Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased food production and reduced water use through optimized crop distribution

A Publisher Correction to this article was published on 09 November 2017

This article has been updated

Abstract

Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential annual water savings from redistributing major crops across currently cultivated lands.
Fig. 2: Global crop-specific changes in consumptive water use, nutrient production and feed supply due to redistributing crops in currently cultivated lands.
Fig. 3: Spatial distribution of increases in calorie and protein production from crop redistribution.
Fig. 4: Ratio of total crop water demand to renewable water availability.

Similar content being viewed by others

Change history

  • 09 November 2017

    Owing to a technical error, this Article was published a day later than stated. The correct date of publication is 7 November 2017; all versions of the Article have now been corrected accordingly.

References

  1. Wackernagel, M. et al. Tracking the ecological overshoot of the human economy. Proc. Natl Acad. Sci. USA 99, 9266–9271 (2002).

    Article  Google Scholar 

  2. Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

    Article  Google Scholar 

  3. Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 736 (2015).

    Article  Google Scholar 

  4. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  Google Scholar 

  5. Ray, D. K. & Foley, J. A. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 044041 (2013).

    Article  Google Scholar 

  6. Davis, K. F., D’Odorico, P. & Rulli, M. C. Moderating diets to feed the future. Earth Future 2, 559–565 (2014).

    Article  Google Scholar 

  7. Davis, K. F. et al. Water limits to closing yield gaps. Adv. Water Res. 99, 67–75 (2017).

    Article  Google Scholar 

  8. Davis, K. F. et al. Meeting future food demand with current agricultural resources. Glob. Environ. Change 39, 125–132 (2016).

    Article  Google Scholar 

  9. van Ittersum, M. K. et al. Can sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964–14969 (2016).

    Article  Google Scholar 

  10. Porkka, M., Gerten, D., Schaphoff, S., Siebert, S. & Kummu, M. Causes and trends of water scarcity in food production. Environ. Res. Lett. 11, 015001 (2016).

    Article  Google Scholar 

  11. Munia, H. et al. Water stress in global transboundary river basins: significance of upstream water use on downstream stress. Environ. Res. Lett. 11, 014002 (2016).

    Article  Google Scholar 

  12. Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    Article  Google Scholar 

  13. Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article  Google Scholar 

  14. Rulli, M. C., Bellomi, D., Cazzoli, A., De Carolis, G. & D’Odorico, P. The water-land-food nexus of first-generation biofuels. Sci. Rep. 6, 22521 (2016).

    Article  Google Scholar 

  15. Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    Article  Google Scholar 

  16. Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).

    Article  Google Scholar 

  17. Brauman, K. A., Richter, B. D., Postel, S., Malsy, M. & Flörke, M. Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa 4, 000083 (2016).

    Google Scholar 

  18. Elliot, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).

    Article  Google Scholar 

  19. Wada, Y., Gleeson, T. & Esnault, L. Wedge approach to water stress. Nat. Geosci. 7, 615–617 (2014).

    Article  Google Scholar 

  20. Tarjuelo, J. M., de Juan, J. A., Valiente, M. & García, P. Model for optimal cropping patterns within the farm based on crop water production functions and irrigation uniformity II: a case study of irrigation scheduling in Albacete, Spain. Agric. Water Manag. 31, 145–163 (1996).

    Article  Google Scholar 

  21. Cooley, H., Christian-Smith, J. & Gleick, P. More with Less: Agricultural Water Conservation and Efficiency in California – A Special Focus on the Delta (Pacific Institute, Oakland, 2008).

    Google Scholar 

  22. Devineni, N., Perveen, S. & Lall, U. Shifting Crops, Saving Water (Columbia Water Center, The Earth Institute, 2011).

  23. Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environ. Res. Lett. 8, 024030 (2013).

    Article  Google Scholar 

  24. Jägermeyr, J. et al. Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrol. Earth. Syst. Sci. 19, 3073–3091 (2015).

    Article  Google Scholar 

  25. Jalava, M., Kummu, M., Porkka, M., Siebert, S. & Varis, O. Diet change—a solution to reduce water use? Environ. Res. Lett. 9, 091003 (2014).

    Article  Google Scholar 

  26. Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Tot. Environ. 438, 477–489 (2012).

    Article  Google Scholar 

  27. Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwat. Biol. 55, 147–170 (2009).

    Article  Google Scholar 

  28. Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).

    Article  Google Scholar 

  29. Suweis, S., Carr, J. A., Maritan, A., Rinaldo, A. & D’Odorico, P. Resilience and reactivity of global food security. Proc. Natl Acad. Sci. USA 112, 6902–6907 (2015).

    Article  Google Scholar 

  30. Gephart, J. A. et al. The environmental cost of subsistence: Optimizing diets to minimize footprints. Sci. Tot. Environ. 553, 120–127 (2016).

    Article  Google Scholar 

  31. Phalan, B. et al. How can higher-yield farming help to spare nature? Science 351, 450–451 (2016).

    Article  Google Scholar 

  32. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    Article  Google Scholar 

  33. Walker, B. & Salt, D. Resilience Thinking (Island, Washington DC, 2006).

    Google Scholar 

  34. Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016).

    Article  Google Scholar 

  35. FAOSTAT Database (FAO, accessed 3 December 2016); http://www.fao.org/faostat.

  36. Global Agro‐ecological Zones (GAEZ) v3.0 (IIASA/FAO, 2012).

  37. Rulli, M. C. & D’Odorico, P. Food appropriation through large scale land acquisitions. Environ. Res. Lett. 9, 064030 (2014).

    Article  Google Scholar 

  38. Smith, M. R., Micha, R., Golden, C. D., Mozaffarian, D. & Myers, S. S. Global Expanded Nutrient Supply (GENuS) Model: A new method for estimating the global dietary supply of nutrients. PLoS ONE 11, e0146976 (2016).

    Article  Google Scholar 

  39. New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Article  Google Scholar 

  40. Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    Article  Google Scholar 

  41. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Zeit. 15, 259–263 (2006).

    Article  Google Scholar 

  42. Harmonized World Soil Database v.1.2 (FAO/IIASA, 2012).

  43. Global Map of Monthly Reference Evapotranspiration – 10 Arc Minutes (FAO, accessed 18 April 2017).

  44. Allen, R.G., Pereira, L.S., Raes, D. & Smith, M. Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements Irrigation and Drainage Paper 56 (FAO, 1998).

  45. Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–207 (2010).

    Article  Google Scholar 

  46. Hoogeveen, J., Faurès, J.-M., Peiser, L., Burke, J. & van de Giesen, N. GlobWat – a global water balance model to assess water use in irrigated agriculture. Hydrol. Earth Syst. Sci. 19, 3829–3844 (2015).

    Article  Google Scholar 

  47. Wilks, D. S. & Wilby, R. L. The weather generation game: a review of stochastic weather models. Prog. Phys. Geogr. 23, 329–357 (1999).

    Article  Google Scholar 

  48. Soil Conservation Service A Method for Estimating Volume and Rate of Runoff in Small Watersheds Report No. SCS-TP-149 (US Department of Agriculture, 1968).

  49. Tuninetti, M., Tamea, S., D’Odorico, P., Laio, F. & Ridolfi, L. Global sensitivity of high-resolution estimates of crop water footprint. Water Resour. Res. 51, 8257–8272 (2015).

    Article  Google Scholar 

  50. How Spline with Barriers Works (Environmental Systems Research Institute, 2017): http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-spline-with-barriers-works.htm.

Download references

Acknowledgements

We thank M. R. Smith for providing information on crop nutrient content. We thank J. Gephart for her useful input regarding optimization approach. This work was supported by The Nature Conservancy’s NatureNet Science Fellows programme.

Author information

Authors and Affiliations

Authors

Contributions

K.F.D., A.S., M.C.R. and P.D. designed the experiment. K.F.D. and A.S. performed the analysis. K.F.D., M.C.R. and P.D. wrote the paper.

Corresponding author

Correspondence to Kyle Frankel Davis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41561-017-0021-4.

Electronic supplementary material

Supplementary Information

Supplementary Figures

Supplementary Information

Supplementary Tables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, K.F., Rulli, M.C., Seveso, A. et al. Increased food production and reduced water use through optimized crop distribution. Nature Geosci 10, 919–924 (2017). https://doi.org/10.1038/s41561-017-0004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-017-0004-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing