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Stereoretentive enantioconvergent 
reactions
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Joshua A. Homer    1, Rosie Street-Jeakings1, Andrew F. Tiberia1 & 
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Enantioconvergent reactions are pre-eminent in contemporary asymmetric 
synthesis as they convert both enantiomers of a racemic starting material 
into a single enantioenriched product, thus avoiding the maximum 50% 
yield associated with resolutions. All currently known enantioconvergent 
processes necessitate the loss or partial loss of the racemic substrate’s 
stereochemical information, thus limiting the potential substrate scope 
to molecules that contain labile stereogenic units. Here we present an 
alternative approach to enantioconvergent reactions that can proceed 
with full retention of the racemic substrate’s configuration. This uniquely 
stereo-economic approach is possible if the two enantiomers of a racemic 
starting material are joined together to form one enantiomer of a non-meso 
product. Experimental validation of this concept is presented using two 
distinct strategies: (1) a direct asymmetric coupling approach, and (2) 
a multicomponent approach, which exhibits statistical amplification 
of enantiopurity. Thus, the established dogma that enantioconvergent 
reactions require substrates that contain labile stereogenic units is shown to 
be incorrect.

From medicine to materials science1,2, the ability to control the 
absolute configuration of chiral molecules is vital to controlling 
their function (Fig. 1a). Since Pasteur’s seminal work on the chiral 
resolution of racemic tartrates3, scientists have sought out new 
ways to access chiral molecules in enantioenriched form. The ste-
reoselective synthesis of chiral molecules in enantioenriched 
form, known as asymmetric synthesis, has been a great success 
for the discipline of synthetic organic chemistry. The importance 
of asymmetric synthesis was recognized in 2001 when the Nobel 
Prize in Chemistry was awarded to Knowles, Noyori and Shar 
pless for their development of metal-catalysed asymmetric react 
ions. The field has remained an innovative and vibrant area of research, 
with the 2021 Nobel Prize in Chemistry awarded to List and MacMil-
lan for their development of organocatalysed asymmetric reactions. 
Indeed, asymmetric reactions are now routine, both in industrial and 

academic settings, with a wide variety of catalysts available, from 
intricate precious-metal complexes to bespoke engineered enzymes.

The approach taken in an asymmetric synthesis is dictated by 
the stereochemical nature of the starting material. When starting 
from an achiral substrate an enantioselective reaction can be used 
to access a new chiral product in up to 100% e.e. and 100% yield. 
Asymmetric synthesis using racemic substrates can be achieved 
through resolution reactions (for example, kinetic resolutions4,5), 
wherein one enantiomer of the starting material is converted into 
a new product (Fig. 1b). This unfortunately results in a maximum 
achievable yield of 50%, which represents a notable weakness in 
contemporary asymmetric synthesis. Enantioconvergent reactions, 
on the other hand, can be used to achieve full conversion of both 
enantiomers of a racemic starting material into a single enantioen-
riched product in up to 100% e.e. and 100% yield6–8. An increasing 
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stereogenic units in both enantiomers of the racemic starting mate-
rial are ablated (that is, destroyed), thus generating a common inter-
mediate that undergoes a stereoselective transformation to give an 
enantioenriched product. In stereodiscordant processes (a terminol-
ogy we introduce here for the first time), such as ‘enantioconver-
gent parallel kinetic resolutions’15,16, one enantiomer undergoes a 
stereoinversion process whilst the other enantiomer proceeds with 
stereoretention.

number of enantioconvergent reactions have been developed in 
recent years, but they all rely on just three conceptual approaches for 
achieving enantioconvergency: stereomutation, stereoablation and 
stereodiscordance (Fig. 1c). Stereomutation involves the mutation 
(that is, interconversion) of the configuration of the racemic starting 
materials’ stereogenic unit(s)6–8, and is most commonly associated 
with ‘dynamic kinetic resolutions’9–12. In stereoablative processes6–8,13, 
such as type II dynamic kinetic asymmetric transformations14, the 
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Fig. 1 | Chiral molecules, resolution reactions and enantioconvergent 
reactions. a, Examples of chiral molecules in which the absolute configuration is 
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material, B is an intermediate, P is product). d, A stereoretentive approach to 
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product). e, Stereoretentive enantioconvergent heterochiral dimerization. 
f, Stereoretentive enantioconvergent multicomponent reaction using an 
unsymmetrical linker molecule (represented as ◑).
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Fig. 2 | Development of a stereoretentive enantioconvergent reaction. 
a, A known heterochiral selective, but not enantioconvergent, aza-Darzens 
dimerization of racemic imine epoxide 1, as reported by Würthwein and co-
workers19. b, An enantioconvergent aza-Darzens reaction achieved using chiral 

lithium amide 4. The heterochiral selectivity was rationalized as a result of a 
bis-lithium, cationic Zimmerman–Traxler-type transition state 3 for the addition 
step19. c, Results obtained when using other chiral lithium amides.
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Although each of these three established approaches have their 
own particular advantages and challenges (Fig. 1c), they are all limited 
to racemic substrates that contain labile stereogenic units. This is 
because they all necessitate the loss, or partial loss, of stereochemical 
information during the reaction, either by mutation, ablation or partial 
inversion. Furthermore, substrates containing multiple stereogenic 
units are not generally amenable to any of these established approaches 
unless, for example, the substrate is pseudosymmetric14,17. Thus, the 
only currently available option for asymmetric synthesis using racemic 
substrates that contain robust and/or multiple stereogenic units is to 
use inherently wasteful resolution reactions (Fig. 1b).

We realized that the configuration of a racemic substrate could be 
fully retained during an enantioconvergent reaction if the two enanti-
omers of a racemic substrate were coupled together to form one enan-
tiomer of a non-meso product (Fig. 1d). We herein provide experimental 
validation of this stereoretentive approach to enantioconvergent 
reactions using two distinct strategies. First, we describe a direct asym-
metric coupling approach, wherein a heterochiral dimer of a racemic 
substrate is produced in enantioenriched form (Fig. 1e). Second, we 
disclose a multicomponent approach that uses an unsymmetrical 
linker to ensure the final product is chiral (that is, non-meso) (Fig. 1f).

Results and discussion
Direct coupling approach
Dimerizations of racemic substrates are intrinsically more complex 
than those involving achiral or enantiopure substrates because of the 
issue of homochiral–heterochiral selectivity. That is, one enantiomer 
of a racemic substrate may react with another molecule of the same 
configuration (homochiral dimerization) or opposite configuration 

(heterochiral dimerization). If the selectivity of such a dimerization 
could be controlled to be both heterochiral-selective and enantiose-
lective, then a stereoretentive enantioconvergent reaction would be 
realized (Fig. 1e). The aza-Darzens reaction was selected as a model 
dimerization to experimentally validate stereoretention as a viable 
concept for enantioconvergent reactions18 (Fig. 2). In 2001, Würth-
wein, Fröhlich and Alickmann reported that treatment of racemic 
imine epoxide 1 with LDA or LDA/KOt-Bu resulted in an exquisitely 
heterochiral-selective aza-Darzens dimerization to give racemic aziri-
dine 2 (Fig. 2a)19. The inherent heterochiral selectivity of this reaction 
was postulated to be a result of a bis-lithium, cationic Zimmerman–Trax-
ler type transition state 3 for the addition step, with density functional 
theory calculations (B3LYP/6-31G*) revealing a 6.8 kcal mol–1 preference 
for the heterochiral combination19. We aimed to render this process 
enantioconvergent by replacing the achiral base with an enantiopure 
chiral base. Aziridine 2 was successfully formed in enantioenriched 
form when using a number of different chiral lithium amides at −80 °C 
(Fig. 2c; for full details, see Supplementary Fig. 1). The C2-symmetric 
base 4 provided the highest enantioselectivity (60% e.e. at −80 °C)20, 
which could be improved by lowering the reaction temperature to 
−100 °C to give aziridine 2 in 56% isolated yield and 92% e.e. (Fig. 2b). 
This represents the asymmetric synthesis of a highly substituted 
aziridine but more importantly constitutes an enantioconvergent 
reaction that proceeds with stereoretention. The benefits in terms of 
stereo-economy are clear; three of the four stereogenic units in the race-
mic imine epoxide 1 are fully retained in the enantioenriched aziridine 
2. A new stereogenic centre is also created during the intermolecular 
addition step, which compensates for the one lost in the final epoxide 
ring-opening step.
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enantioconvergent reactions. a, Envisaged reaction manifold for a 
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modelling: (1) simple second-order kinetics for both steps; (2) the coupling 
step is much slower than the initial KR (k1 ≫ k2); and (3) there is no asymmetric 
induction in the second step (k2-hetero = k2-homo). More complex reaction kinetics 
and/or asymmetric induction in the second step could result in stereoisomeric 
ratios different from those predicted. Full details of the kinetic modelling are 
described in section 7 of the Supplementary Information. d, One of Horeau’s 
original reactions exhibiting statistical amplification of enantiopurity.
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Multicomponent approach
Having realized our first goal of achieving a direct stereoretentive 
enantioconvergent coupling of a racemic substrate, we next turned 
our attention to demonstrating the concept of stereoretention in mul-
ticomponent enantioconvergent reactions (Fig. 1f). In this approach 
(Fig. 3), an unsymmetrical linker molecule (represented as ◑) provides 
a general and predictable approach to achieving heterochiral selectiv-
ity, whilst ensuring the final heterochiral product 7 is chiral (that is, 
non-meso). The envisaged process begins with a kinetic resolution (KR) 
of the racemic starting material 5 with the linker ◑, giving an enantioen-
riched intermediate 6 and resolved starting material 5 (Fig. 3a). These 
are then coupled together to form the target heterochiral species 7 
as the major product, alongside minor quantities of the homochiral 
product 8. Importantly, this coupling step will lead to statistical ampli-
fication of enantiopurity (that is, the Horeau principle21), meaning that 
even when using a moderately selective KR the final product 7 will be 
formed in exceptionally high enantiopurity22–24. Kinetic modelling of 
this multicomponent process illustrates how impressive this amplifi-
cation of enantiopurity will be25 (Fig. 3a–c). In Fig. 3b, the calculated 
e.e. of the intermediate 6 (at 50% conversion) and the e.e. of the final 

product 7 (at 100% conversion) are plotted against the selectivity fac-
tor, s = k1(S)/k1(R), of the initial KR (note: s factors are often known as  
E values for biocatalytic KR)26. The enantioamplification is substantial; 
for example, in Fig. 3a the expected results are shown for a low s-factor 
of 8 in the initial KR (note: s < 15 low; 15 < s < 30 acceptable; 30 < s < 50 
good; s > 50 excellent). In a normal KR an s-factor of 8 would produce 
intermediate 6 in just 62% e.e. (at 50% conversion), whereas in this 
enantioconvergent process the final product 7 will be formed in 90% 
e.e. (at 100% conversion). Thus, the demands for achieving selectivity 
in the initial KR are remarkably low, meaning the labour-intensive reac-
tion/catalyst optimization process usually associated with develop-
ing new asymmetric transformations can be largely avoided27–29. This 
statistical amplification of enantiopurity has strong parallels to the 
original studies reported by Horeau and co-workers in 197321 (Fig. 3d), 
but it is different. Horeau’s seminal work demonstrated that statistical 
amplification of enantiopurity could be achieved by coupling enanti-
oenriched samples with symmetrical linkers to give homochiral dimers 
in amplified enantiopurity, which comes at the cost of forming small 
amounts of the meso-heterochiral dimers (see example in Fig. 3d). 
Whereas, in our multicomponent reactions, unsymmetrical linkers 
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Supplementary Information.
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are used in stereoselective processes to give the heterochiral dimers 
in amplified enantiopurity at the cost of forming small amounts of the 
unwanted homochiral dimers (Fig. 3a).

KR by acylation, which is a common method in asymmetric syn-
thesis30, was selected as a model system with which to develop multi-
component stereoretentive enantioconvergent processes (Fig. 4). Bode 
and co-workers have reported the KR of racemic amines using acylated 
chiral hydroxamic acid reagents31,32. We designed an analogous chloroa-
cetylated reagent 9, so that that the intermediate from the KR would 
be a chloroacetamide, 10, rather than a simple acetamide, which could 
undergo a final coupling with the remaining amine 11 via nucleophilic 
substitution. The impact of having the α-chloro substituent on reagent 
9 was investigated for the KR of racemic tetrahydroisoquinoline 11. 
Thankfully, the α-chloro substituent was found to be well tolerated 
and resulted in an acceptable s-factor of 28, which at a perfect 50% 
conversion would give chloroacetamide 10 in 83% e.e. A multicom-
ponent stereoretentive enantioconvergent reaction was achieved by 
first conducting a KR of racemic tetrahydroisoquinoline 11 with our 
α-chloro-Bode reagent 9 in tetrahydrofuran at room temperature. 
Once the KR was complete, the reaction temperature was increased 
to 50 °C and triethylamine and NaI were added to facilitate the final 
nucleophilic substitution. This gives the target α-aminoamide 12 in an 
amplified enantiopurity of 97% e.e. (Fig. 4a; for full details, see section 
3 of the Supplementary Information). This reaction, alongside the 
aza-Darzens dimerization (Fig. 2), experimentally validate stereoreten-
tion as a viable concept for enantioconvergent reactions. These con-
ceptually ground-breaking reactions were achieved via stoichiometric 
reagent-controlled stereoselectivity, that is, a super-stoichiometric 
chiral reagent and a traceless chiral auxiliary. Our attention next turned 
to demonstrating the concept of stereoretention in enantioconvergent 
reactions using asymmetric catalysis.

A catalytic stereoretentive enantioconvergent synthesis was 
achieved using the commercially available Amano Lipase PS from 
Burkholderia cepacia33. A biocatalytic KR of racemic amine 13 using 
ethyl chloroacetate as the linker gives both chloroacetamide 14 and 
recovered amine 13 in highly enantioenriched form (96% e.e. and 99% 
e.e., respectively)34. Filtration to remove the biocatalyst and molecu-
lar sieves followed by evaporative removal of the solvent and excess 
ethyl chloroacetate gives a clean mixture of chloroacetamide 14 and 
recovered amine 13. These are then coupled together through a nucleo-
philic substitution reaction, using NaHCO3 and catalytic KI, to give 
α-aminoamide 15 in 65% yield over the two steps. Owing to the highly 
selective nature of the biocatalytic KR, the final product 15 is formed in 
near enantiopure form (99.99% e.e.), with only trace quantities of the 
unwanted homochiral product present (d.r. 33:1) (Fig. 4b).

For these multicomponent reactions the design of the linker is very 
important and must satisfy a number of criteria. Most importantly, it 
must allow for a highly site-selective KR of the racemic substrate whilst 
containing an orthogonal reactive site for the subsequent statistical 
coupling. For reactions based on acylative KR of amines the inclu-
sion of an α-electrophilic site worked very well in terms of reactivity 
and selectivity (Fig. 4a,b). For reactions based on the acylative KR of 
alcohols, however, this linker design did not work well owing to trans-
esterification competing with the desired nucleophilic substitution. 
Therefore, 2,2-dimethylglutaric anhydride 16 was used as a highly 
site-selective acylating reagent for the organocatalytic KR of racemic 
secondary alcohol 17, using the bifunctional cinchona-thiourea cata-
lyst 1835. The free carboxylic acid in intermediate 19 then served very 
well as an orthogonal reactive site for a subsequent modified-Shiina 
esterification36, to give diester 20 in 65% yield over the two steps in good 
heterochiral selectivity (d.r. 5:1) and amplified enantiopurity (98% e.e.).

Diastereoconvergent approach
We were curious to explore the potential benefits of using chiral enan-
tiopure linkers in multicomponent diastereoconvergent processes. 

Specifically, we were interested in trying to identify and leverage 
triple-stereodifferentiation effects to boost selectivity (that is, 
higher-order matched–mismatched effects)37. Traditional KRs are 
examples of double stereodifferentiating reactions, where the reaction 
outcome depends on the absolute configuration of the two participants 
(for example, the substrate and the catalyst)4,5. By using a chiral enantio-
pure linker the outcome of our initial KR will now depend to some extent 
on the absolute configuration of all three participants. To see if triple 
stereodifferentiation might be observable, and therefore potentially 
useful, we selected the KR of racemic amino acid N-carboxyanhydrides 
with alcohols as a suitable reaction manifold38 (Fig. 5). Propylene gly-
col 22, which is commercially available in both enantiomeric forms, 
was selected as a model chiral linker as it satisfies the design require-
ments already outlined above; the primary alcohol can serve as the 
most reactive site for the KR and the secondary alcohol can then serve 
as the reactive site for the final nucleophilic acyl substitution cou-
pling (Fig. 5). Thus, two reactions using (DHQD)2AQN as catalyst were 
performed on racemic phenylalanine N-carboxyanhydride 23, with 
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Fig. 5 | Investigating triple-stereodifferentiation effects in multicomponent 
diastereoconvergent reactions using enantiopure linkers. Identification 
of a triple-stereodifferentiation effect using (R)/(S)-propylene glycol 22 
as the asymmetric linker in a diastereoconvergent reaction of racemic 
phenylalanine N-carboxyanhydride 23 using (DHQD)2AQN as catalyst. DMAP, 
4-(dimethylamino)pyridine; Et2O, diethyl ether. ae.e. values were determined 
from the corresponding methyl esters, after hydrolysis and methylation using 
KHCO3 and CH3I; for full details, see section 5 of the Supplementary Information.
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(S)-propylene glycol 22 used in one reaction and (R)-propylene glycol 
22 used in the other. After 24 h at −40 °C we observed a pronounced 
difference in selectivity between the initial kinetic resolutions, with 
(S)-propylene glycol 22 identified as the ‘matched’ stereodifferentiating 
linker. Both reactions were then allowed to warm to room temperature 
and DMAP added to catalyse the final nucleophilic acyl substitution. 
When (R)-propylene glycol 22 was used as the linker, product 24 was 
obtained in a poor heterochiral–homochiral ratio of 1.4:1 with the 
desired heterochiral adduct formed in just 66% d.e. In comparison, 
when using (S)-propylene glycol 22, the final product 25 was formed in 
a heterochiral–homochiral ratio of 3.2:1 with the heterochiral adduct 
formed in 93% d.e. (Fig. 5).

Conclusion and outlook
The results presented in this report experimentally validate stereore-
tention as a conceptually different and complementary approach to 
achieving enantioconvergency. This concept can now be exploited by 
others to develop new stereoconvergent methodology which, for the 
first time, can utilize racemic substrates with robust and multiple ste-
reogenic units. Controlling the many aspects of reactivity and selectivity 
needed for these processes stands as an exciting new challenge for the 
synthetic chemistry community. Addressing these challenges will allow 
for a substantial expansion of our collective toolbox of stereoconvergent 
methods, which has the potential to impact all areas of science in which 
the configuration of chiral molecules is important for their function1,2.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41557-024-01504-1.
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