Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry

Abstract

Oceanic sulfate concentrations are widely thought to have reached millimolar levels during the Proterozoic Eon, 2.5 to 0.54 billion years ago. Yet the magnitude of the increase in seawater sulfate concentrations over the course of the Eon remains largely unquantified. A rise in seawater sulfate concentrations has been inferred from the increased range of marine sulfide δ34S values following the Great Oxidation Event and was induced by two processes: enhanced oxidative weathering of sulfides on land, and the onset of marine sulfur redox cycling. Here we use mass balance and diagenetic reaction-transport models to reconstruct the sulfate concentrations in Proterozoic seawater. We find that sulfate concentrations remained below 400 µM, and were possibly as low as 100 µM, throughout much of the Proterozoic. At these low sulfate concentrations, relatively large sulfate–pyrite sulfur isotope differences cannot be explained by sulfate reduction alone and are only possible through oxidative sediment sulfur cycling. This requires oxygen concentrations of at least 10 µM in shallow Proterozoic seawater, which translates to 1–10% of present atmospheric oxygen concentrations. At these oxygen and sulfate concentrations, the oceans would have been a substantial source of methane to the atmosphere (60–140 Tmol yr−1). This methane would have accumulated to high concentrations (more than 25 ppmv) and supported greenhouse warming during much of the Proterozoic Eon, with notable exceptions during the Palaeoproterozoic and Neoproterozoic eras.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in ocean and atmosphere chemistry through time.
Fig. 2: The sulfate cycle during the Proterozoic Eon.
Fig. 3: Probability of occurrence of different seawater sulfate concentration ranges during the Proterozoic Eon.
Fig. 4: Modelled \({\rm{\Delta}}^{34}{\mathrm {S}}_{{{\mathrm {SO}}_4}-{{\mathrm {FeS}}_2}}\) values as functions of seawater oxygen and sulfate concentrations.

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within this article and its Supplementary Information, and all additional data are available from the corresponding author on request.

Code availability

All additional computer codes are available from the corresponding author on request.

References

  1. Jørgensen, B. B. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296, 643–645 (1982).

    Article  Google Scholar 

  2. Holser, W. T. & Kaplan, I. R. Isotope geochemistry of sedimentary sulfates. Chem. Geol. 1, 93–135 (1966).

    Article  Google Scholar 

  3. Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009).

    Article  Google Scholar 

  4. Habicht, K. S. et al. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002).

    Article  Google Scholar 

  5. Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).

    Article  Google Scholar 

  6. Fakhraee, M. et al. Sedimentary sulfur isotopes and Neoarchean ocean oxygenation. Sci. Adv. 4, e1701835 (2018).

    Article  Google Scholar 

  7. Kasting, J. F. Methane and climate during the Precambrian era. Precambr. Res. 137, 119–129 (2005).

    Article  Google Scholar 

  8. Cameron, E. M. Sulphate and sulphate reduction in early Precambrian oceans. Nature 296, 145–148 (1982).

    Article  Google Scholar 

  9. Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc. Natl Acad. Sci. USA 106, 8123–8127 (2009).

    Article  Google Scholar 

  10. Williford, K. H. et al. Constraining atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: in situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western Australia. Geochim. Cosmochim. Acta. 75, 5686–5705 (2011).

    Article  Google Scholar 

  11. Philippot, P. et al. Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event. Nat. Commun. 9, 2245 (2018).

    Article  Google Scholar 

  12. Hoffman, P. F. et al. A Neoproterozoic snowball earth. Science 281, 1342–1346 (1998).

    Article  Google Scholar 

  13. Olson, S. L. et al. Limited role for methane in the mid-Proterozoic greenhouse. Proc. Natl Acad. Sci. USA 113, 11447–11452 (2016).

    Article  Google Scholar 

  14. Kah, L. C., Timothy, W. L. & Frank, T. D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834 (2004).

    Article  Google Scholar 

  15. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).

    Article  Google Scholar 

  16. Canfield, D. E. et al. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology 38, 415–418 (2010).

    Article  Google Scholar 

  17. Sim, M. S. et al. Large sulfur isotope fractionation does not require disproportionation. Science 333, 74–77 (2011).

    Article  Google Scholar 

  18. Planavsky, N. J. et al. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451 (2011).

    Article  Google Scholar 

  19. Michiels, C. C. et al. Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of Proterozoic oceans. Nat. Geosci. 3, 217–221 (2017).

    Article  Google Scholar 

  20. Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

    Article  Google Scholar 

  21. Watanabe, Y. et al. Carbon, nitrogen, and sulfur geochemistry of Archean and Proterozoic shales from the Kaapvaal Craton, South Africa. Geochim. Cosmochim. Acta 61, 3441–3459 (1997).

    Article  Google Scholar 

  22. Canfield, D. E. & Thamdrup, B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266, 1973–1975 (1994).

    Article  Google Scholar 

  23. Johnston, D. T. et al. Active microbial sulfur disproportionation in the Mesoproterozoic. Science 310, 1477–1479 (2005).

    Article  Google Scholar 

  24. Zhang, S. et al. Sufficient oxygen for animal respiration 1,400 million years ago. Proc. Natl Acad. Sci. USA 113, 1731–1736 (2016).

    Article  Google Scholar 

  25. Tostevin, R. et al. Low-oxygen waters limited habitable space for early animals. Nat. Commun. 7, 12818 (2016).

    Article  Google Scholar 

  26. Stolper, D. A. & Keller, C. B. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553, 323–327 (2018).

    Article  Google Scholar 

  27. Devol, A. H. & Hartnett, H. E. Role of the oxygen‐deficient zone in transfer of organic carbon to the deep ocean. Limnol. Oceanogr. 46, 1684–1690 (2001).

    Article  Google Scholar 

  28. Andersson, J. H. et al. Respiration patterns in the deep ocean. Geophys. Res. Lett. GL018756 (2004).

  29. Luo, G. et al. Decline in oceanic sulfate levels during the early Mesoproterozoic. Precambr Res. 258, 36–47 (2015).

    Article  Google Scholar 

  30. Wang, X. et al. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. Am. J. Sci. 317, 861–900 (2017).

    Article  Google Scholar 

  31. Hardisty, D. F. et al. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet. Sci. Lett. 463, 159–170 (2017).

    Article  Google Scholar 

  32. Zhang, S. et al. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels. Biogeosciences 14, 2133–2149 (2017).

    Article  Google Scholar 

  33. Laakso, T. A. & Schrag, D. P. A small marine biosphere in the Proterozoic. Geobiology 17, 161–171 (2018).

    Article  Google Scholar 

  34. Kah, L. C. et al. Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution. Precambr. Res. 111, 203–234 (2001).

    Article  Google Scholar 

  35. Planavsky, N. J. et al. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc. Natl Acad. Sci. USA 109, 18300–18305 (2012).

    Article  Google Scholar 

  36. Blättler, C. L. et al. Two-billion-year-old evaporites capture Earth’s great oxidation. Science 360, 320–323 (2018).

    Article  Google Scholar 

  37. Sahoo, S. K. et al. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489, 546–549 (2012).

    Article  Google Scholar 

  38. Lyons, T. W. et al. Tracking euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study. Annu. Rev. Earth Planet. Sci. 37, 507–534 (2009).

    Article  Google Scholar 

  39. Fakhraee, M. et al. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments. Geochim. Cosmochim. Acta 213, 502–516 (2017).

    Article  Google Scholar 

  40. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Article  Google Scholar 

  41. Katsev, S. & Dittrich, M. Modeling of decadal scale phosphorus retention in lake sediment under varying redox conditions. Ecol. Model. 251, 246–259 (2013).

    Article  Google Scholar 

  42. Poavlov, A. A., Hurtgen, M. T., Kasting, J. F. & Arthur, M. A. Methane-rich proterozoic atmosphere. Geology 31, 87–90 (2003).

    Article  Google Scholar 

  43. Reeburgh, W. S. Methane consumption in Cariaco Trench waters and sediments. Earth Planet. Sci. Lett. 28, 337–344 (1976).

    Article  Google Scholar 

  44. Laakso, T. A. & Schrag, D. P. A theory of atmospheric oxygen. Geobiology 15, 366–384 (2017).

    Article  Google Scholar 

  45. Beal, E. J., Claire, M. W. & House, C. H. High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels. Geobiology 9, 131–139 (2011).

    Google Scholar 

  46. Van Bodegom, P., Stams, F., Mollema, L., Boeke, S. & Leffelaar, P. Methane oxidation and the competition for oxygen in the rice rhizosphere. Appl. Environ. Microbiol. 67, 3586–3597 (2001).

    Article  Google Scholar 

  47. Lopes, F. et al. Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl. Geochem. 26, 1919–1932 (2011).

    Article  Google Scholar 

  48. Reinhard, C. T. et al. Proc. Natl Acad. Sci. USA 113, 8933–8938 (2016).

    Article  Google Scholar 

  49. Zhao, M., Reinhard, C. T. & Planavsky, N. Terrestrial methane fluxes and Proterozoic climate. Geology 46, 139–142 (2017).

    Article  Google Scholar 

  50. Fiorella, R. P. & Sheldon, N. D. Equable end Mesoproterozoic climate in the absence of high CO2. Geology 45, 231–234 (2017).

    Article  Google Scholar 

  51. Bekker, A. in Encyclopedia of Astrobiology (eds Amils, R. et al.) 1–6 (2014).

  52. Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867–870 (1996).

    Article  Google Scholar 

  53. Bachan, A. & Kump, L. R. The rise of oxygen and siderite oxidation during the Lomagundi Event. Proc. Natl Acad. Sci. USA 112, 6562–6567 (2015).

    Article  Google Scholar 

  54. Canfield, D. E. et al. A Mesoproterozoic iron formation. Proc. Natl Acad. Sci. USA 115, E3895–E3904 (2018).

    Article  Google Scholar 

  55. Fakhraee, M. A New Insight into the Geochemistry of Sulfur in Low Sulfate Environments (2018).

  56. Canfield, D. E. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep Sea Res. Pt A 36, 121–138 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part through an Agouron Institute fellowship to S.A.C. and NSERC discovery grant no. 0487 to S.A.C. This study was also supported by the Danish National Research Foundation (grant no. DNRF53) to D.E.C.

Author information

Authors and Affiliations

Authors

Contributions

M.F., S.K. and S.A.C. designed the research. M.F. and S.K. developed the diagenetic model. S.A.C. and D.E.C. developed the mass balance model with input from O.H. M.F. performed mass balance and diagenetic model simulations and sensitivity analyses. M.F., S.K. and S.A.C. interpreted model results and wrote the paper, with contributions from D.E.C.

Corresponding authors

Correspondence to Mojtaba Fakhraee or Sergei Katsev.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary modelling information, Supplementary Figs. 1–14 and Supplementary Tables 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhraee, M., Hancisse, O., Canfield, D.E. et al. Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry. Nat. Geosci. 12, 375–380 (2019). https://doi.org/10.1038/s41561-019-0351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0351-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology