Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A 60-Myr record of continental back-arc differentiation through cyclic melting

Abstract

Continental crust forms and evolves above subduction zones as a result of heat and mass transfer from the mantle below. The nature and extent of this transfer remain debated. Although it has been recognized that arc magmatism at active continental margins can be cyclical at 50- to 1-Myr timescales, such cyclicity has not been recognized in the back-arc. Here we investigate the melting of sedimentary rocks in the continental back-arc of the western Gondwana margin during the Cambrian–Ordovician Famatinian orogeny of Northwest Argentina. We determine the U−Pb ages of zircons that formed during crustal melting and find that they range from 505 to 440 million years ago, concentrated into age groups spaced by 10–15 Myr. This suggests multiple and cyclical melting events in the continental back-arc, which matches the more than 60 Myr duration of the magmatic activity in the arc and demonstrates that thermal and magmatic cyclicity also extends to the continental hinterland. We conclude that back-arc melting reflects a long-lasting, pulsating, cyclical heat transfer from mantle to crust that leads to thorough crustal reworking, transforming sedimentary rocks into crystalline continental crust. Thus, while magma transfer from the mantle promotes crustal growth in convergent margins, cyclical melting promotes crustal maturation of the back-arc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example of a remelted anatectic granite from Sierra de Quilmes.
Fig. 2: Zircon U−Pb results for sample SQ231a.
Fig. 3: Schematic showing possible combinations of heat and H2O influx causing cyclic anatexis in Sierra de Quilmes.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its Supplementary Information.

References

  1. DeCelles, P. G., Ducea, M. N., Kapp, P. & Zandt, G. Cyclicity in Cordilleran orogenic systems. Nat. Geosci. 2, 251–257 (2009).

    Article  Google Scholar 

  2. de Silva, S. L., Riggs, N. R. & Barth, A. P. Quickening the pulse: fractal tempos in continental arc magmatism. Elements 11, 113–118 (2015).

    Article  Google Scholar 

  3. Kirsch, M. et al. Temporal histories of Cordilleran continental arcs: testing models for magmatic episodicity. Am. Mineral. 101, 2133–2154 (2016).

    Article  Google Scholar 

  4. Currie, C. A. & Hyndman, R. D. The thermal structure of subduction zone back arcs. J. Geophys. Res. 111, 1–22 (2006).

    Article  Google Scholar 

  5. Pankhurst, R. J. et al. in The Proto-Andean Margin of Gondwana (eds Pankhurst, R. J. & Rapela, C. W.) 343–367 (Special Publication 142, Geological Society, London, 1998).

  6. Rapela, C. W., Pankhurst, R. J., Saavedra, J. & Galindo, C. Early evolution of the Proto-Andean margin of South America. Geology 26, 707–710 (1998).

    Article  Google Scholar 

  7. Turner, J. C. Estratigrafia de la Sierra de Santa Victoria y adyacencias. Bol. Acad. Nac. Cienc. Cordoba 41, 163–206 (1960).

    Google Scholar 

  8. Ducea, M. N., Otamendi, J. E., Bergantz, G. W., Jianu, D. & Petrescu, L. The origin and petrologic evolution of the Ordovician Famatinian-Puna arc. Geol. Soc. Am. Mem. 212, 125–138 (2015).

    Google Scholar 

  9. Ježek, P., Willner, A. P., Acenolaza, F. G. & Miller, H. The Puncoviscana trough—a large basin of Late Precambrian to Early Cambrian age on the pacific edge of the Brazilian shield. Geol. Rundsch. 74, 573–584 (1985).

    Article  Google Scholar 

  10. Adams, C. J., Miller, H., Toselli, A. J. & Griffin, W. L. The Puncoviscana Formation of northwest Argentina: U-Pb geochronology of detrital zircons and Rb-Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting. N. J. Geol. Paläont. Abh. 247, 341–352 (2008).

    Article  Google Scholar 

  11. Bahlburg, H. in The Proto-Andean Margin of Gondwana (eds Pankhurst, R. J. & Rapela, C. W.) 127−142 (Special Publication 142, Geological Society, London, 1998).

  12. Coira, B., Kirschbaum, A., Hongn, F., Pérez, B. & Menegatti, N. Basic magmatism in northeastern Puna, Argentina: chemical composition and tectonic setting in the Ordovician back-arc. J. S. Am. Earth Sci. 28, 374–382 (2009).

    Article  Google Scholar 

  13. Hongn, F. D. et al. The Sierra de Cachi (Salta, NW Argentina): geological evidence about a Famatinian retro-arc at mid crustal levels. J. Iber. Geol. 40, 225–240 (2014).

    Article  Google Scholar 

  14. Büttner, S. H. et al. Ordovician metamorphism and plutonism in the Sierra de Quilmes metamorphic complex: implications for the tectonic setting of the northern Sierras Pampeanas (NW Argentina). Lithos 83, 143–181 (2005).

    Article  Google Scholar 

  15. Sola, A. M., Becchio, R. A. & Pimentel, M. M. Petrogenesis of migmatites and leucogranites from Sierra de Molinos, Salta, Northwest Argentina: a petrologic and geochemical study. Lithos 177, 470–491 (2013).

    Article  Google Scholar 

  16. Bahlburg, H., Berndt, J. & Gerdes, A. The ages and tectonic setting of the Faja Eruptiva de la Puna Oriental, Ordovician, NW Argentina. Lithos 256-257, 41–54 (2016).

    Article  Google Scholar 

  17. Finch, M. A. et al. Tectono-metamorphic evolution of a convergent back-arc: the Famatinian orogen, Sierra de Quilmes, Sierras Pampeanas, NW Argentina. Bull. Geol. Soc. Am. 129, 1602–1621 (2017).

    Google Scholar 

  18. Suzaño, N., Becchio, R., Nieves, A., Sola, A. & Ortiz, A. Mezcla de magmas en el arco magmático Famatiniano del noroeste de Argentina: ejemplo en el complejo intrusivo Diablillos, Puna Austral. Rev. Mex. Cienc. Geol. 32, 433–454 (2015).

    Google Scholar 

  19. Pankhurst, R. J., Rapela, C. W. & Fanning, C. M. Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina. Trans. R. Soc. Edin. Earth Sci. 91, 151–168 (2000).

    Article  Google Scholar 

  20. Ducea, M. N. et al. Timing constraints on building an intermediate plutonic arc crustal section: U–Pb zircon geochronology of the Sierra Valle Fértil-La Huerta, Famatinian arc, Argentina. Tectonics 29, 1–22 (2010).

    Article  Google Scholar 

  21. Bellos, L. I., Castro, A., Díaz-Alvarado, J. & Toselli, A. Multi-pulse cotectic evolution and in-situ fractionation of calc-alkaline tonalite-granodiorite rocks, Sierra de Velasco batholith, Famatinian belt, Argentina. Gondwana Res. 27, 258–280 (2015).

    Article  Google Scholar 

  22. Lucassen, F. & Becchio, R. Timing of high-grade metamorphism: early Palaeozoic U–Pb formation ages of titanite indicate long-standing high-T conditions at the western margin of Gondwana (Argentina, 26–29°S). J. Metamorph. Geol. 21, 649–662 (2003).

    Article  Google Scholar 

  23. Wolfram, L. C., Weinberg, R., Hasalová, P. & Becchio, R. How melt segregation impacts on granite chemistry: migmatites from the Sierra de Quilmes, NW Argentina. J. Petrol. 58, 2339–2364 (2017).

    Article  Google Scholar 

  24. Young, D. et al. mixtools: tools for analyzing finite mixture models version 3.5.0 (CRAN, 2017); https://cran.r-project.org/web/packages/mixtools/mixtools.pdf

  25. Mezger, K. & Krogstad, E. J. Interpretation of discordant U–Pb zircon ages: an evaluation. J. Metamorph. Geol. 15, 127–140 (1997).

    Article  Google Scholar 

  26. Cherniak, D. J. & Watson, E. B. Pb diffusion in zircon. Chem. Geol. 172, 5–24 (2001).

    Article  Google Scholar 

  27. Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 53, 469–500 (2003).

    Article  Google Scholar 

  28. Harley, S. L., Kelly, N. M. & Möller, A. Zircon behaviour and the thermal histories of mountain chains. Elements 3, 25–30 (2007).

    Article  Google Scholar 

  29. Rubatto, D., Hermann, J., Berger, A. & Engi, M. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contrib. Mineral. Petrol. 158, 703–722 (2009).

    Article  Google Scholar 

  30. Ducea, M. N., Bergantz, G. W., Crowley, J. L. & Otamendi, J. Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology 45, 235–238 (2017).

    Article  Google Scholar 

  31. Yakymchuk, C. & Brown, M. Behaviour of zircon and monazite during crustal melting. J. Geol. Soc. Lond. 171, 465–479 (2014).

    Article  Google Scholar 

  32. Kohn, M. J., Corrie, S. L. & Markley, C. The fall and rise of metamorphic zircon. Am. Mineral. 100, 897–908 (2015).

    Article  Google Scholar 

  33. Sawka, W. N. & Chappell, B. W. The distribution of radioactive heat production in I- and S-type granites and residual source regions: implications to high heat flow areas in the Lachlan Fold Belt, Australia. Aust. J. Earth Sci. 33, 107–118 (1986).

    Article  Google Scholar 

  34. Kemp, A. I. S. & Hawkesworth, C. J. in Treatise on Geochemistry Vol. 3 (ed. Rudnick, R.) 349−410 (Elsevier, Oxford, 2003).

  35. Jamieson, R. A., Beaumont, C., Fullsack, P. & Lee, B. in What Drives Metamorphism and Metamorphic Reactions? (eds Treloar, P. J. & O’Brien, P. J.) 23−51 (Special Publication 138, Geological Society, London, 1998).

  36. Lucassen, F., Lewerenz, S., Franz, G., Viramonte, J. & Mezger, K. Metamorphism, isotopic ages and composition of lower crustal granulite xenoliths from the Cretaceous Salta Rift, Argentina. Contrib. Mineral. Petrol. 134, 325–341 (1999).

    Article  Google Scholar 

  37. Perarnau, M., Gilbert, H., Alvarado, P., Martino, R. & Anderson, M. Crustal structure of the Eastern Sierras Pampeanas of Argentina using high frequency local receiver functions. Tectonophysics 580, 208–217 (2012).

    Article  Google Scholar 

  38. Weinberg, R. F. & Hasalová, P. Water-fluxed melting of the continental crust: a review. Lithos 212-215, 158–188 (2015).

    Article  Google Scholar 

  39. Sola, A. M. et al. Low-P melting of metapelitic rocks and the role of H2O: insights from phase equilibria modelling. J. Metamorph. Geol. 35, 1131–1159 (2017).

    Article  Google Scholar 

  40. Cao, W. et al. Tracking paleodeformation fields in the Mesozoic central Sierra Nevada arc: implications for intra-arc cyclic deformation and arc tempos. Lithosphere 7, 296–320 (2015).

    Article  Google Scholar 

  41. Wiedenbeck, M. et al. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newslett. 19, 1–23 (1995).

    Article  Google Scholar 

  42. Paton, C. et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction.Geochem. Geophys. Geosyst. 11, Q0AA06 (2010).

    Article  Google Scholar 

  43. Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).

    Article  Google Scholar 

  44. Slama, J. et al. Plesovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).

    Article  Google Scholar 

  45. Ludwig, K. R. Isoplot/Ex Version 4.0: A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Centre, 2008).

  46. Sambridge, M. S. & Compston, W. Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet. Sci. Lett. 128, 373–390 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J.-F. Moyen, A. Sola, I. Zibra and A. Kylander-Clark for comments on an early version of the manuscript. This research was supported by the Australian Research Council grant no. DP110102543 (to R.F.W.), FT140101062 (to O.N.) and the Czech Science Foundation grant no. P210-14-25995S (to P.H.). O.N. thanks the Melbourne TIE team for continuing support.

Author information

Authors and Affiliations

Authors

Contributions

L.C.W. prepared samples for analysis, performed initial data analysis and took the lead on writing the manuscript. L.C.W., R.F.W. and O.N. contributed to data interpretation and writing the final version of the manuscript. K.H. was responsible for the statistical treatment of the data. P.H. and J.M. conducted laser ablation zircon geochronology. R.B. participated in the fieldwork and developing the original ideas that lead to this paper.

Corresponding author

Correspondence to Roberto F. Weinberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Zircon ages, statistical treatment and crustal heat production; Supplementary Tables 1, 2, 3 and 4 and Supplementary Figures 1–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolfram, L.C., Weinberg, R.F., Nebel, O. et al. A 60-Myr record of continental back-arc differentiation through cyclic melting. Nat. Geosci. 12, 215–219 (2019). https://doi.org/10.1038/s41561-019-0298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0298-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing