Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia

Abstract

Rapid global warming and oceanic oxygen deficiency during the Early Jurassic Toarcian Oceanic Anoxic Event at around 183 Ma is associated with a major turnover of marine biota linked to volcanic activity. The impact of the event on land-based ecosystems and the processes that led to oceanic anoxia remain poorly understood. Here we present analyses of spore–pollen assemblages from Pliensbachian–Toarcian rock samples that record marked changes on land during the Toarcian Oceanic Anoxic Event. Vegetation shifted from a high-diversity mixture of conifers, seed ferns, wet-adapted ferns and lycophytes to a low-diversity assemblage dominated by cheirolepid conifers, cycads and Cerebropollenites-producers, which were able to survive in warm, drought-like conditions. Despite the rapid recovery of floras after Toarcian global warming, the overall community composition remained notably different after the event. In shelf seas, eutrophication continued throughout the Toarcian event. This is reflected in the overwhelming dominance of algae, which contributed to reduced oxygen conditions and to a marked decline in dinoflagellates. The substantial initial vegetation response across the Pliensbachian/Toarcian boundary compared with the relatively minor marine response highlights that the impacts of the early stages of volcanogenic global warming were more severe for continental ecosystems than marine ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location of the study area and palaeogeographic maps of the early Toarcian.
Fig. 2: Palynological and palynofacies data through the T-OAE of Yorkshire, UK.
Fig. 3: nMDS plot of spore–pollen data.
Fig. 4: Schematic reconstruction of the major changes to continental and marine environments through the T-OAE.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and Supplementary Information. All materials (rock samples and slides) are housed in the collections of the Natural History Museum, London.

References

  1. McElwain, J. C., Wade-Murphy, J. & Hesselbo, S. P. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435, 479–482 (2005).

    Article  Google Scholar 

  2. Little, C. T. S. & Benton, M. J. Early Jurassic mass extinction: a global long-term event. Geology 23, 495–498 (1995).

    Article  Google Scholar 

  3. Harries, P. J. & Little, C. T. S. The early Toarcian (Early Jurassic) and the Cenomanian Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 39–66 (1999).

    Article  Google Scholar 

  4. Gómez, J. J. & Goy, A. Warming-driven mass extinction in the Early Toarcian (Early Jurassic) of northern and central Spain. Correlation with other time-equivalent European sections. Palaeogeogr. Palaeoclimatol. Palaeoecol. 306, 176–195 (2011).

    Article  Google Scholar 

  5. Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian–Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 104–118 (2013).

    Article  Google Scholar 

  6. Lu, Z., Jenkyns, H. C. & Rickaby, R. E. M. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology 38, 1107–1110 (2010).

    Article  Google Scholar 

  7. Gill, B. C., Lyons, T. W. & Jenkyns, H. C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event. Earth Planet. Sci. Lett. 312, 484–496 (2011).

    Article  Google Scholar 

  8. Dickson, A. J. A molybdenum-isotope perspective on Phanerozoic deoxygenation events. Nat. Geosci. 10, 721–726 (2017).

    Article  Google Scholar 

  9. Them, T. R. II et al. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proc. Natl Acad. Sci. USA 115, 6596–6601 (2018).

    Article  Google Scholar 

  10. Jenkyns, H. C. The Early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. Am. J. Sci. 288, 101–151 (1988).

    Article  Google Scholar 

  11. Kemp, D. B., Coe, A. L., Cohen, A. S. & Schwark, L. Astronomical pacing of methane release in the Early Jurassic period. Nature 437, 396–399 (2005).

    Article  Google Scholar 

  12. Boulila, S. et al. Astronomical calibration of the Toarcian Stage: implications for sequence stratigraphy and duration of the early Toarcian OAE. Earth Planet. Sci. Lett. 386, 98–111 (2014).

    Article  Google Scholar 

  13. Sell, B. et al. Evaluating the temporal link between Karoo LIP and climatic–biologic events of the Toarcian stage with high-precision U–Pb geochronology. Earth Planet. Sci. Lett. 408, 48–56 (2014).

    Article  Google Scholar 

  14. Duncan, R. A., Hooper, P. R., Rehacek, J., Marsh, J. S. & Duncan, A. R. The timing and duration of the Karoo igneous event, southern Gondwana. J. Geophys. Res. 102, 18127–18138 (1997).

    Article  Google Scholar 

  15. Hesselbo, S. P. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000).

    Article  Google Scholar 

  16. Pálfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology 28, 747–750 (2000).

    Article  Google Scholar 

  17. Beerling, D. J. & Brentnall, S. J. Numerical evaluation of mechanisms driving Early Jurassic changes in global carbon cycling. Geology 35, 247–250 (2007).

    Article  Google Scholar 

  18. Svensen, H. et al. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet. Sci. Lett. 256, 554–566 (2007).

    Article  Google Scholar 

  19. Hesselbo, S. P. & Pieńkowski, G. Stepwise atmospheric carbon-isotope excursion during the Toarcian Oceanic Anoxic Event (Early Jurassic, Polish Basin). Earth Planet. Sci. Lett. 301, 365–372 (2011).

    Article  Google Scholar 

  20. Svensen, H., Corfu, F., Polteau, S., Hammer, Ø. & Planke, S. Rapid magma emplacement in the Karoo Large Igneous Province. Earth Planet. Sci. Lett. 325–326, 1–9 (2012).

    Article  Google Scholar 

  21. Ivanov, A. V. et al. Timing and genesis of the Karoo-Ferrar large igneous province: new high precision U–Pb data for Tasmania confirm short duration of the major magmatic pulse. Chem. Geol. 455, 32–43 (2017).

    Article  Google Scholar 

  22. Palliani, R. B. & Riding, J. B. A palynological investigation of the Lower and lowermost Middle Jurassic strata (Sinemurian to Aalenian) from North Yorkshire, UK. Proc. Yorks. Geol. Soc. 53, 1–16 (2000).

    Article  Google Scholar 

  23. Palliani, R. B., Mattioli, E. & Riding, J. B. The response of marine phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurassic) oceanic anoxic event in northern England. Mar. Micropaleontol. 46, 223–245 (2002).

    Article  Google Scholar 

  24. Danise, S., Twitchett, R. J. & Little, C. T. S. Environmental controls on Jurassic marine ecosystems during global warming. Geology 43, 263–266 (2015).

    Article  Google Scholar 

  25. Danise, S., Twitchett, R. J., Little, C. T. S. & Clémence, M. E. The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic). PLoS ONE 8, e56255 (2013).

    Article  Google Scholar 

  26. Ullmann, C. V., Thibault, N., Ruhl, M., Hesselbo, S. P. & Korte, C. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution. Proc. Natl Acad. Sci. USA 111, 10073–10076 (2014).

    Article  Google Scholar 

  27. Balme, B. E. Fossil in situ spores and pollen grains: an annotated catalogue. Rev. Palaeobot. Palynol. 87, 81–323 (1995).

    Article  Google Scholar 

  28. Vakhrameev, V. A. Jurassic and Cretaceous Floras and Climates of the Earth (Cambridge Univ. Press, 1991).

  29. Pieńkowski, G., Hodbod, M. & Ullmann, C. V. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming. Sci. Rep. 6, 31930 (2016).

    Article  Google Scholar 

  30. Batten, D. J. & Dutta, R. J. Ultrastructure of exine of gymnospermous pollen grains from Jurassic and basal Cretaceous deposits in Northwest Europe and implications for botanical relationships. Rev. Palaeobot. Palynol. 99, 25–54 (1997).

    Article  Google Scholar 

  31. Dejax, J., Pons, D. & Yans, J. Palynology of the dinosaur-bearing Wealden facies in the natural pit of Bernissart (Belgium). Rev. Palaeobot. Palynol. 144, 25–38 (2007).

    Article  Google Scholar 

  32. Koppelhus, E. B. & Dam, G. Palynostratigraphy and palaeoenvironments of the Rævekløft, Gule Horn and Ostreaelv Formations (Lower–Middle Jurassic), Neill Klinter Group, Jameson Land, East Greenland. Geol. Surv. Den. Greenl. Bull. 1, 723–775 (2003).

    Google Scholar 

  33. Belcher, C. M. et al. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nat. Geosci. 3, 426–429 (2010).

    Article  Google Scholar 

  34. Stukins, S., Jolley, D. W., McIlroy, D. & Hartley, A. J. Middle Jurassic vegetation dynamics from allochthonous palynological assemblages: an example from a marginal marine depositional setting; Lajas Formation, Neuquén Basin, Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 117–127 (2013).

    Article  Google Scholar 

  35. Xu, W. et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event. Nat. Geosci. 10, 129–134 (2017).

    Article  Google Scholar 

  36. Wignall, P. B., Newton, R. J. & Little, C. T. S. The timing of paleoenvironmental change and cause-and-effect relationships during the Early Jurassic mass extinction in Europe. Am. J. Sci. 305, 1014–1032 (2005).

    Article  Google Scholar 

  37. Thibault, N. et al. The wider context of the Lower Jurassic Toarcian oceanic anoxic event in Yorkshire coastal outcrops, UK. Proc. Geol. Assoc. 129, 372–391 (2018).

    Article  Google Scholar 

  38. Izumi, K., Endo, K., Kemp, D. B. & Inui, M. Oceanic redox conditions through the late Pliensbachian to early Toarcian on the northwestern Panthalassa margin: insights from pyrite and geochemical data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 492, 1–10 (2018).

    Article  Google Scholar 

  39. Dera, G. & Donnadieu, Y. Modelling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27, PA2211 (2012).

    Article  Google Scholar 

  40. McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W. & Mattey, D. Strontium isotope profile of the early Toarcian (Jurassic) Oceanic Anoxic Event, the duration of ammonite biozones, and belemnite paleotemperatures. Earth Planet. Sci. Lett. 179, 269–285 (2000).

    Article  Google Scholar 

  41. Cohen, A. S., Coe, A. L., Harding, S. M. & Schwark, L. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32, 157–160 (2004).

    Article  Google Scholar 

  42. Percival, L. M. E. et al. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change. Geology 44, 759–762 (2016).

    Article  Google Scholar 

  43. Them, T. R. et al. Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Sci. Rep. 7, 5003 (2017).

    Article  Google Scholar 

  44. Xu, W. et al. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK). Earth Planet. Sci. Lett. 484, 396–411 (2018).

    Article  Google Scholar 

  45. Baker, S. J., Hesselbo, S. P., Lenton, T. M., Duarte, L. V. & Belcher, C. M. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia. Nat. Commun. 8, 15018 (2017).

    Article  Google Scholar 

  46. Loope, D. B., Rowe, C. M. & Joeckel, R. M. Annual monsoon rains recorded by Jurassic dunes. Nature 412, 64–66 (2001).

    Article  Google Scholar 

  47. Slater, S. M. & Wellman, C. H. Middle Jurassic vegetation dynamics based on quantitative analysis of spore/pollen assemblages from the Ravenscar Group, North Yorkshire, UK. Palaeontology 59, 305–328 (2016).

    Article  Google Scholar 

  48. Moulin, M. et al. Eruptive history of the Karoo lava flows and their impact on early Jurassic environmental change. J. Geophys. Res. Solid Earth 122, 738–772 (2017).

    Article  Google Scholar 

  49. Xu, W. et al. Magnetostratigraphy of the Toarcian Stage (Lower Jurassic) or the Llandbedr (Mochras Farm) Borehole, Wales: basis for a global standard and implications for volcanic forcing of palaeoenvironmental change. J. Geol. Soc. 175, 594–604 (2018).

    Article  Google Scholar 

  50. Burgess, S. D., Bowring, S. A., Fleming, T. H. & Elliot, D. H. High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis. Earth Planet. Sci. Lett. 415, 90–99 (2015).

    Article  Google Scholar 

  51. Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).

    Article  Google Scholar 

  52. Trenberth, K. E. et al. in Climate Change 2007: the Physical Science Basis (eds Solomon, S. et al.) Ch. 3 (Cambridge Univ. Press, 2007).

  53. Macquaker, J. H. S., Keller, M. A. & Davies, S. J. Algal blooms and ‘marine snow’: mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments. J. Sediment. Res. 80, 934–942 (2010).

    Article  Google Scholar 

  54. Sephton, M. A. et al. Catastrophic soil erosion during the end-Permian biotic crisis. Geology 33, 941–944 (2005).

    Article  Google Scholar 

  55. Alego, T. J., Chen, Z. Q., Fraiser, M. L. & Twitchett, R. J. Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 1–11 (2011).

    Article  Google Scholar 

  56. Müller, J. et al. Cordilleran ice-sheet growth fueled primary productivity in the Gulf of Alaska, northeast Pacific Ocean. Geology 46, 307–310 (2018).

    Article  Google Scholar 

  57. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    Article  Google Scholar 

  58. Gedney, N. et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838 (2006).

    Article  Google Scholar 

  59. Steinthorsdottir, M., Woodward, F. I., Surlyk, F. & McElwain, J. C. Deep-time evidence of a link between elevated CO2 concentrations and perturbations in the hydrological cycle via drop in plant transpiration. Geology 40, 815–818 (2012).

    Article  Google Scholar 

  60. Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253, 455–470 (2007).

    Article  Google Scholar 

  61. Littler, K., Hesselbo, S. P. & Jenkyns, H. C. A carbon-isotope perturbation at the Pliensbachian–Toarcian boundary: evidence from the Lias Group, NE England. Geol. Mag. 147, 181–192 (2010).

    Article  Google Scholar 

  62. Traverse, A. Paleopalynology 2nd edn (Springer, 2007).

  63. Hammer, Ø., Harper, D. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).

    Google Scholar 

Download references

Acknowledgements

We are grateful to W. Foster, D. Murphy and M.-E. Clemence for their help with fieldwork. We thank P. von Knorring for artwork in Fig. 4. This research was funded by the Wenner-Gren Foundation (grant no. UPD2017-0155), the Swedish Research Council (grant no. VR 2015-04264), Lund University Carbon Cycle Centre and a Natural Environment Research Council (NERC) grant to R.J.T. (grant no. NE/I005641/1).

Author information

Authors and Affiliations

Authors

Contributions

S.M.S., R.J.T. and V.V. conceived the project. S.D. and R.J.T. conducted the fieldwork and S.M.S. performed the data collection. All authors discussed and analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Sam M. Slater.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary figures, tables and references

Supplementary Data 1

Raw palynological counts. ‘p’ refers to taxa that are present in slides but not in counts

Supplementary Data 2

Raw palynofacies counts

Supplementary Data 3

nMDS axis scores of samples for Fig. 3 and Supplementary Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slater, S.M., Twitchett, R.J., Danise, S. et al. Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia. Nat. Geosci. 12, 462–467 (2019). https://doi.org/10.1038/s41561-019-0349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0349-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing