Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-altitude water ice cloud formation on Mars controlled by interplanetary dust particles

Abstract

Submicrometre-size meteoric smoke aggregates form when interplanetary dust particles ablate and re-coagulate in the Martian atmosphere. The MAVEN (Mars Atmosphere and Volatile Evolution) satellite has detected pervasive ionized metallic layers due to meteor ablation at an 80–90 km altitude, which suggests a continuous supply of meteoric smoke particles that settle to lower altitudes. Until now, meteoric smoke has been neglected in general circulation model studies of the formation of Martian water ice clouds. Here we show that when meteoric smoke is included in simulations of the atmospheric circulation on Mars, mesospheric water ice clouds form at low pressures and in discrete layers, polar hood clouds extend to higher altitudes and the seasonal Hadley cell is weakened. Furthermore, we find that the middle atmosphere water ice clouds respond to and influence the diurnal and semidiurnal migrating thermal tides. We conclude that Mars atmospheric simulations that neglect meteoric smoke do not reproduce the observed spatial distribution of water ice clouds and miss crucial radiative impacts on the overall atmospheric dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The addition of IDPs is important for the formation of middle atmosphere cloud layers at mid and high latitudes.
Fig. 2: Clouds form where the thermal tide is strongest.
Fig. 3: Wintertime polar hood clouds are too shallow in simulations without IDPs.
Fig. 4: The semidiurnal component of the thermal tide is enhanced by cloud radiative feedbacks.

Similar content being viewed by others

Data availability

MCS retrieval data that support the findings of this study are available as Reduced Data Records in the Planetary Data System Atmospheres Node (https://atmos.nmsu.edu/data_and_services/atmospheres_data/MARS/mcs.html). The simulation data used in this study are stored on the National Center for Atmospheric Research Cheyenne supercomputer and can be made available from the corresponding author upon request.

Code availability

Data processing techniques are available on request from the corresponding author. The MarsCAM-CARMA general circulation model is archived on the CU Boulder Open Science Framework (https://doi.org/10.17605/OSF.I0/7YBZE).

References

  1. Clancy, R. T., Wolff, M. J., Whitney, B. A., Cantor, B. A. & Smith, M. D. Mars equatorial mesospheric clouds: global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer and Mars Orbiter Camera limb observations. J. Geophys. Res. Planets 112, E04004 (2007).

    Article  Google Scholar 

  2. Smith, M. D., Wolff, M. J., Clancy, R. T., Kleinböhl, A. & Murchie, S. L. Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. J. Geophys. Res. Planets 118, 321–334 (2013).

    Article  Google Scholar 

  3. Ajello, J. M., Pang, K. D., Lane, A. L., Hord, C. W. & Simmons, K. E. Mariner 9 ultraviolet spectrometer experiment: bright-limb observations of the lower atmosphere of Mars. J. Atmos. Sci. 33, 544–552 (1976).

    Article  Google Scholar 

  4. Kleinböhl, A. et al. Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity: MCS retrievals. J. Geophys. Res. Planets 114, E10006 (2009).

    Article  Google Scholar 

  5. Fedorova, A. A. et al. Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol. Icarus 200, 96–117 (2009).

    Article  Google Scholar 

  6. Määttänen, A. et al. A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus 223, 892–941 (2013).

    Article  Google Scholar 

  7. Montmessin, F. et al. SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere. Icarus 297, 195–216 (2017).

    Article  Google Scholar 

  8. Vincendon, M., Pilorget, C., Gondet, B., Murchie, S. & Bibring, J.-P. New near-IR observations of mesospheric CO2 and H2O clouds on Mars. J. Geophys. Res. Planets 116, E00J02 (2011).

    Article  Google Scholar 

  9. Määttänen, A. et al. Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus 209, 452–469 (2010).

    Article  Google Scholar 

  10. Listowski, C., Määttänen, A., Montmessin, F., Spiga, A. & Lefèvre, F. Modeling the microphysics of CO2 ice clouds within wave-induced cold pockets in the Martian mesosphere. Icarus 237, 239–261 (2014).

    Article  Google Scholar 

  11. Clancy, R. T. et al. The distribution, composition, and particle properties of Mars mesospheric aerosols: an analysis of CRISM Vis-NearIR Limb Spectra with context from near-coincident MCS and MARCI Observations. Icarus 328, 246–273 (2019).

    Article  Google Scholar 

  12. McConnochie, T. H. et al. THEMIS-VIS observations of clouds in the Martian mesosphere: altitudes, wind speeds, and decameter-scale morphology. Icarus 210, 545–565 (2010).

    Article  Google Scholar 

  13. Sefton-Nash, E. et al. Climatology and first-order composition estimates of mesospheric clouds from Mars Climate Sounder limb spectra. Icarus 222, 342–356 (2013).

    Article  Google Scholar 

  14. Haberle, R. M. et al. Documentation of the NASA/Ames Mars global climate model: simulations of the present seasonal water cycle. Icarus (in the press).

  15. Urata, R. A. & Toon, O. B. Simulation of the Martian hydrologic cycle with a general circulation model: implications for the ancient Martian climate. Icarus 226, 229–250 (2013).

    Article  Google Scholar 

  16. Navarro, T. et al. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res. Planets 119, 1479–1495 (2014).

    Article  Google Scholar 

  17. Heavens, N. G. et al. Water ice clouds over the Martian tropics during northern summer. Geophys. Res. Lett. 37, L18202 (2010).

    Article  Google Scholar 

  18. Steele, L. J., Lewis, S. R. & Patel, M. R. The radiative impact of water ice clouds from a reanalysis of Mars Climate Sounder data. Geophys. Res. Lett. 41, 4471–4478 (2014).

    Article  Google Scholar 

  19. Hinson, D. P. & Watson, R. J. Temperature inversions, thermal tides, and water ice clouds in the Martian tropics. J. Geophys. Res. Planets 109, E01002 (2004).

    Google Scholar 

  20. Kleinböhl, A., Wilson, R. J., Kass, D., Schofield, J. T. & McCleese, D. J. The semidiurnal tide in the middle atmosphere of Mars. Geophys. Res. Lett. 40, 1952–1959 (2013).

    Article  Google Scholar 

  21. Madeleine, J.-B., Forget, F., Millour, E. & Navarro, T. The influence of radiatively active water ice clouds on the Martian climate. Geophys. Res. Lett. 39, L23202 (2012).

    Article  Google Scholar 

  22. Määttänen, A. et al. Nucleation studies in the Martian atmosphere. J. Geophys. Res. Planets 110, E02002 (2005).

    Article  Google Scholar 

  23. Maltagliati, L. et al. Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science 333, 1868–1871 (2011).

    Article  Google Scholar 

  24. Rafkin, S. C. R., Maria, M. R. V. S. & Michaels, T. I. Simulation of the atmospheric thermal circulation of a Martian volcano using a mesoscale numerical model. Nature 419, 697–699 (2002).

    Article  Google Scholar 

  25. Heavens, N. G. et al. Extreme detached dust layers near Martian volcanoes: evidence for dust transport by mesoscale circulations forced by high topography. Geophys. Res. Lett. 42, 3730–3738 (2015).

    Article  Google Scholar 

  26. Spiga, A., Faure, J., Madeleine, J.-B., Määttänen, A. & Forget, F. Rocket dust storms and detached dust layers in the Martian atmosphere. J. Geophys. Res. Planets 118, 746–767 (2013).

    Article  Google Scholar 

  27. Bardeen, C. G., Toon, O. B., Jensen, E. J., Marsh, D. R. & Harvey, V. L. Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. J. Geophys. Res. Atmos. 113, D17202 (2008).

    Article  Google Scholar 

  28. Bardeen, C. G. et al. Improved cirrus simulations in a general circulation model using CARMA sectional microphysics. J. Geophys. Res. Atmos. 118, 11679–11697 (2013).

    Article  Google Scholar 

  29. Crismani, M. M. J. et al. Detection of a persistent meteoric metal layer in the Martian atmosphere. Nat. Geosci. 10, 401–404 (2017).

    Article  Google Scholar 

  30. Plane, J. M. C. et al. Meteoric metal chemistry in the Martian atmosphere. J. Geophys. Res. Planets 123, 695–707 (2018).

    Article  Google Scholar 

  31. Wolff, M. & Clancy, R. T. et al. Constraints on the size of Martian aerosols from thermal emission spectrometer observations. J. Geophys. Res. Planets 108, 5097 (2003).

    Article  Google Scholar 

  32. McCleese, D. J. et al. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res. Planets 115, E12016 (2010).

    Article  Google Scholar 

  33. Mulholland, D. P., Lewis, S. R., Read, P. L., Madeleine, J.-B. & Forget, F. The solsticial pause on Mars: 2 modelling and investigation of causes. Icarus 264, 465–477 (2016).

    Article  Google Scholar 

  34. Wilson, R. J., Neumann, G. A. & Smith, M. D. Diurnal variation and radiative influence of Martian water ice clouds. Geophys. Res. Lett. 34, L02710 (2007).

    Article  Google Scholar 

  35. Kahre, M. A., Hollingsworth, J. L., Haberle, R. M. & Wilson, R. J. Coupling the Mars dust and water cycles: the importance of radiative-dynamic feedbacks during northern hemisphere summer. Icarus 260, 477–480 (2015).

    Article  Google Scholar 

  36. Lee, C. et al. Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder. J. Geophys. Res. Planets 114, E03005 (2009).

    Google Scholar 

  37. Zurek, R. W. Surface pressure response to elevated tidal heating sources: comparison of Earth and Mars. J. Atmos. Sci. 37, 1132–1136 (1980).

    Article  Google Scholar 

  38. Withers, P. & Catling, D. C. Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric entry. Geophys. Res. Lett. 37, L24204 (2010).

    Article  Google Scholar 

  39. Withers, P., Pratt, R., Bertaux, J.-L. & Montmessin, F. Observations of thermal tides in the middle atmosphere of Mars by the SPICAM instrument. J. Geophys. Res. Planets 116, E11005 (2011).

    Article  Google Scholar 

  40. Banfield, D., Conrath, B., Pearl, J. C., Smith, M. D. & Christensen, P. Thermal tides and stationary waves on Mars as revealed by Mars Global Surveyor thermal emission spectrometer. J. Geophys. Res. Planets 105, 9521–9537 (2000).

    Article  Google Scholar 

  41. Guzewich, S. D., Talaat, E. R. & Waugh, D. W. Observations of planetary waves and nonmigrating tides by the Mars Climate Sounder. J. Geophys. Res. Planets 117, E03010 (2012).

    Article  Google Scholar 

  42. Sato, T. M. et al. Tidal variations in the Martian lower atmosphere inferred from Mars Express Planetary Fourier Spectrometer temperature data. Geophys. Res. Lett. 38, L24205 (2011).

    Google Scholar 

  43. Withers, P., Bougher, S. W. & Keating, G. M. The effects of topographically-controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer. Icarus 164, 14–32 (2003).

    Article  Google Scholar 

  44. Zurek, R. W. Atmospheric tidal forcing of the zonal-mean circulation: the Martian dusty atmosphere. J. Atmos. Sci. 43, 652–670 (1986).

    Article  Google Scholar 

  45. Forbes, J. M. & Miyahara, S. Solar semidiurnal tide in the dusty atmosphere of Mars. J. Atmos. Sci. 63, 1798–1817 (2006).

    Article  Google Scholar 

  46. Michelangeli, D. V., Toon, O. B., Haberle, R. M. & Pollack, J. B. Numerical simulations of the formation and evolution of water ice clouds in the Martian atmosphere. Icarus 102, 261–285 (1993).

    Article  Google Scholar 

  47. Colaprete, A., Toon, O. B. & Magalhães, J. A. Cloud formation under Mars Pathfinder conditions. J. Geophys. Res. Planets 104, 9043–9053 (1999).

    Article  Google Scholar 

  48. Urata, R. A. & Toon, O. B. A new general circulation model for Mars based on the NCAR Community Atmosphere Model. Icarus 226, 336–354 (2013).

    Article  Google Scholar 

  49. Hartwick, V. MarsCAM-CARMA (Open Science Framework, 2019); https://doi.org/10.17605/OSF.IO/7YBZE

  50. Kahre, M. A., Murphy, J. R., Haberle, R. M., Montmessin, F. & Schaeffer, J. Simulating the Martian dust cycle with a finite surface dust reservoir. Geophys. Res. Lett. 32, L20204 (2005).

    Article  Google Scholar 

  51. Newman, C. E., Lewis, S. R., Read, P. L. & Forget, F. Modeling the Martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res. Planets 107, 6-1–6-18 (2002).

    Article  Google Scholar 

  52. Wolff, M. J. et al. Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. J. Geophys. Res. Planets 111, E12S17 (2006).

    Article  Google Scholar 

  53. Warren, S. G. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 23, 1206–1225 (1984).

    Article  Google Scholar 

  54. Schneider, N. M. et al. MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars. Geophys. Res. Lett. 42, 4755–4761 (2015).

    Article  Google Scholar 

  55. Crismani, M. M. J. et al. The impact of comet Siding Spring’s meteors on the Martian atmosphere and ionosphere. J. Geophys. Res. Planets 123, 2613–2627 (2018).

    Article  Google Scholar 

  56. Nachbar, M. et al. Laboratory measurements of heterogeneous CO2 ice nucleation on nanoparticles under conditions relevant to the Martian mesosphere. J. Geophys. Res. Planets 121, 753–769 (2016).

    Article  Google Scholar 

  57. Trainer, M. G., Toon, O. B. & Tolbert, M. A. Measurements of depositional ice nucleation on insoluble substrates at low temperatures: implications for Earth and Mars. J. Phys. Chem. C 113, 2036–2040 (2009).

    Article  Google Scholar 

  58. Kuroda, T., Medvedev, A. S., Kasaba, Y. & Hartogh, P. Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars: CO2 snowfalls on Mars. Geophys. Res. Lett. 40, 1484–1488 (2013).

    Article  Google Scholar 

  59. Kleinböhl, A., Friedson, A. J. & Schofield, J. T. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the Martian atmosphere. J. Quant. Spectrosc. Radiat. Transf. 187, 511–522 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by NASA’s Habitable Worlds Program, NNX16AO80G, the National Science Foundation Graduate Research Fellowship under grant no. 1144083 and NASA’s Nexus for Exoplanet System Science Program NNX15AE05G. We thank R. Urata, J. Wilson and D. Marsh for helpful suggestions. We thank J. Plane for providing the size distributions of ablated IDPs and insight into their abundance and chemistry.

Author information

Authors and Affiliations

Authors

Contributions

V.L.H. and O.B.T contributed to the scientific discussions and designed the study. V.L.H. performed all the computer simulations, developed the parameterizations for the NCAR Mars GCM and wrote the manuscript. N.G.H provided and analysed the MCS observational data for comparison with the model results.

Corresponding author

Correspondence to V. L Hartwick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Figures 1–12

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartwick, V.L., Toon, O.B. & Heavens, N.G. High-altitude water ice cloud formation on Mars controlled by interplanetary dust particles. Nat. Geosci. 12, 516–521 (2019). https://doi.org/10.1038/s41561-019-0379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0379-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing