Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxygenation as a driver of the Great Ordovician Biodiversification Event

Abstract

The largest radiation of Phanerozoic marine animal life quadrupled genus-level diversity towards the end of the Ordovician Period about 450 million years ago. A leading hypothesis for this Great Ordovician Biodiversification Event is that cooling of the Ordovician climate lowered sea surface temperatures into the thermal tolerance window of many animal groups, such as corals. A complementary role for oxygenation of subsurface environments has been inferred based on the increasing abundance of skeletal carbonate, but direct constraints on atmospheric O2 levels remain elusive. Here, we use high-resolution paired bulk carbonate and organic carbon isotope records to determine the changes in isotopic fractionation between these phases throughout the Ordovician radiation. These results can be used to reconstruct atmospheric O2 levels based on the O2-dependent fractionation of carbon isotopes by photosynthesis. We find a strong temporal link between the Great Ordovician Biodiversification Event and rising O2 concentrations, a pattern that is corroborated by O2 models that use traditional carbon–sulfur mass balance. We conclude that that oxygen levels probably played an important role in regulating early Palaeozoic biodiversity levels, even after the Cambrian Explosion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isotope data used to model Ordovician atmospheric O2 and CO2.
Fig. 2: Model estimates of atmospheric O2 using the GEOCARB and photosynthetic fractionation approaches.
Fig. 3: Long-term biodiversity curves.

Similar content being viewed by others

References

  1. Sepkoski, J. J. J. The Ordovician radiations: diversification and extinction shown by global genus-level taxonomic data. In Ordovician Odyssey Short Papers for the Seventh Int. Symp. on the Ordovician System 393–396 (SEPM, 1995).

  2. Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G. The Great Ordovician Biodiversification Event (Columbia Univ. Press, 2004).

  3. Servais, T., Owen, A. W., Harper, D. A. T., Kröger, B. & Munnecke, A. The Great Ordovician Biodiversification Event (GOBE): The palaeoecological dimension. Palaeogeogr. Palaeoclimatol. Palaeoecol. 294, 99–119 (2010).

    Article  Google Scholar 

  4. Miller, A. I. in Earth and Life (ed. Talent, J. A.) 381–394 (Springer, 2012).

  5. Harper, D. A. T., Zhan, R.-B. & Jin, J. The Great Ordovician Biodiversification Event: Reviewing two decades of research on diversity’s big bang illustrated by mainly brachiopod data. Palaeoworld 24, 75–85 (2015).

    Article  Google Scholar 

  6. Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C. & Nicoll, R. S. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321, 550–554 (2008).

    Article  Google Scholar 

  7. Pruss, S. B., Finnegan, S., Fischer, W. W. & Knoll, A. H. Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia. Palaios 25, 73–84 (2010).

    Article  Google Scholar 

  8. Berner, R. A., VandenBrooks, J. M. & Ward, P. D. Oxygen and evolution. Science 316, 557–558 (2007).

    Article  Google Scholar 

  9. Saltzman, M. R., Edwards, C. T., Adrain, J. M. & Westrop, S. R. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology 43, 807–810 (2015).

    Article  Google Scholar 

  10. Droser, M. L. & Bottjer, D. J. Trends and patterns of Phanerozoic ichnofabrics. Annu. Rev. Earth Planet. Sci. 21, 205–225 (1993).

    Article  Google Scholar 

  11. Sperling, E. A. et al. Oxygen, ecology, and the Cambrian radiation of animals. Proc. Natl Acad. Sci. USA 110, 13446–51 (2013).

    Article  Google Scholar 

  12. Swanson-Hysell, N. L. & Macdonald, F. A. Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology 45, 719–725 (2017).

    Google Scholar 

  13. Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. USA 113, 9704–9709 (2016).

    Article  Google Scholar 

  14. Poulsen, C. J., Tabor, C. & White, J. D. Atmospheric oxygen concentrations. Science 348, 1238–1242 (2015).

    Article  Google Scholar 

  15. Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: A new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    Article  Google Scholar 

  16. Berner, R. A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    Article  Google Scholar 

  17. Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 309, 603–606 (2009).

    Article  Google Scholar 

  18. Algeo, T. J. & Ingall, E. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 130–155 (2007).

    Article  Google Scholar 

  19. Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).

    Article  Google Scholar 

  20. Berner, R. A. et al. Isotope fractionation and atmospheric oxygen: Implications for phanerozoic O2 evolution. Science 287, 1630–1633 (2000).

    Article  Google Scholar 

  21. Bidigare, R. R. et al. Consistent fractionation of 13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Glob. Biogeochem. Cycles 11, 279–292 (1997).

    Article  Google Scholar 

  22. Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998).

    Article  Google Scholar 

  23. Edwards, C. T. & Saltzman, M. R. Paired carbon isotopic analysis of Ordovician bulk carbonate (δ13Ccarb) and organic matter (δ13Corg) spanning the Great Ordovician Biodiversification Event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 458, 102–117 (2016).

    Article  Google Scholar 

  24. Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6, 185–198 (1992).

    Article  Google Scholar 

  25. Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999).

    Article  Google Scholar 

  26. Pancost, R. D. et al. Reconstructing Late Ordovician carbon cycle variations. Geochim. Cosmochim. Acta 105, 433–454 (2013).

    Article  Google Scholar 

  27. Joachimski, M. M., Pancost, R. D., Freeman, K. H., Ostertag-Henning, C. & Buggisch, W. Carbon isotope geochemistry of the Frasnian–Famennian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 181, 91–109 (2002).

    Article  Google Scholar 

  28. Pancost, R. D., Freeman, K. H. & Wakeham, S. G. Controls on the carbon-isotope compositions of compounds in Peru surface waters. Org. Geochem. 30, 319–340 (1999).

    Article  Google Scholar 

  29. Pope, M. C. & Steffen, J. B. Widespread, prolonged late Middle to Late Ordovician upwelling in North America: a proxy record of glaciation? Geology 31, 63–66 (2003).

    Article  Google Scholar 

  30. Servais, T. et al. The onset of the “Ordovician Plankton Revolution” in the late Cambrian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 458, 12–28 (2016).

    Article  Google Scholar 

  31. Naafs, B. D. A. et al. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nat. Geosci. 135–139 (2016).

  32. Berner, R. A. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci. 306, 295–302 (2006).

    Article  Google Scholar 

  33. Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Goddéris, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).

    Article  Google Scholar 

  34. Beerling, D. J. et al. The influence of Carboniferous palaeo-atmospheres on plant function: an experimental and modelling assessment. Phil. Trans. R. Soc. B 353, 131–140 (1998).

    Article  Google Scholar 

  35. Henderiks, J. & Pagani, M. Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth Planet. Sci. Lett. 269, 575–583 (2008).

    Article  Google Scholar 

  36. Melchin, M. J., Mitchell, C. E., Holmden, C. & Štorch, P. Environmental changes in the Late Ordovician–early Silurian: Review and new insights from black shales and nitrogen isotopes. Geol. Soc. Am. Bull. 125, 1635–1670 (2013).

    Article  Google Scholar 

  37. Jones, D. S. & Fike, D. A. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate–pyrite δ34S. Earth Planet. Sci. Lett. 363, 144–155 (2013).

    Article  Google Scholar 

  38. Alroy, J. Accurate and precise estimates of origination and extinction rates. Paleobiology 40, 374–397 (2014).

    Article  Google Scholar 

  39. Harper, D. A. T. et al. Biodiversity, biogeography and phylogeography of Ordovician rhynchonelliform brachiopods. Mem. Geol. Soc. Lond. 38, 127–144 (2013).

    Article  Google Scholar 

  40. Trubovitz, S. & Stigall, A. L. Synchronous diversification of Laurentian and Baltic rhynchonelliform brachiopods: Implications for regional versus global triggers of the Great Ordovician Biodiversification Event. Geology 44, 743–746 (2016).

    Article  Google Scholar 

  41. Graham, J. B., Dudley, R., Aguilar, N. M. & Gans, C. Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375, 117–120 (1995).

    Article  Google Scholar 

  42. Young, S. A., Saltzman, M. R., Ausich, W. I., Desrochers, A. & Kaljo, D. Did changes in atmospheric CO2 coincide with latest Ordovician glacial-interglacial cycles? Palaeogeogr. Palaeoclimatol. Palaeoecol. 296, 376–388 (2010).

    Article  Google Scholar 

  43. Jones, D. S. et al. Terminal Ordovician carbon isotope stratigraphy and glacioeustatic sea-level change across Anticosti Island (Québec, Canada). Geol. Soc. Am. Bull. 123, 1645–1664 (2011).

    Article  Google Scholar 

  44. Rohrssen, M., Love, G. D., Fischer, W., Finnegan, S. & Fike, D. A. Lipid biomarkers record fundamental changes in the microbial community structure of tropical seas during the Late Ordovician Hirnantian glaciation. Geology 41, 127–130 (2013).

    Article  Google Scholar 

  45. Brenchley, P. J., Carden, G. A. F. & Marshall, J. D. Environmental changes assoicated with the “first strike” of the Late Ordovician mass extinction. Mod. Geol. 20, 69–82 (1995).

    Google Scholar 

  46. Pohl, A., Donnadieu, Y., Le Hir, G. & Ferreira, D. The climatic significance of Late Ordovician-early Silurian black shales. Paleoceanography 32, 397–423 (2017).

    Article  Google Scholar 

  47. Kampschulte, A. & Strauss, H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem. Geol. 204, 255–286 (2004).

    Article  Google Scholar 

  48. Saltzman, M. R. et al. Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution. Bull. Geol. Soc. Am. 126, 1551–1568 (2014).

    Article  Google Scholar 

  49. Bergström, S.  M., Young, S. & Schmitz, B. Katian (Upper Ordovician) δ13C chemostratigraphy and sequence stratigraphy in the United States and Baltoscandia: A regional comparison. Palaeogeogr. Palaeoclimatol. Palaeoecol. 296, 217–234 (2010).

    Article  Google Scholar 

  50. Gouldey, J.  C., Saltzman, M.  R., Young, S.  A. & Kaljo, D. Strontium and carbon isotope stratigraphy of the Llandovery (Early Silurian): Implications for tectonics and weathering. Palaeogeogr. Palaeoclimatol. Palaeoecol. 296, 264–275 (2010).

    Article  Google Scholar 

  51. Laporte, D.  F. et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 182–195 (2009).

    Article  Google Scholar 

  52. Young, S.  A., Saltzman, M.  R., Bergström, S.  M., Leslie, S.  A. & Xu, C. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian–Katian) carbonates in North America and China: Implications for paleoceanographic change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 270, 166–178 (2008).

    Article  Google Scholar 

  53. Buggisch, W., Keller, M. & Lehnert, O. Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 195, 357–373 (2003).

    Article  Google Scholar 

  54. Azmy, K. & Lavoie, D. High-resolution isotope stratigraphy of the Lower Ordovician St. George Group of western Newfoundland, Canada: Implications for global correlation. Can. J. Earth Sci. 423, 403–423 (2009).

    Article  Google Scholar 

  55. Pancost, R.  D., Freeman, K.  H. & Patzkowsky, M.  E. Organic-matter source variation and the expression of a late Middle Ordovician carbon isotope excursion. Geology 27, 1015–1018 (1999).

    Article  Google Scholar 

  56. Metzger, J.  G. & Fike, D.  A. Techniques for assessing spatial heterogeneity of carbonate δ13C values: Implications for craton-wide isotope gradients. Sedimentology 60, 1405–1431 (2013).

    Google Scholar 

  57. Edwards, C. T. Carbon, Sulfur, and Strontium Isotope Stratigraphy of the Lower-Middle Ordovician, Great Basin, USA: Implications for Oxygenation andCauses of Global Biodiversification. PhD thesis, Ohio State Univ. (2014).

Download references

Acknowledgements

J. Houghton is thanked for valuable discussions in improving earlier versions of this paper. This paper is a contribution to IGCP Projects 591 and 653. Funding was provided in part by the Evolving Earth Foundation (CTE), a Geological Society of America Graduate Student Research Grant (CTE), a Paleontological Society Student Research Grant (CTE) and NSF Grants EAR-0819832 and EAR-0745452 (M.R.S.).

Author information

Authors and Affiliations

Authors

Contributions

This project was conceived by C.T.E. and M.R.S. with input from D.L.R. and D.A.F. Isotopic data preparation and analysis was done by C.T.E. Modelling was conducted by C.T.E. with input from D.L.R. The manuscript was developed by C.T.E. and received equal contributions from all authors on editing the final manuscript.

Corresponding author

Correspondence to Cole T. Edwards.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary discussion and figures

Supplementary Table 1

Binned isotope data used for GEOCARB and model results of O2 and CO2

Supplementary Table 2

Isotope data and atmospheric O2 using the photosynthetic fractionation effect approach

Supplementary Table 3

New δ13C and δ34S data used in the photosynthetic fractionation effect and GEOCARB models

Supplementary Table 4

Taxonomic data used to construct the biodiversity curve

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, C.T., Saltzman, M.R., Royer, D.L. et al. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nature Geosci 10, 925–929 (2017). https://doi.org/10.1038/s41561-017-0006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-017-0006-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing