Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Indian Ocean floor deformation induced by the Reunion plume rather than the Tibetan Plateau

Abstract

The central Indian Ocean is considered the archetypal diffuse oceanic plate boundary. Data from seismic stratigraphy and deep-sea drilling indicate that the contractional deformation of the Indian Ocean lithosphere commenced at 15.4–13.9 Ma, but experienced a sharp increase at 8–7.5 Ma. This has been maintained through to the present day, with over 80% of the shortening accrued over the past 8 Myr. Here we build on previous efforts to refine the form, timing and magnitude of the regional plate-motion changes by mitigating the noise in reconstructed Indian and Capricorn plate motions relative to Somalia. Our noise-mitigated reconstructions tightly constrain the significant speed up of the Capricorn plate over the past 8 Myr and demonstrate that the history of the Indian Ocean floor deformation cannot be explained without this plate-motion change. We propose that the Capricorn plate-motion change is driven by an increase in the eastward-directed asthenospheric flow associated with the adjacent Reunion plume, and quantitatively demonstrate the viability of this hypothesis. Our inference is supported by volcanic age distributions along the Reunion hotspot track, the anomalously high residual bathymetry of the Central Indian Ridge, full-waveform seismic tomography of the underlying asthenosphere and geochemical observations from the Central Indian Ridge. These findings challenge the commonly accepted link between the deformation of the Indian Ocean floor and the Tibetan Plateau’s orogenic evolution and demonstrate that temporal variations in upwelling mantle flow can drive major tectonic events at the Earth’s surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topography/bathymetry of the central Indian Ocean region.
Fig. 2: Noise-mitigated analyses of IN/SO and CP/SO Neogene plate kinematics.
Fig. 3: History of shortening within the central Indian Ocean.
Fig. 4: Mechanism that drives the 8 Ma CP-motion change.

Similar content being viewed by others

References

  1. Stein, S. & Okal, E. A. Seismicity and tectonics of the Ninetyeast Ridge area: evidence for internal deformation of the Indian plate. J. Geophys. Res. 83, 2233–2245 (1978).

    Article  Google Scholar 

  2. Bull, J. M. & Scrutton, R. A. Seismic reflection images of intraplate deformation, central Indian Ocean, and their tectonic significance. J. Geol. Soc. Lond. 149, 955–966 (1992).

    Article  Google Scholar 

  3. Krishna, K. S. et al. Periodic deformation of oceanic crust in the central Indian Ocean. J. Geophys. Res. 103, 17859–17875 (1998).

    Article  Google Scholar 

  4. Curray, J. R., Emmel, F. J. & Moore, D. G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes. Mar. Pet. Geol. 19, 1191–1223 (2002).

    Article  Google Scholar 

  5. Wiens, D. A. et al. A diffuse plate boundary model for Indian Ocean tectonics. Geophys. Res. Lett. 12, 429–432 (1985).

    Article  Google Scholar 

  6. Gordon, R. G., Stein, S., DeMets, C. & Argus, D. F. Statistical tests for closure of plate motion circuits. Geophys. Res. Lett. 14, 587–590 (1987).

    Article  Google Scholar 

  7. Royer, J. Y. & Chang, T. Evidence for relative motions between the Indian and Australian plates during the last 20 m.y. from plate tectonic reconstructions: implications for the deformation of the Indo–Australian plate. J. Geophys. Res. 96, 11779–11802 (1991).

    Article  Google Scholar 

  8. DeMets, C., Gordon, R. G. & Vogt, P. Location of the Africa–Australia–India triple junction and motion between the Australian and Indian plates: results from an aeromagnetic investigation of the Central Indian and Carlsberg ridges. Geophys. J. Int. 119, 893–930 (1994).

    Article  Google Scholar 

  9. Royer, J. Y. & Gordon, R. G. The motion and boundary between the Capricorn and Australian plates. Science 277, 1268–1274 (1997).

    Article  Google Scholar 

  10. Gordon, R. G. The plate tectonic approximation: plate nonrigidity, diffuse plate boundaries, and global plate reconstructions. Annu. Rev. Earth Planet. Sci. 26, 615–642 (1998).

    Article  Google Scholar 

  11. Zatman, S., Gordon, R. G. & Richards, M. A. Analytic models for the dynamics of diffuse oceanic plate boundaries. Geophys. J. Int. 145, 145–156 (2001).

    Article  Google Scholar 

  12. Gordon, R. G., DeMets, C. & Royer, J. Y. Evidence for long-term diffuse deformation of the lithosphere of the equatorial Indian Ocean. Nature 395, 370–374 (1998).

    Article  Google Scholar 

  13. DeMets, C., Gordon, R. G. & Royer, J.-Y. Motion between the Indian, Capricorn and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed lithospheric deformation in the equatorial Indian Ocean. Geophys. J. Int. 161, 445–468 (2005).

    Article  Google Scholar 

  14. Krishna, K. S., Bull, J. M. & Scrutton, R. A. Early (pre-8 Ma) fault activity and temporal strain accumulation in the central Indian Ocean. Geology 37, 227–230 (2009).

    Article  Google Scholar 

  15. Bull, J. M., DeMets, C., Krishna, K. S., Sanderson, D. J. & Merkouriev, S. Reconciling plate kinematic and seismic estimates of lithospheric convergence in the central Indian Ocean. Geology 38, 307–310 (2010).

    Article  Google Scholar 

  16. Molnar, P., England, P. & Martinod, J. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon. Rev. Geophys. 31, 357–396 (1993).

    Article  Google Scholar 

  17. Weissel, J. K., Anderson, R. N. & Geller, C. A. Deformation of the Indo–Australian plate. Nature 287, 284–291 (1980).

    Article  Google Scholar 

  18. Iaffaldano, G., Bunge, H.-P. & Dixon, T. H. Feedback between mountain belt growth and plate convergence. Geology 34, 893–896 (2006).

    Article  Google Scholar 

  19. Copley, A., Avouac, J.-P. & Royer, J.-Y. India–Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J. Geophys. Res. 115, B03410 (2010).

    Article  Google Scholar 

  20. Molnar, P. & Stock, J. M. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics 28, TC3001 (2009).

    Article  Google Scholar 

  21. Rowley, D. B. & Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006).

    Article  Google Scholar 

  22. Priestley, K., Jackson, J. & McKenzie, D. Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophys. J. Int. 172, 345–362 (2008).

    Article  Google Scholar 

  23. Merkouriev, S. & DeMets, C. Constraints on Indian plate motion since 20 Ma from dense Russian magnetic data: implications for Indian plate dynamics. Geochem. Geophys. Geosystems 7, Q02002 (2006).

    Article  Google Scholar 

  24. Iaffaldano, G., Bodin, T. & Sambridge, M. Slow-downs and speed-ups of India–Eurasia convergence since ~20 Ma: data-noise, uncertainties and dynamic implications. Earth Planet. Sci. Lett. 367, 146–156 (2013).

    Article  Google Scholar 

  25. Iaffaldano, G., Bodin, T. & Sambridge, M. Reconstructing plate-motion changes in the presence of finite-rotations noise. Nat. Commun. 3, 1048 (2012).

    Article  Google Scholar 

  26. Iaffaldano, G., Hawkins, R., Bodin, T. & Sambridge, M. REDBACK: open-source software for efficient noise-reduction in plate kinematic reconstructions. Geochem. Geophys. Geosystems 15, 1663–1670 (2014).

    Article  Google Scholar 

  27. Torsvik, T. H., Steinberger, B., Gurnis, M. & Gaina, C. Plate tectonics and net lithosphere rotation over the past 150 My. Earth Planet. Sci. Lett. 291, 106–112 (2010).

    Article  Google Scholar 

  28. Iaffaldano, G. & DeMets, C. Late Neogene changes in North America and Antarctica absolute plate motions inferred from the Mid-Atlantic and Southwest Indian Ridges spreading histories. Geophys. Res. Lett. 43, 8466–8472 (2016).

    Article  Google Scholar 

  29. Harrison, T. M., Copenald, P., Kidd, W. S. F. & Yin, A. Raising Tibet. Science 255, 1663–1670 (1992).

    Article  Google Scholar 

  30. Hoeink, T. & Lenardic, A. Three-dimensional mantle convection simulations with a low-viscosity asthenosphere and the relationship between heat flow and the horizontal length scale of convection. Geophys. Res. Lett. 35, L10304 (2008).

    Google Scholar 

  31. Hoeink, T. & Lenardic, A. Long wavelength convection, Poiseuille–Couette flow in the low-viscosity asthenosphere and the strength of plate margins. Geophys. J. Int. 180, 23–33 (2010).

    Article  Google Scholar 

  32. Natarov, S. I. & Conrad, C. P. The role of Poiseuille flow in creating depth-variation of asthenospheric shear. Geophys. J. Int. 190, 1297–1310 (2012).

    Article  Google Scholar 

  33. Duncan, R. & Richards, M. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys. 29, 31–50 (1991).

    Article  Google Scholar 

  34. Duncan, R. & Storey, M. in The Life Cycle of Indian Ocean Hotspots, Vol. 29 (eds Duncan, R. A. et al.) 91–103 (American Geophysical Union, Washington, DC, 1992).

  35. Morgan, W. J. Rodriguez, Darwin, Amsterdam, …, a second type of hotspot island. J. Geophys. Res. 83, 5355–5360 (1978).

    Article  Google Scholar 

  36. Torsvik, T. H. et al. A Precambrian microcontinent in the Indian Ocean. Nat. Geosci. 6, 223–227 (2013).

    Article  Google Scholar 

  37. French, S., Lekic, V. & Romanowicz, B. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342, 227–230 (2013).

    Article  Google Scholar 

  38. Murton, B. M., Tindle, A. E., Milton, J. A. & Sauter, D. Heterogeneity in southern central Indian ridge MORB: implications for ridge–hot spot interaction. Geochem. Geophys. Geosystems 6, Q03E20 (2005).

    Article  Google Scholar 

  39. Paulson, A. & Richards, M. A. On the resolution of radial viscosity structure in modelling long-wavelength postglacial rebound data. Geophys. J. Int. 179, 1516–1526 (2009).

    Article  Google Scholar 

  40. Iaffaldano, G. & Lambeck, K. Pacific plate-motion change at the time of the Hawaiian–Emperor bend constrains the viscosity of Earth’s asthenosphere. Geophys. Res. Lett. 41, 3398–3406 (2014).

    Article  Google Scholar 

  41. Cande, S. C. & Stegman, D. R. Indian and African plate motions driven by the push force of the Reunion plume head. Nature 475, 47–52 (2011).

    Article  Google Scholar 

  42. van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V. & Gassmöller, R. Acceleration and deceleration of India–Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. 116, B06101 (2011).

    Google Scholar 

  43. Ballmer, M. D., Conrad, C. P., Smith, E. I. & Harmon, N. Non-hotspot volcano chains produced by migration of shear-driven upwelling toward the East Pacific Rise. Geology 41, 479–482 (2013).

    Article  Google Scholar 

  44. Hawley, W. B., Allen, R. M. & Richards, M. A. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate. Science 353, 1406–1408 (2016).

    Article  Google Scholar 

  45. Stotz, I. L., Iaffaldano, G. & Davies, D. R. Pressure-driven Poiseuille flow: a major component of the torque-balance governing Pacific plate motion. Geophys. Res. Lett. 45, 117–125(2018).

    Article  Google Scholar 

  46. Sleep, N. H. Hotspots and mantle plumes: some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

    Article  Google Scholar 

  47. Malinverno, A. & Briggs, V. A. Expanded uncertainty quantification in inverse problems: hierarchical Bayes and empirical Bayes. Geophysics 69, 1005–1016 (2004).

    Article  Google Scholar 

  48. Sambridge, M., Gallagher, K., Jackson, A. & Rickwood, P. Trans-dimensional inverse problems, model comparison and the evidence. Geophys. J. Int. 167, 528–542 (2006).

    Article  Google Scholar 

  49. Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 (1997).

    Article  Google Scholar 

  50. Gibbons, A. D., Zahirovic, S., Muller, R. D., Whittaker, J. M. & Yatheesh, V. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central–eastern Tethys. Gondwana Res. 28, 451–492 (2015).

    Article  Google Scholar 

  51. Stein, C. A. & Stein, S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–129 (1992).

    Article  Google Scholar 

  52. Chapple, W. M. & Tullis, T. E. Evaluation of the forces that drive the plates. J. Geophys. Res. 82, 1967–1984 (1977).

    Article  Google Scholar 

  53. Iaffaldano, G. & Bunge, H.-P. Rapid plate motion variations: observations serving geodynamic interpretation. Annu. Rev. Earth Planet. Sci. 43, 571–592 (2015).

    Article  Google Scholar 

  54. Turcotte, D. & Schubert, G. Geodynamics (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  55. Watts, A. B. Isostasy and Flexure of the Lithosphere (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

Download references

Acknowledgements

G.I. acknowledges support from the Department of Geosciences and Natural Resource Management at the University of Copenhagen. D.R.D. acknowledges support from the Australian Research Council, under grant nos FT140101262 and DP170100058. The authors are grateful to R. Gordon and A. Whitchurch for constructive comments that improved this study.

Author information

Authors and Affiliations

Authors

Contributions

G.I. conceived the study. G.I. and C.D. undertook the noise-mitigation analysis. G.I. performed the calculations of lithosphere shortening, residual bathymetry and torque changes. D.R.D. undertook the analysis of volcanism along the Reunion hotspot track and tied in associated interdisciplinary observational constraints. All the authors contributed to discussing and writing the paper.

Corresponding author

Correspondence to G. Iaffaldano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Supplementary Tables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iaffaldano, G., Davies, D.R. & DeMets, C. Indian Ocean floor deformation induced by the Reunion plume rather than the Tibetan Plateau. Nature Geosci 11, 362–366 (2018). https://doi.org/10.1038/s41561-018-0110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0110-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing