Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dormant tumour cells, their niches and the influence of immunity

Abstract

Despite increased focus on the clinical relevance of dormant metastatic disease, our understanding of dormant niches, mechanisms underlying emergence from dormancy, and the immune system’s role in this phenomenon, remains in its infancy. Here, we discuss key work that has shaped our current understanding of these topics. Because tumour dormancy provides a unique therapeutic window to prevent metastatic disease, we discuss on-going clinical trials and weigh the potential for immunotherapy to eradicate dormant disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed mechanisms of quiescence and immune evasion in dormancy.
Fig. 2: Clinical trial design for the specific targeting of dormant disease.

Similar content being viewed by others

References

  1. Early Breast Cancer Trialists’ Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

    Google Scholar 

  2. Thomsen, F. B. et al. Survival benefit of early androgen receptor inhibitor therapy in locally advanced prostate cancer: long-term follow-up of the SPCG-6 study. Eur. J. Cancer 51, 1283–1292 (2015).

    CAS  PubMed  Google Scholar 

  3. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med 367, 1187–1197 (2012).

    CAS  PubMed  Google Scholar 

  4. Pan, H. et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 377, 1836–1846 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Goss, P. E. & Chambers, A. F. Does tumour dormancy offer a therapeutic target? Nat. Rev. Cancer 10, 871–877 (2010).

    CAS  PubMed  Google Scholar 

  6. Naumov, G. N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162–2168 (2002).

    CAS  PubMed  Google Scholar 

  7. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gimbrone, M. A. Jr., Leapman, S. B., Cotran, R. S. & Folkman, J. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136, 261–276 (1972).

    PubMed  PubMed Central  Google Scholar 

  9. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    CAS  PubMed  Google Scholar 

  10. Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghajar, C. M. Metastasis prevention by targeting the dormant niche. Nat. Rev. Cancer 15, 238–247 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Klein, G. Foulds’ dangerous idea revisited: the multistep development of tumors 40 years later. Adv. Cancer Res. 72, 1–23 (1998).

    CAS  PubMed  Google Scholar 

  13. Collins, V. P., Loeffler, R. K. & Tivey, H. Observations on growth rates of human tumors. Amer. J. Roentgenol. Ra. 76, 988–1000 (1956).

    CAS  Google Scholar 

  14. Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    CAS  PubMed  Google Scholar 

  15. Harper, K. L. et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540, 588–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature 540, 552–558 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gruber, I. V. et al. Relationship between hematogenous tumor cell dissemination and cellular immunity in DCIS patients. Anticancer Res. 36, 2345–2351 (2016).

    CAS  PubMed  Google Scholar 

  18. Sanger, N. et al. Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int. J. Cancer 129, 2522–2526 (2011).

    PubMed  Google Scholar 

  19. Morgan, T. M. et al. Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin. Cancer Res. 15, 677–683 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Husemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    PubMed  Google Scholar 

  21. Schlimok, G. et al. Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc. Natl Acad. Sci. USA 84, 8672–8676 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stoecklein, N. H. et al. Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13, 441–453 (2008).

    CAS  PubMed  Google Scholar 

  23. Schardt, J. A. et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8, 227–239 (2005).

    CAS  PubMed  Google Scholar 

  24. Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Becker, T. E. et al. The genomic heritage of lymph node metastases: implications for clinical management of patients with breast cancer. Ann. Surg. Oncol. 15, 1056–1063 (2008).

    PubMed  Google Scholar 

  27. Bissig, H. et al. Evaluation of the clonal relationship between primary and metastatic renal cell carcinoma by comparative genomic hybridization. Am. J. Pathol. 155, 267–274 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuukasjarvi, T. et al. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res. 57, 1597–1604 (1997).

    CAS  PubMed  Google Scholar 

  29. Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar, A. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22, 369–378 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pantel, K. et al. Immunocytological detection of bone marrow micrometastasis in operable non-small cell lung cancer. Cancer Res. 53, 1027–1031 (1993).

    CAS  PubMed  Google Scholar 

  33. Woelfle, U. et al. Bi-specific immunomagnetic enrichment of micrometastatic tumour cell clusters from bone marrow of cancer patients. J. Immunol. Methods 300, 136–145 (2005).

    CAS  PubMed  Google Scholar 

  34. Pantel, K. et al. Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancet 347, 649–653 (1996).

    CAS  PubMed  Google Scholar 

  35. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS  PubMed  Google Scholar 

  36. Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, J. Y. et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530, 223–227 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    CAS  PubMed  Google Scholar 

  39. Cao, Z. et al. Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25, 350–365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao, Z. et al. Molecular checkpoint decisions made by subverted vascular niche transform indolent tumor cells into chemoresistant cancer stem cells. Cancer Cell 31, 110–126 (2017).

    CAS  PubMed  Google Scholar 

  41. Price, T. T. et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci. Transl. Med. 8, 340ra373 (2016).

    Google Scholar 

  42. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tamplin, O. J. et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 160, 241–252 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shiozawa, Y. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298–1312 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Butler, J. M., Kobayashi, H. & Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer 10, 138–146 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Scadden, D. T. Nice neighborhood: emerging concepts of the stem cell niche. Cell 157, 41–50 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bragado, P., Sosa, M. S., Keely, P., Condeelis, J. & Aguirre-Ghiso, J. A. Microenvironments dictating tumor cell dormancy. Recent Res. Cancer 195, 25–39 (2012).

    Google Scholar 

  48. Katayama, Y. et al. PSGL-1 participates in E-selectin-mediated progenitor homing to bone marrow: evidence for cooperation between E-selectin ligands and alpha4 integrin. Blood 102, 2060–2067 (2003).

    CAS  PubMed  Google Scholar 

  49. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    CAS  PubMed  Google Scholar 

  50. Fischer, J. C. et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc. Natl Acad. Sci. USA 110, 16580–16585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wei, Q. & Frenette, P. S. Niches for hematopoietic stem cells and their progeny. Immunity 48, 632–648 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rafii, S., Butler, J. M. & Ding, B. S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316–325 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao, H. et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150, 764–779 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shiozawa, Y. et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12, 116–127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Taichman, R. S. et al. GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS ONE 8, e61873 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yumoto, K. et al. Axl is required for TGF-beta2-induced dormancy of prostate cancer cells in the bone marrow. Sci. Rep. 6, 36520 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bragado, P. et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat. Cell Biol. 15, 1351–1361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kobayashi, A. et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J. Exp. Med. 208, 2641–2655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Catena, R. et al. Bone marrow-derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov. 3, 578–589 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Johnson, R. W. et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat. Cell Biol. 18, 1078–1089 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lawson, M. A. et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat. Commun. 6, 8983 (2015).

    CAS  PubMed  Google Scholar 

  62. Wang, H. et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27, 193–210 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Nash, K. T. et al. Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J. Natl Cancer Inst. 99, 309–321 (2007).

    CAS  PubMed  Google Scholar 

  64. Aguirre Ghiso, J. A., Kovalski, K. & Ossowski, L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol. 147, 89–104 (1999).

    CAS  PubMed  Google Scholar 

  65. Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K. & Ossowski, L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 12, 863–879 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Aguirre-Ghiso, J. A., Estrada, Y., Liu, D. & Ossowski, L. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res. 63, 1684–1695 (2003).

    CAS  PubMed  Google Scholar 

  67. Ranganathan, A. C., Adam, A. P. & Aguirre-Ghiso, J. A. Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 5, 1799–1807 (2006).

    CAS  PubMed  Google Scholar 

  68. Palmieri, D. et al. Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J. Natl Cancer Inst. 97, 632–642 (2005)

    CAS  PubMed  Google Scholar 

  69. Hartsough, M. T. et al. Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway. J. Biol. Chem. 277, 32389–32399 (2002).

    CAS  Google Scholar 

  70. Hickson, J. A. et al. The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res. 66, 2264–2270 (2006).

    CAS  PubMed  Google Scholar 

  71. Gawrzak, S. et al. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat. Cell Biol. 20, 211–221 (2018).

    CAS  PubMed  Google Scholar 

  72. Kennecke, H. et al. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 28, 3271–3277 (2010).

    PubMed  Google Scholar 

  73. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, F. et al. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl Acad. Sci. USA 95, 14821–14826 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, F. et al. Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J. Natl Cancer Inst. 94, 1494–1503 (2002).

    CAS  PubMed  Google Scholar 

  76. Beliveau, A. et al. Raf-induced MMP9 disrupts tissue architecture of human breast cells in three-dimensional culture and is necessary for tumor growth in vivo. Genes Dev. 24, 2800–2811 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    CAS  PubMed  Google Scholar 

  79. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Murgai, M. et al. KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat. Med. 23, 1176–1190 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Barkan, D. et al. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 70, 5706–5716 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cox, T. R. et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 73, 1721–1732 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Goddard, E. T. et al. The rodent liver undergoes weaning-induced involution and supports breast cancer metastasis. Cancer Discov. 7, 177–187 (2017).

    CAS  PubMed  Google Scholar 

  86. Quail, D. F. et al. Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF. Nat. Cell Biol. 19, 974–987 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2012).

    CAS  Google Scholar 

  88. Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. O’Connell, J. T. et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc. Natl Acad. Sci. USA 108, 16002–16007 (2011).

    PubMed  PubMed Central  Google Scholar 

  90. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    CAS  PubMed  Google Scholar 

  91. O’Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    PubMed  Google Scholar 

  92. O’Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    PubMed  Google Scholar 

  93. Rachman-Tzemah, C. et al. Blocking surgically induced lysyl oxidase activity reduces the risk of lung metastases. Cell Rep. 19, 774–784 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Retsky, M. et al. Reduction of breast cancer relapses with perioperative non-steroidal anti-inflammatory drugs: new findings and a review. Curr. Med. Chem. 20, 4163–4176 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gangloff, S. et al. Quiescence unveils a novel mutational force in fission yeast. eLife 6, e27469 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Hacohen, N., Fritsch, E. F., Carter, T. A., Lander, E. S. & Wu, C. J. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol. Res. 1, 11–15 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS  PubMed  Google Scholar 

  99. Pommier, A. et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science 360, eaao4908 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Pantel, K. et al. Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells. Cancer Res. 51, 4712–4715 (1991).

    CAS  PubMed  Google Scholar 

  101. Agudo, J. et al. Quiescent tissue stem cells evade immune surveillance. Immunity 48, 271–285 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hirata, Y. et al. CD150high bone marrow Tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell 22, 445–453 e445 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bichsel, C. A. et al. Increased PD-L1 expression and IL-6 secretion characterize human lung tumor-derived perivascular-like cells that promote vascular leakage in a perfusable microvasculature model. Sci. Rep. 7, 10636 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9, eaak9670 (2017).

    PubMed  Google Scholar 

  105. Hirosue, S. et al. Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. J. Immunol. 192, 5002–5011 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dieterich, L. C. et al. Tumor-associated lymphatic vessels upregulate PDL1 to inhibit T-cell activation. Front. Immunol. 8, 66 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    CAS  PubMed  Google Scholar 

  109. Teng, M. W. et al. Opposing roles for IL-23 and IL-12 in maintaining occult cancer in an equilibrium state. Cancer Res 72, 3987–3996 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Farrar, J. D. et al. Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-γ in establishing and maintaining the tumor-dormant state. J. Immunol. 162, 2842–2849 (1999).

    CAS  PubMed  Google Scholar 

  111. Muller, M. et al. EblacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res. 58, 5439–5446 (1998).

    CAS  PubMed  Google Scholar 

  112. Mahnke, Y. D., Schwendemann, J., Beckhove, P. & Schirrmacher, V. Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology 115, 325–336 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Shankaran, V. et al. IFN-γ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    CAS  PubMed  Google Scholar 

  114. Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120, 2030–2039 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Malladi, S. et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165, 45–60 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Moini, M., Schilsky, M. L. & Tichy, E. M. Review on immunosuppression in liver transplantation. World J. Hepatol. 7, 1355–1368 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Cimino, F. M. & Snyder, K. A. Primary care of the solid organ transplant recipient. Am. Fam. Physician 93, 203–210 (2016).

    PubMed  Google Scholar 

  118. Buell, J. F. et al. Donor transmitted malignancies. Ann. Transplant 9, 53–56 (2004).

    PubMed  Google Scholar 

  119. Strauss, D. C. & Thomas, J. M. Transmission of donor melanoma by organ transplantation. Lancet Oncol. 11, 790–796 (2010).

    PubMed  Google Scholar 

  120. Xiao, D. et al. Donor cancer transmission in kidney transplantation: a systematic review. Am. J Transplant 13, 2645–2652 (2013).

    CAS  PubMed  Google Scholar 

  121. Jimsheleishvili, S. et al. Extracranial glioblastoma in transplant recipients. J. Cancer Res. Clin. Oncol. 140, 801–807 (2014).

    PubMed  Google Scholar 

  122. Diaz, L. A. Jr. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Davies, C. et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381, 805–816 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Naume, B. et al. Clinical outcome with correlation to disseminated tumor cell (DTC) status after DTC-guided secondary adjuvant treatment with docetaxel in early breast cancer. J. Clin. Oncol. 32, 3848–3857 (2014).

    PubMed  Google Scholar 

  125. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    CAS  PubMed  Google Scholar 

  126. Filipits, M. et al. The PAM50 risk-of-recurrence score predicts risk for late distant recurrence after endocrine therapy in postmenopausal women with endocrine-responsive early breast cancer. Clin. Cancer Res. 20, 1298–1305 (2014).

    CAS  PubMed  Google Scholar 

  127. Sparano, J. A. et al. Circulating tumor cells (CTCs) five years after diagnosis are prognostic for late recurrence in operable stage II-III breast cancer. Cancer Res. 78, Abstract GS6–03 (2018).

    Google Scholar 

  128. Sadelain, M., Riviere, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    CAS  PubMed  Google Scholar 

  130. Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018).

    CAS  PubMed  Google Scholar 

  131. Mehta, R. S. & Rezvani, K. Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol. 9, 283 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Graef, P. et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8+ central memory T cells. Immunity 41, 116–126 (2014).

    CAS  PubMed  Google Scholar 

  134. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Berger, C. et al. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest. 118, 294–305 (2008).

    CAS  PubMed  Google Scholar 

  136. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Silberstein, L. et al. Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell 19, 530–543 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Fredericks, D. N. & Relman, D. A. Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 9, 18–33 (1996).

    PubMed Central  Google Scholar 

  139. Cote, R. J., Rosen, P. P., Lesser, M. L., Old, L. J. & Osborne, M. P. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J. Clin. Oncol. 9, 1749–1756 (1991).

    CAS  PubMed  Google Scholar 

  140. Lindemann, F., Schlimok, G., Dirschedl, P., Witte, J. & Riethmuller, G. Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet 340, 685–689 (1992).

    CAS  PubMed  Google Scholar 

  141. Mansi, J. L. et al. Bone marrow micrometastases in primary breast cancer: prognostic significance after 6 years’ follow-up. Eur. J. Cancer 27, 1552–1555 (1991).

    CAS  PubMed  Google Scholar 

  142. Schlimok, G. et al. Micrometastatic tumour cells in bone marrow of patients with gastric cancer: methodological aspects of detection and prognostic significance. Eur. J. Cancer 27, 1461–1465 (1991).

    CAS  PubMed  Google Scholar 

  143. Thorban, S. et al. Immunocytochemical detection of disseminated tumor cells in the bone marrow of patients with esophageal carcinoma. J. Natl Cancer Inst. 88, 1222–1227 (1996).

    CAS  PubMed  Google Scholar 

  144. Putz, E. et al. Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res. 59, 241–248 (1999).

    CAS  PubMed  Google Scholar 

  145. Suzuki, M., Mose, E. S., Montel, V. & Tarin, D. Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am. J. Pathol. 169, 673–681 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Klein, C. A. Selection and adaptation during metastatic cancer progression. Nature 501, 365–372 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.R.R. is funded in part by the NIH/NCI (R01 CA114536). C.M.G. is funded by the National Breast Cancer Coalition’s Artemis Project, an Era of Hope Award from the United States Department of Defence Breast Cancer Research Program (W841XWH-15-1-0201), the Breast Cancer Research Foundation (IIDRP-17-001), the W.M. Keck Foundation and the NIH/NCI (U54CA193461-01).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and editing of the manuscript, and to preparation of the figures.

Corresponding author

Correspondence to Cyrus M. Ghajar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goddard, E.T., Bozic, I., Riddell, S.R. et al. Dormant tumour cells, their niches and the influence of immunity. Nat Cell Biol 20, 1240–1249 (2018). https://doi.org/10.1038/s41556-018-0214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0214-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer