Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widespread volcanism in the Greenland–North Atlantic region explained by the Iceland plume

Abstract

In the classical concept, a hotspot track is a line of volcanics formed as a plate moves over a stationary mantle plume. Defying this concept, intraplate volcanism in Greenland and the North Atlantic region occurred simultaneously over a wide area, particularly around 60 million years ago, showing no resemblance to a hotspot track. Here, we show that most of this volcanism can nonetheless be explained solely by the Iceland plume interacting with seafloor spreading ridges, global mantle flow and a lithosphere (the outermost rigid layer of the Earth) with strongly variable thickness. An east–west corridor of thinned lithosphere across central Greenland, as inferred from new, highly resolved tomographic images, could have formed as Greenland moved westward over the Iceland plume between 90 and 60 million years ago. Our numerical geodynamic model demonstrates how plume material may have accumulated in this corridor and in areas east and west of Greenland. Simultaneous plume-related volcanic activities starting about 62 million years ago on either side of Greenland could occur where and when the lithosphere was thin enough due to continental rifting and seafloor spreading, possibly long after the plume reached the base of the lithosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main volcanic facies linked to the North Atlantic Igneous Province, Iceland and North Atlantic opening.
Fig. 2: Lithosphere thickness at 60 Ma and present day.
Fig. 3: Arctic tomography model AMISvArc32 beneath Greenland and its surroundings.
Fig. 4: Numerical model (Model115Ma) of the Iceland plume, represented by the 100 K isosurface coloured according to melt fraction.
Fig. 5: Computed excess crustal thickness and crustal thickness based on gravity inversion.
Fig. 6: Computed plume-related melt produced in different time intervals, represented as present-day crustal thickness contribution (as in Fig. 5).

Similar content being viewed by others

Data availability

All of the input files that are required to reproduce this study are available upon request.

References

  1. Pedersen, A., Larsen, L. M., Riisager, P. & Dueholm, K. S. in The North Atlantic Igneous Province: Stratigraphy, Tectonics, Volcanic and Magmatic Processes Spec. Publ. Vol. 197 (eds Jolley, D. W, & Bell, B. R.) 157–181 (Geological Society, London, 2002).

  2. Stuart, F. M., Solveigh, L.-E., Fitton, J. G. & Ellam, R. M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003).

    Article  Google Scholar 

  3. Torsvik, T. H., Mosar, J. & Eide, E. A. Cretaceous–Tertiary geodynamics: a North Atlantic exercise. Geophys. J. Int. 146, 850–866 (2001).

    Article  Google Scholar 

  4. Graham, D. W. et al. Helium isotope composition of the early Iceland mantle plume inferred from the Tertiary picrites of West Greenland. Earth Planet. Sci. Lett. 160, 241–255 (1998).

    Article  Google Scholar 

  5. Marty, B., Upton, B. G. J. & Ellam, R. M. Helium isotopes in early Tertiary basalts, northeast Greenland: evidence for 58 Ma plume activity in the North Atlantic–Iceland volcanic province. Geology 26, 407–410 (1998).

    Article  Google Scholar 

  6. Stuart, F. M., Ellam, R. M., Harrop, P. J., Fitton, J. G. & Bell, B. R. Constraints on mantle plumes from the helium isotopic composition of basalts from the British Tertiary Igneous Province. Earth Planet. Sci. Lett. 177, 273–285 (2000).

    Article  Google Scholar 

  7. Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107 (1989).

    Article  Google Scholar 

  8. Morgan, W. J. Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94, 123–139 (1983).

    Article  Google Scholar 

  9. Gaina, C., Medvedev, S., Torsvik, T. H. & Werner, S. C. 4D Arctic: a glimpse into the structure and evolution of the Arctic in the light of new geophysical maps, plate tectonics and tomographic models. Surv. Geophys. 35, 1095–1122 (2014).

    Article  Google Scholar 

  10. Rickers, F., Fichtner, A. & Trampert, J. The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet. Sci. Lett. 367, 39–51 (2013).

    Article  Google Scholar 

  11. Ganerød, M. et al. The North Atlantic Igneous province reconstructed and its relation to the plume generation zone: the Antrim Lava Group revisited. Geophys. J. Int. 182, 183–202 (2010).

    Google Scholar 

  12. Steinberger, B. & Torsvik, T. H. A geodynamic models of plumes from the margins of large low shear velocity provinces. Geochem. Geophys. Geosyst. 13, Q01W09 (2012).

    Article  Google Scholar 

  13. Foulger, G. R. & Anderson, D. L. A cool model for the Iceland hotspot. J. Volcanol. Geotherm. Res. 141, 1–22 (2005).

    Article  Google Scholar 

  14. Korenaga, J. Mantle mixing and continental breakup magmatism. Earth Planet. Sci. Lett. 218, 463–473 (2004).

    Article  Google Scholar 

  15. Ito, G. & van Keken, P. E. in Treatise on Geophysics: Mantle Dynamics Vol. 7 (eds Schubert, G. & Bercovici, D.) 371–435 (Elsevier, Amsterdam, 2007).

  16. Meyer, R., van Wijk, J. & Gernigon, L. North Atlantic Igneous Province: A Review of Models for its Formation GSA Spec. Paper 430, 525–552 (Geological Society of America, Boulder, 2007).

  17. Wolfe, C. J., Bjarnason, I. T., VanDecar, J. C. & Solomon, S. C. Seismic structure of the Iceland mantle plume. Nature 385, 245–247 (1997).

    Article  Google Scholar 

  18. Bijwaard, H. & Spakman, W. Tomographic evidence for a narrow whole mantle plume below Iceland. Earth Planet. Sci. Lett. 166, 121–126 (1999).

    Article  Google Scholar 

  19. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article  Google Scholar 

  20. Steinberger, B., Spakman, W., Japsen, P. & Torsvik, T. H. The key role of global solid Earth processes in the late Cenozoic intensification of Greenland glaciation. Terra Nova 27, 1–8 (2015).

    Article  Google Scholar 

  21. Morgan, W. J. Rodriguez, Darwin, Amsterdam, a second type of hotspot island. J. Geophys. Res. 83, 5355–5360 (1978).

    Article  Google Scholar 

  22. Sleep, N. H. Lateral flow and ponding of starting plume material. J. Geophys. Res. 102, 10001–10012 (1997).

    Article  Google Scholar 

  23. Torsvik, T. H. et al. Continental crust beneath southeast Iceland. Proc. Natl Acad. Sci. USA 112, E1818–E1827 (2015).

    Article  Google Scholar 

  24. Mihálffy, P., Steinberger, B. & Schmeling, H. The effect of the large-scale mantle flow field on the Iceland hotspot track. Tectonophysics 447, 5–18 (2008).

    Article  Google Scholar 

  25. Bjarnason, I. T., Silver, P. G., Rümpker, G. & Solomon, S. C. Shear wave splitting across the Iceland hot spot: results from the ICEMELT experiment. J. Geophys. Res. 107, 2382 (2002).

    Article  Google Scholar 

  26. Ito, G., Dunn, R. & Li, A. The origin of shear wave splitting beneath Iceland. Geophys. J. Int. 201, 1297–1312 (2015).

    Article  Google Scholar 

  27. Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res. 117, B09101 (2012).

    Article  Google Scholar 

  28. O’Neill, C., Müller, R. D. & Steinberger, B. On the uncertainties in hotspot reconstructions, and the significance of moving hotspot reference frames. Geochem. Geophys. Geosyst. 6, Q04003 (2005).

    Google Scholar 

  29. Lawver, L. A. & Müller, R. D. Iceland hotspot track. Geology 22, 311–314 (1994).

    Article  Google Scholar 

  30. Vink, G. E. A hotspot model for Iceland and the Vøring Plateau. J. Geophys. Res. 89, 9949–9959 (1984).

    Article  Google Scholar 

  31. Morgan, W. J. in The Sea: The Oceanic Lithosphere Vol. 7 (ed. Emiliani, C.) 443–487 (Wiley, New York, 1981).

  32. Lebedev, S., Schaeffer, A. J., Fullea, J. & Pease, V. in Circum-Arctic Lithosphere Evolution Spec. Publ. Vol. 460 (eds Pease, V. & Coakley, B.) 419–440 (Geological Society, London, 2018).

  33. Torsvik, T. H. & Cocks, L. R. M. Earth History and Paleogeography (Cambridge Univ. Press, Cambridge, 2017).

  34. White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989).

    Article  Google Scholar 

  35. Gassmöller, R., Dannberg, J., Bredow, E., Steinberger, B. & Torsvik, T. H. Major influence of plume–ridge interaction, lithosphere thickness variations and global mantle flow on hotspot volcanism—the example of Tristan. Geochem. Geophys. Geosyst. 17, 1454–1479 (2016).

    Article  Google Scholar 

  36. Bredow, E., Steinberger, B., Gassmöller, R. & Dannberg, J. How plume–ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track. Geochem. Geophys. Geosyst. 18, 2930–2948 (2017).

    Article  Google Scholar 

  37. Yang, T. & Leng, W. Dynamics of hidden hotspot tracks beneath the continental lithosphere. Earth Planet. Sci. Lett. 401, 294–300 (2014).

    Article  Google Scholar 

  38. Yuan, X. et al. Seismic structure of the lithosphere beneath NW Namibia: impact of the Tristan da Cunha mantle plume. Geochem. Geophys. Geosys. 18, 125–141 (2017).

    Article  Google Scholar 

  39. Beniest, A., Koptev, A., Leroy, S., Sassi, W. & Guichet, X. Two-branch break-up systems by a single mantle plume: insights from numerical modeling. Geophys. Res. Lett. 44, 9589–9597 (2017).

    Article  Google Scholar 

  40. Rogozhina, I. et al. Melting at the base of the Greenland ice sheet explained by Iceland hotspot history. Nat. Geosci. 9, 366–369 (2016).

    Article  Google Scholar 

  41. Jakovlev, A. V., Bushenkova, N. A., Koulakov, I. Y. & Dobretsov, N. L. Structure of the upper mantle in the circum-Arctic region from regional seismic tomography. Russ. Geol. Geophys. 22, 963–971 (2012).

    Article  Google Scholar 

  42. Lekic, V., Cottaar, S., Dziewonski, A. & Romanowicz, B. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357–358, 68–77 (2012).

    Article  Google Scholar 

  43. Holbrook, W. S. et al. Mantle thermal structure and active upwelling during continental breakup in the North Atlantic. Earth Planet. Sci. Lett. 190, 251–266 (2001).

    Article  Google Scholar 

  44. Smallwood, J. R., Staples, R. K., Richardson, K. R. & White, R. S. Crust generated above the Iceland mantle plume: from continental rift to oceanic spreading center. J. Geophys. Res. 104, 22885–22902 (1999).

    Article  Google Scholar 

  45. Storey, M., Duncan, R. A. & Tegner, C. Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chem. Geol. 241, 264–281 (2007).

    Article  Google Scholar 

  46. Schoonman, C. M., White, N. J. & Pritchard, D. Radial viscous fingering of hot asthenosphere within the Icelandic plume beneath the North Atlantic Ocean. Earth Planet. Sci. Lett. 468, 51–61 (2017).

    Article  Google Scholar 

  47. Abdelmalak, M. M. et al. The ocean–continent transition in the mid-Norwegian margin: Insight from seismic data and an onshore Caledonian field analogue. Geology 43, 1011–1014 (2015).

    Article  Google Scholar 

  48. Torsvik, T. H., Steinberger, B., Gurnis, M. & Gaina, C. Plate tectonics and net lithosphere rotation over the past 150 My. Earth Planet. Sci. Lett. 291, 106–112 (2010).

    Article  Google Scholar 

  49. Pourpoint, M., Anandakrishnan, S. A. & Ammon, C. J. High-resolution Rayleigh wave group velocity variation beneath Greenland. J. Geophys. Res. 123, 1516–1539 (2018).

    Article  Google Scholar 

  50. Mordret, A. Uncovering the Iceland hotspot track beneath Greenland. J. Geophys. Res. 123, 4922–4941 (2018).

  51. Bangerth, W. et al. ASPECT: Advanced Solver for Problems in Earth’s Convection, User Manual (2017); https://doi.org/10.6084/m9.figshare.4865333

  52. Kronbichler, M., Heister, T. & Bangerth, W. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int. 191, 12–29 (2012).

    Article  Google Scholar 

  53. Putirka, K. Excess temperatures at ocean islands: implications for mantle layering and convection. Geology 36, 283–286 (2008).

    Article  Google Scholar 

  54. Sleep, N. Hotspots and mantle plumes: some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

    Article  Google Scholar 

  55. Schilling, J.-G. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature 352, 397–403 (1991).

    Article  Google Scholar 

  56. Spice, H. E., Fitton, J. G. & Kirstein, L. A. Temperature fluctuation of the Iceland mantle plume through time. Geochem. Geophys. Geosyst. 17, 243–254 (2016).

    Article  Google Scholar 

  57. Hager, B. H. & O’Connell, R. J. Kinematic models of large-scale flow in the Earth’s mantle. J. Geophys. Res. 84, 1031–1048 (1979).

    Article  Google Scholar 

  58. Hager, B. H. & O’Connell, R. J. A simple global model of plate dynamics and mantle convection. J. Geophys. Res. 86, 4843–4867 (1981).

    Article  Google Scholar 

  59. Steinberger, B. & O’Connell, R. J. Advection of plumes in mantle flow; implications on hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int. 132, 412–434 (1998).

    Article  Google Scholar 

  60. Steinberger, B. Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness. Geophys. J. Int. 205, 604–621 (2016).

    Article  Google Scholar 

  61. Schaeffer, A. J. & Lebedev, S. Global shear speed structure of the upper mantle and transition zone. Geophys. J. Int. 194, 417–449 (2013).

    Article  Google Scholar 

  62. Grand, S. P. Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. Lond. A 360, 2475–2491 (2002).

    Article  Google Scholar 

  63. Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004).

    Article  Google Scholar 

  64. Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst. 3, 2001GC000168 (2002).

  65. Steinberger, B. & Calderwood, A. Models of large-scale viscous flow in the Earth’s mantle with constraints from mineral physics and surface observations. Geophys. J. Int. 167, 1461–1481 (2006).

    Article  Google Scholar 

  66. Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

    Article  Google Scholar 

  67. Schaeffer, A. J., Lebedev, S. & Becker, T. W. Azimuthal seismic anisotropy in the Earth’s upper mantle and the thickness of tectonic plates. Geophys. J. Int. 207, 901–933 (2016).

    Article  Google Scholar 

  68. Schaeffer, A. J. & Lebedev, S. Imaging the North American continent using waveform inversion of global and USArray data. Earth Planet. Sci. Lett. 402, 26–41 (2014).

    Article  Google Scholar 

  69. Lebedev, S., Nolet, G., Meier, T. & van der Hilst, R. D. Automated multimode inversion of surface and S waveforms. Geophys. J. Int. 162, 951–964 (2005).

    Article  Google Scholar 

  70. Bassin, C., Laske, G. & Masters, G. The current limits of resolution for surface wave tomography in North America. EOS, Trans Am. Geophys. Un. 81, F897 (2000).

    Google Scholar 

  71. Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 122, 108–124 (1995).

    Article  Google Scholar 

  72. Lebedev, S., Adam, J. M.-C. & Meier, T. Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Tectonophysics 609, 377–394 (2013).

    Article  Google Scholar 

  73. Lebedev, S. & van der Hilst, R. D. Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophys. J. Int. 173, 505–518 (2008).

    Article  Google Scholar 

  74. Paige, S. & Saunders, C. C. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8, 43–71 (1982).

    Article  Google Scholar 

  75. Detrick, R. S. & Crough, S. T. Island subsidence, hot spots, and lithospheric thinning. J. Geophys. Res. 83, 1236–1244 (1978).

    Article  Google Scholar 

  76. Chu, R., Leng, W., Helmberger, D. V. & Gurnis, M. Hidden hotspot track beneath the eastern United States. Nat. Geosci. 6, 963–966 (2013).

    Article  Google Scholar 

  77. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The geodynamic models were computed with the open-source software ASPECT (http://aspect.dealii.org) and performed with resources provided by the North-German Supercomputing Alliance (HLRN). The authors thank J. Dannberg, S. Williams, N. White and I. Bjarnason for comments and suggestions. This publication has emanated from research supported in part by research grants from Science Foundation Ireland (SFI) under grant nos. 13/CDA/2192 and 13/RC/2092, co-funded under the European Regional Development Fund and by iCRAG industry partners. B.S. and T.H.T. also acknowledge support from the Research Council of Norway, through its Centre of Excellence scheme, project no. 223272 (CEED).

Author information

Authors and Affiliations

Authors

Contributions

S.L. and B.S. conceived the paper. B.S. wrote the paper, with help from all other authors. E.B. performed the computations with ASPECT. A.S. and S.L. provided tomography and lithosphere thickness models. T.H.T. provided plate reconstructions and data on the distribution of volcanics. All authors jointly contributed to discussions.

Corresponding author

Correspondence to Bernhard Steinberger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5.

Supplementary Video

Supplementary video.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinberger, B., Bredow, E., Lebedev, S. et al. Widespread volcanism in the Greenland–North Atlantic region explained by the Iceland plume. Nature Geosci 12, 61–68 (2019). https://doi.org/10.1038/s41561-018-0251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0251-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing