can be used to optimize the sampling
schedule.
The MATLAB code implementing this minimal experimental

design methodology for the model described in System (3) is
available at https://github.com/jgevertz/minimal_experimental_
design. The computational resources and costs of implementing
the various stages of the workflow are summarized in Table S1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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