Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Archaean continental spreading inferred from seismic images of the Yilgarn Craton

Abstract

On the early Earth, oceanic plateaux similar to present-day Iceland are thought to have evolved into less dense microcontinents as they thickened by continued melt intrusion and crustal fractionation. These earliest continents may have been so weak on a hotter Earth that they collapsed laterally in response to thickening by further magmatic growth or tectonic imbrication. This continental spreading is likely to have resulted in the development of pervasive ductile strain fabrics in the deeper crust, which, if preserved, could generate seismic reflections. Here we present seismic images from the ancient core of the Archaean Yilgarn Craton of Australia that reveal shallowly dipping to horizontal reflections that pervade the middle and lower crust. We interpret these reflective fabrics as the result of widespread lateral crustal flow during the late stage of craton evolution approximately 2.66 to 2.61 billion years ago, which coincided with the widespread intrusion of high-temperature crustal melts, as thickened early continental crust collapsed. The consequent subsidence of large regions of the upper crust, including volcanic and sedimentary greenstone rocks, in the hanging walls of listric mid-lower crustal ductile flow fabrics caused these rocks to drop beneath the granitic melts rising towards the surface, and did not involve Rayleigh–Taylor instabilities within a mostly mobile crust.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major terranes of the Archaean Yilgarn Craton in Australia with location of seismic lines.
Fig. 2: Seismic section from line 10GA-YU2 across the northeastern Youanmi Terrane.
Fig. 3: Seismic images showing reflections within greenstone rocks extending beneath younger granitoid plutons.
Fig. 4: Continental spreading and greenstone subsidence due to lower crustal flow.

Similar content being viewed by others

References

  1. Bailey, R. Gravity-driven continental overflow and Archaean tectonics. Nature 398, 413–415 (1999).

    Article  Google Scholar 

  2. Rey, P. F. & Houseman, G. in Analogue and Numerical Modelling of Crustal-Scale Processes Spec. Pub. 253 (eds Buitter, S. J. H. & Schreuers, G.) 153–167 (Geological Society, London, 2006).

  3. Rey, P. F., Coltice, C. & Flament, N. Spreading continents kick-started plate tectonics. Nature 513, 405–408 (2014).

    Article  Google Scholar 

  4. Flament, N., Coltice, N. & Rey, P. F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008).

    Article  Google Scholar 

  5. Rey, P. F. & Coltice, N. Neoarchean lithospheric strengthening and the coupling of Earth’s geochemical reservoirs. Geology 36, 635–638 (2008).

    Article  Google Scholar 

  6. Flament, N., Rey, P. F., Coltice, N., Dromart, G. & Olivier, N. Lower crustal flow kept Archean continental flood basalts at sea level. Geology 39, 1159–1162 (2011).

    Article  Google Scholar 

  7. Pehrsson, S. J., Chacko, T., Pilkington, M., Villeneuve, M. E. & Bethune, K. Anton terrane revisited: Late Archean exhumation of a moderate-pressure granulite terrane in the western Slave Province. Geology 28, 1075–1078 (2000).

    Article  Google Scholar 

  8. Percival, J. A. et al. in Tectonic Styles in Canada: The Lithoprobe Perspective Spec. Paper 49 (eds Percival, J. A. et al.) 321–378 (Geological Association of Canada, St. John’s, 2012).

  9. Hynes, A. & Song, Z. Variable unroofing in the western Superior Province – metamorphic evidence and possible origin. Can. J. Earth Sci. 43, 805–819 (2006).

    Article  Google Scholar 

  10. Moser, D. E., Heaman, L. M., Krogh, T. E. & Hanes, J. A. Intracrustal extension of an Archean orogeny revealed using single-grain U-Pb zircon geochronology. Tectonics 15, 1093–1109 (1996).

    Article  Google Scholar 

  11. Calvert, A. J., Cruden, A. R. & Hynes, A. Seismic evidence for preservation of the Uchi granite-greenstone belt by crustal-scale extension. Tectonophysics 388, 135–143 (2004).

    Article  Google Scholar 

  12. Cook, F. A., van der Velden, A. J., Hall, K. W. & Roberts, B. J. Frozen subduction in Canada’s Northwest Territories: Lithoprobe deep lithospheric reflection profiling of the western Canadian Shield. Tectonics 18, 1–24 (1999).

    Article  Google Scholar 

  13. White, D. J. et al. Images of a lower-crustal oceanic slab: direct evidence for tectonic accretion in the Archean western Superior province. Geology 31, 991–1000 (2003).

    Article  Google Scholar 

  14. Calvert, A. J. & Ludden, J. N. Archean continental assembly in the southeastern Superior Province of Canada. Tectonics 18, 412–429 (1999).

    Article  Google Scholar 

  15. Czarnota, K. et al. Geodynamics of the eastern Yilgarn Craton. Precambrian Res. 183, 175–202 (2010).

    Article  Google Scholar 

  16. Pidgeon, R. T. & Wilde, S. A. Distribution of 3.0 Ga and 2.7 Ga volcanic episodes in the Yilgarn Craton of Western Australia. Precambrian Res. 48, 309–325 (1990).

    Article  Google Scholar 

  17. Van Kranendonk, M. J., Ivanic, T. J., Wingate, M. T. D., Kirkland, C. L. & Wyche, S. Long-lived autochthonous development of the Archean Murchison Domain, and implications for Yilgarn Craton tectonics. Precambrian Res. 229, 49–92 (2013).

    Article  Google Scholar 

  18. Wyman, A. A. & Kerrich, R. Geochemical and isotopic characteristics of Youanmi Terrane volcanism: the role of mantle plumes and subduction tectonics in the western Yilgarn Craton. Aust. J. Earth Sci. 59, 671–694 (2012).

    Article  Google Scholar 

  19. Chen, S. F., Libby, J. W., Wyche, S. & Riganti, A. Kinematic nature and origin of regional-scale ductile shear zones in the central Yilgarn Craton, Western Australia. Tectonophysics 394, 139–153 (2004).

    Article  Google Scholar 

  20. Myers, J. S in Early Precambrian Processes Spec. Pub. 95 (eds Coward, M. P. & Ries, A. C.) 143–154 (Geological Society, London, 1995).

  21. Champion, D. C. & Sheraton, J. W. Geochemistry and Nd systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications for crustal growth processes. Precambrian Res. 83, 109–132 (1997).

    Article  Google Scholar 

  22. Doublier, M. P. et al. Structure and timing of Neoarchean gold mineralization in the Southern Cross district (Yilgarn Craton, Western Australia) suggest leading role of Low-Ca I-type granite intrusions. J. Struct. Geol. 67, 205–221 (2014).

    Article  Google Scholar 

  23. Costelloe, R. D. & Jones, L. E. A. in Youanmi and Southern Carnarvon Seismic and Magnetotelluric Workshop 2013 (eds Wyche, S. et al.) 1–6 (Geological Survey of Western Australia, Perth, 2014).

  24. Ivanic, T. J. et al. in Youanmi and Southern Carnarvon Seismic and Magnetotelluric Workshop 2013 (eds Wyche, S. et al.) 81–85 (Geological Survey of Western Australia, Perth, 2014).

  25. Korsch, R. J. et al. in Youanmi and Southern Carnarvon Seismic and Magnetotelluric Workshop 2013 (eds Wyche, S. et al.) 147–166 (Geological Survey of Western Australia, Perth, 2014).

  26. Reading, A. M., Kennett, B. L. N. & Goleby, B. New constraints on the seismic structure of West Australia: evidence for terrane stabilization prior to the assembly of an ancient continent. Geology 35, 379–382 (2007).

    Article  Google Scholar 

  27. Yuan, H. Secular change in Archaean crust formation recorded in Western Australia. Nat. Geosci. 8, 808–813 (2015).

    Article  Google Scholar 

  28. Zibra, I., Gessner, K., Smithies, H. R. & Peternell, M. On shearing, magmatism and regional deformation in Neoarchean granite-greenstone systems: insights from the Yilgarn Craton. J. Struct. Geol. 67, 253–267 (2014).

    Article  Google Scholar 

  29. Weinberg, R. F. & Searle, M. P. The Pangong Injection Complex, Indian Karakoram: a case of pervasive granite flow through hot viscous crust. J. Geol. Soc. Lond. 155, 883–891 (1998).

    Article  Google Scholar 

  30. Spaggiari, C. V., Wartho, J.-A. & Wilde, S. A. Proterozoic deformation in the northwest of the Archean Yilgarn Craton, Western Australia. Precambrian Res. 162, 354–384 (2008).

    Article  Google Scholar 

  31. Blewett, R. S., Czarnota, K. & Henson, P. A. Structural-event framework for the eastern Yilgarn Craton, Western Australia, and its implications for orogenic gold. Precambrian Res. 183, 203–229 (2010).

    Article  Google Scholar 

  32. Zibra, I. et al. On thrusting, regional unconformities and exhumation of high-grade greenstones in Neoarchean orogens. The case of the Waroonga Shear Zone, Yilgarn Craton. Tectonophysics 712-713, 362–395 (2017).

    Article  Google Scholar 

  33. Swager, C. P., Goleby, B. R., Drummond, B. J., Rattenbury, M. S. & Williams, P. R. Crustal structure of granite-greenstone terranes in the Eastern Goldfields, Yilgarn Craton, as revealed by seismic reflection profiling. Precambrian Res. 83, 43–56 (1997).

    Article  Google Scholar 

  34. Goleby, B. R. et al. Deep seismic reflection profiling in the Archaean northeastern Yilgarn Craton, Western Australia: implications for crustal architecture and mineral potential. Tectonophysics 388, 119–133 (2004).

    Article  Google Scholar 

  35. Chowdhury, P., Gerya, T. & Chakraborty, S. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonics Earth. Nat. Geosci. 10, 698–703 (2017).

    Article  Google Scholar 

  36. Smithies, R. H. & Champion, D. C. Geochemistry of felsic igneous alkaline rocks in the Eastern Goldfields, Yilgarn Craton, Western Australia: a result of lower crustal delamination?—Implications for Late Archaean tectonic evolution. J. Geol. Soc. Lond. 156, 561–576 (1999).

    Article  Google Scholar 

  37. Lee, C.-T. A. & Chin, E. J. Calculating melting temperatures and pressures of peridotite protoliths: implications for the origin of cratonic mantle. Earth Planet. Sci. Lett. 403, 273–286 (2014).

    Article  Google Scholar 

  38. Champion, D. C. & Cassidy, K. F. in Proc. Geoconf. (eds Bierlein, F. P. & Knox-Robinson, C. M.) 8–13 (Geoscience Australia, Canberra, 2007).

  39. Drummond, B. J. A review of crust/upper mantle structure in the Precambrian areas of Australia and implications for Precambrian crustal evolution. Precambrian Res. 40–41, 101–116 (1988).

    Article  Google Scholar 

  40. Kennett, B. L. N. & Saygin, E. The nature of the Moho in Australia from reflection profiling: a review. GeoResJ 5, 74–91 (2015).

    Article  Google Scholar 

  41. Kloppenburg, A., White, S. H. & Zegers, T. E. Structural evolution of the Warrawoona Greenstone Belt and adjoining granitoid complexes, Pilbara Craton, Australia: implications for Archaean tectonic processes. Precambrian Res. 112, 107–147 (2001).

    Article  Google Scholar 

  42. Van Kranendonk, M. J., Collins, W. J., Hickman, A. & Pawley, M. J. Critical tests of vertical vs horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Res. 131, 173–231 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

R. Costelloe and L. Jones carried out the prestack seismic processing of line YU2. We thank R. Blewett, R. Korsch and D. Champion for comments that improved an early version of this paper. The field acquisition was funded by Geoscience Australia and the Geological Survey of Western Australia. This project was supported by the Natural Sciences and Engineering Council of Canada and Geoscience Australia. M.P.D. is publishing with the permission of the CEO of Geoscience Australia.

Author information

Authors and Affiliations

Authors

Contributions

A.J.C. interpreted the seismic data and wrote most of the paper; M.P.D. interpreted the seismic data and provided the geological framework.

Corresponding author

Correspondence to Andrew J. Calvert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvert, A.J., Doublier, M.P. Archaean continental spreading inferred from seismic images of the Yilgarn Craton. Nature Geosci 11, 526–530 (2018). https://doi.org/10.1038/s41561-018-0138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0138-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing