Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A homeostatic apical microtubule network shortens cells for epithelial folding via a basal polarity shift

Abstract

Epithelial folding is typically driven by localized actomyosin contractility. However, it remains unclear how epithelia deform when myosin levels are low and uniform. In the Drosophila gastrula, dorsal fold formation occurs despite a lack of localized myosin changes, while the fold-initiating cells reduce cell height following basal shifts of polarity via an unknown mechanism. We show that cell shortening depends on an apical microtubule network organized by the CAMSAP protein Patronin. Prior to gastrulation, microtubule forces generated by the minus-end motor dynein scaffold the apical cell cortex into a dome-like shape, while the severing enzyme Katanin facilitates network remodelling to ensure tissue-wide cell size homeostasis. During fold initiation, Patronin redistributes following basal polarity shifts in the initiating cells, apparently weakening the scaffolding forces to allow dome descent. The homeostatic network that ensures size/shape homogeneity is thus repurposed for cell shortening, linking epithelial polarity to folding via a microtubule-based mechanical mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patronin controls the regularity of columnar cell shape.
Fig. 2: Patronin shapes the apical dome.
Fig. 3: Cortical Patronin undergoes redistribution in response to Par-1 downregulation.
Fig. 4: Excessive Patronin stabilizes microtubules and blocks dome descent.
Fig. 5: Katanin counteracts Patronin to allow cell shortening following basal polarity shifts.
Fig. 6: Patronin recruits Katanin to the apical cortex.
Fig. 7: The Patronin-Katanin circuit promotes remodelling of the apical microtubule network to ensure size homeostasis.
Fig. 8: Dynein-dependent forces scaffold the apical dome shape.

Similar content being viewed by others

References

  1. Pearl, E. J., Li, J. & Green, J. B. A. Cellular systems for epithelial invagination. Phil. Trans. R. Soc. B 372, 20150526 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kondo, T. & Hayashi, S. Mechanisms of cell height changes that mediate epithelial invagination. Dev. Growth Diff. 57, 313–323 (2015).

    Article  Google Scholar 

  3. Martin, A. C. & Goldstein, B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 141, 1987–1998 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into shape: the mechanics of actomyosin contractility. Nat.Rev. Mol. Cell Biol. 16, 486–498 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Y.-C., Khan, Z., Kaschube, M. & Wieschaus, E. F. Differential positioning of adherens junctions is associated with initiation of epithelial folding. Nature 484, 390–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rauzi, M. et al. Embryo-scale tissue mechanics during Drosophila gastrulation movements. Nat. Commun. 6, 8677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nashchekin, D., Fernandes, A. R. & Johnston, D. S. Patronin/shot cortical foci assemble the noncentrosomal microtubule array that specifies the Drosophila anterior-posterior axis. Dev. Cell 38, 61–72 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ni, J.-Q. et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat. Methods 8, 405–407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Warn, R. M. & Warn, A. Microtubule arrays present during the syncytial and cellular blastoderm stages of the early Drosophila embryo. Exp. Cell Res. 163, 201–210 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Royou, A., Field, C., Sisson, J. C., Sullivan, W. & Karess, R. Reassessing the role and dynamics of nonmuscle myosin II during furrow formation in early Drosophila embryos. Mol. Biol. Cell 15, 838–850 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harris, T. J. C. Adherens junction assembly and function in the Drosophila embryo. Int. Rev. Cell Mol. Biol. 293, 45–83 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Harris, T. J. C. & Peifer, M. The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. J. Cell Biol. 170, 813–823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hampoelz, B. et al. Microtubule-induced nuclear envelope fluctuations control chromatin dynamics in Drosophila embryos. Development 138, 3377–3386 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Brandt, A. et al. Developmental control of nuclear size and shape by Kugelkern and Kurzkern. Curr. Biol. 16, 543–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Pilot, F., Philippe, J.-M., Lemmers, C., Chauvin, J.-P. & Lecuit, T. Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularisation. Development 133, 711–723 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Khanal, I., Elbediwy, A., Diaz de la Loza, M. D. C., Fletcher, G. C. & Thompson, B. J. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. J. Cell Sci. 129, 2651–2659 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Toya, M. et al. CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells. Proc. Natl Acad. Sci. USA 113, 332–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Figard, L., Xu, H., Garcia, H. G., Golding, I. & Sokac, A. M. The plasma membrane flattens out to fuel cell-surface growth during Drosophila cellularization. Dev. Cell 27, 648–655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fabrowski, P. et al. Tubular endocytosis drives remodelling of the apical surface during epithelial morphogenesis in Drosophila. Nat. Commun. 4, 2244 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with Image. J. Bioinformatics 32, 3532–3534 (2016).

    CAS  Google Scholar 

  21. Morais-de-Sa, E., Mirouse, V. & St Johnston, D. aPKC phosphorylation of Bazookadefines the apical/lateral border in Drosophila epithelial cells. Cell 141, 509–523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walther, R. F. & Pichaud, F. Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr. Biol. 20, 1065–1074 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, K. et al. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev. Cell 28, 295–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Chuang, M. et al. DAPK interacts with Patronin and the microtubule cytoskeleton in epidermal development and wound repair. eLife 5, e15833 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang, H., Brust-Mascher, I., Civelekoglu-Scholey, G. & Scholey, J. M. Patronin mediates a switch from kinesin-13-dependent poleward flux to anaphase B spindle elongation. J. Cell Biol. 203, 35–46 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Derivery, E. et al. Polarized endosome dynamics by spindle asymmetry during asymmetric cell division. Nature 528, 280–285 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Goodwin, S. S. & Vale, R. D. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143, 263–274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caussinus, E., Kanca, O. & Affolter, M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat. Struct. Mol. Biol. 19, 117–121 (2012).

    Article  CAS  Google Scholar 

  29. Tanenbaum, M. E., Vale, R. D. & McKenney, R. J. Cytoplasmic dynein crosslinks and slides anti-parallel microtubules using its two motor domains. eLife 2, e00943 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Foster, P. J., Furthauer, S., Shelley, M. J., Needleman, D. J. & Akhmanova, A. Active contraction of microtubule networks. eLife 4, e10837 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Uyttewaal, M. et al. Mechanical stress acts via Katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149, 439–451 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Picone, R. et al. A polarised population of dynamic microtubules mediates homeostatic length control in animal cells. PLoS Biol. 8, e1000542 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dmitrieff, S., Alsina, A., Mathur, A. & Nedelec, F. J. Balance of microtubule stiffness and cortical tension determines the size of blood cells with marginal band across species. Proc. Natl Acad. Sci. USA 22, 201618041 (2017).

    Google Scholar 

  35. Baines, A. J. et al. The CKK domain (DUF1781) binds microtubules and defines the CAMSAP/ssp4 family of animal proteins. Mol. Biol. Evol. 26, 2005–2014 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Noordstra, I. et al. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. J. Cell Sci. 129, 4278–4288 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Akhmanova, A. & Hoogenraad, C. C. Microtubule minus-end-targeting proteins. Curr. Biol. 25, R162–R171 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Yano, T., Matsui, T., Tamura, A., Uji, M. & Tsukita, S. The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. J. Cell Biol. 203, 605–614 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gomez, J. M., Chumakova, L., Bulgakova, N. A. & Brown, N. H. Microtubule organization is determined by the shape of epithelial cells. Nat. Commun. 7, 1–13 (2016).

    Google Scholar 

  40. Booth, A. J. R., Blanchard, G. B., Adams, R. J. & Roper, K. A dynamic microtubule cytoskeleton directs medial actomyosin function duringtube formation. Dev. Cell 29, 562–576 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bosveld, F. et al. Mechanical control of morphogenesis by fat/dachsous/four-jointed planar cell polaritypathway. Science 336, 724–727 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Basto, R. et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032–1042 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Venken, K. J. T. et al. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat. Methods 6, 431–434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Venken, K. J. T., He, Y., Hoskins, R. A. & Bellen, H. J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Shulman, J. M., Benton, R. & St Johnston, D. The Drosophilahomologof C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Ferguson, S. B., Blundon, M. A., Klovstad, M. S. & Schupbach, T. Modulation of gurken translation by insulin and TOR signaling in Drosophila. J. Cell Sci. 125, 1407–1419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mao, C.-X. et al. Microtubule-severing protein Katanin regulates neuromuscular junction development and dendritic elaboration in Drosophila. Development 141, 1064–1074 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Hu, Y. et al. FlyPrimerBank: an online database for Drosophila melanogaster gene expression analysis and knockdown evaluation of RNAi reagents. G3 (Bethesda) 3, 1607–1616 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the BACPAC Resources Center at the Children’s Hospital Oakland Research Institute, the Developmental Studies Hybridoma Bank, the Bloomington and Kyoto Drosophila Stock Centers, Y. Bellaiche, J. Grofihans, M. Krahn, J. Raff, D. St Johnston, R. Vale, E. Wieschaus and J. Zallen for sharing reagents; S. Kondo for generation and sharing of the patronin-null alleles as gifts; S. Blythe for assistance with the BAC engineering protocols; A. Momen-Roknabadi for engineering the pBabr plasmid from pTiger; T. Nishimura for assistance with qRT-PCR experiments; A. B. Albero and P. Shankar for advice on data analysis; G. Deshpande, S. Hayashi, S. Lemke, T. Shibata, M. Takeichi and S. K. Yoo for comments on the manuscript; members of the Hayashi, Nishimura, Kuranaga and Yoo laboratories for discussions.

The preparation of some of the reagents used in this work was performed in the laboratory of E. Wieschaus. This work was supported by the core funding at RIKEN Center for Developmental Biology and the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (Kakenhi) grant (15H04373) to Y.-C.W.

Author information

Authors and Affiliations

Authors

Contributions

Y.-C.W. conceived the project, M.T. and Y.-C.W. performed experiments and analysed the data, M.M.S. developed software tools for image processing and analysis, Y.-C.W. wrote the manuscript and all authors approved the final version of the manuscript.

Corresponding author

Correspondence to Yu-Chiun Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–7 and Supplementary Table and Video Legends.

Life Sciences Reporting Summary

Supplementary Table

Supplementary Table 1

Supplementary Video

Supplementary Video 1

Supplementary Video

Supplementary Video 2

Supplementary Video

Supplementary Video 3

Supplementary Video

Supplementary Video 4

Supplementary Video

Supplementary Video 5

Supplementary Video

Supplementary Video 6

Supplementary Video

Supplementary Video 7

Supplementary Video

Supplementary Video 8

Supplementary Video

Supplementary Video 9

Supplementary Video

Supplementary Video 10

Supplementary Video

Supplementary Video 11

Supplementary Video

Supplementary Video 12

Supplementary Video

Supplementary Video 13

Supplementary Video

Supplementary Video 14

Supplementary Video

Supplementary Video 15

Supplementary Video

Supplementary Video 16

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, M., Sami, M.M. & Wang, YC. A homeostatic apical microtubule network shortens cells for epithelial folding via a basal polarity shift. Nat Cell Biol 20, 36–45 (2018). https://doi.org/10.1038/s41556-017-0001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0001-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing