Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification

Matters Arising to this article was published on 02 July 2020

Abstract

Grasslands expanded globally during the late Cenozoic and the development of these ecosystems shaped the evolution of many faunal groups, including our hominin ancestors. The emergence of these ecosystems has been dated in many regions, but the origins of the iconic African C4 savannah grasslands remain poorly known, as do the causal factors that led to their establishment. Here we document their origins with the distinct carbon isotope signature from the hot-, arid- and low-CO2-adapted C4 grasses that dominate modern savannahs and grasslands. We use the carbon isotope values of leaf-wax molecules in deep-sea drill cores to measure the rise of African C4 ecosystems. We also reconstruct African palaeohydroclimate change from leaf-wax hydrogen isotope values and dust deposition rates in these cores. We find that C4-dominated ecosystems expanded synchronously across Northwestern and East Africa after 10 million years ago. This was not accompanied by substantial changes in palaeohydrology or dust deposition, precluding aridification as a causal factor. The expansion of C4 grasses was coincident, however, with dramatic high-latitude cooling and increased pole–Equator temperature gradients. We suggest that declining atmospheric CO2 levels were a direct cause of the C4 grassland expansion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Latitudinal patterns of modern African rainfall, carbon isotope values of long-chain plant-waxes and vegetation cover.
Fig. 2: Plant-wax records of Neogene vegetation and hydrologic change.
Fig. 3: Evolution of global SST and African dust flux compared with C4 expansion and African hydrologic change.

Similar content being viewed by others

Data availability

All data presented in this paper are freely available in Supplementary Tables 17.

References

  1. Still, C. J., Berry, J. A., Collatz, G. J. & DeFries, R. S. Global distribution of C3 and C4 vegetation: carbon cycle implications. Glob. Biogeochem. Cycles 17, 1006 (2003).

    Article  Google Scholar 

  2. Still, C. J. & Powell, R. L. in Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping (eds West, J. B. et al.) 179–193 (Springer Netherlands, 2010).

  3. Christin, P.-A. et al. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr. Biol. 18, 37–43 (2008).

    Article  Google Scholar 

  4. Vicentini, A., Barber, J. C., Aliscioni, S. S., Giussani, L. M. & Kellogg, E. A. The age of the grasses and clusters of origins of C4 photosynthesis. Glob. Change Biol. 14, 2963–2977 (2008).

    Article  Google Scholar 

  5. Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    Article  Google Scholar 

  6. Stromberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu Rev. Earth Planet. Sci. 39, 517–544 (2011).

    Article  Google Scholar 

  7. Sponheimer, M. et al. Isotopic evidence of early hominin diets. Proc. Natl Acad. Sci. USA 110, 10513–10518 (2013).

    Article  Google Scholar 

  8. Niedermeyer, E. M. et al. The stable hydrogen isotopic composition of sedimentary plant waxes as quantitative proxy for rainfall in the West African Sahel. Geochim. Cosmochim. Acta 184, 55–70 (2016).

    Article  Google Scholar 

  9. Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2017).

    Article  Google Scholar 

  10. Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 6355–6363 (2016).

    Article  Google Scholar 

  11. Bush, R. T. & McInerney, F. A. Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117, 161–179 (2013).

    Article  Google Scholar 

  12. Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).

    Article  Google Scholar 

  13. Uno, K. T. et al. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proc. Natl Acad. Sci. USA 108, 6509–6514 (2011).

    Article  Google Scholar 

  14. Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl Acad. Sci. USA 112, 11467–11472 (2015).

    Article  Google Scholar 

  15. Cerling, T. E. et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl Acad. Sci. USA 110, 10501–10506 (2013).

    Article  Google Scholar 

  16. Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).

    Article  Google Scholar 

  17. Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).

    Article  Google Scholar 

  18. Lehmann, C. E., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. New Phytol. 191, 197–209 (2011).

    Article  Google Scholar 

  19. Schuster, M. et al. The age of the Sahara Desert. Science 311, 821–821 (2006).

    Article  Google Scholar 

  20. Mcgee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29 29, 2340–2350 (2010).

    Article  Google Scholar 

  21. Bonnefille, R. Cenozoic vegetation, climate changes and hominid evolution in tropical Africa. Glob. Planet. Change 72, 390–411 (2010).

    Article  Google Scholar 

  22. Sage, R. F., Wedin, D. A. & Li, M. in C 4 Plant Biology (eds Sage, R. F. & Monson, R. K.) 313–373 (Academic, 1999).

  23. Sage, R. F. & Kubien, D. S. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth. Res. 77, 209–225 (2003).

    Article  Google Scholar 

  24. Keeley, J. E. & Rundel, P. W. Fire and the Miocene expansion of C4 grasslands. Ecol. Lett. 8, 683–690 (2005).

    Article  Google Scholar 

  25. Morley, R. J. & Richards, K. Gramineae cuticle: a key indicator of Late Cenozoic climatic change in the Niger Delta. Rev. Palaeobot. Palynol. 77, 119–127 (1993).

    Article  Google Scholar 

  26. Pagani, M., Arthur, M. A. & Freeman, K. H. Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14, 273–292 (1999).

    Article  Google Scholar 

  27. Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. 7, 10284 (2016).

    Article  Google Scholar 

  28. Mejia, L. M. et al. A diatom record of CO2 decline since the late Miocene. Earth Planet. Sci. Lett. 479, 18–33 (2017).

    Article  Google Scholar 

  29. Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    Article  Google Scholar 

  30. Legates, D. R. & Willmott, C. J. Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol. 10, 111–127 (1990).

    Article  Google Scholar 

  31. Loveland, T. et al. ISLSCP II IGBP DISCover and SiB Land Cover 1992-1993 (Oak Ridge National Laboratory Distributed Active Archive Center, 2009); https://doi.org/10.3334/ORNLDAAC/930

  32. Collins, J. A. et al. Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nat. Geosci. 4, 42–45 (2011).

    Article  Google Scholar 

  33. Rommerskirchen, F. et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochem. Geophys. Geosyst. 4, 1101 (2003).

    Article  Google Scholar 

  34. Kuechler, R. R. A Revised Orbital Forcing Concept of West African Climate and Vegetation Variability During the Pliocene and the Last Glacial Cycle. PhD thesis, Univ. Bremen (2015).

  35. Kuechler, R. R., Schefuss, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the Last Glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quat. Sci. Rev. 82, 56–67 (2013).

    Article  Google Scholar 

  36. Kuechler, R. R., Dupont, L. M. & Schefuss, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Climate 14, 73–84 (2018).

    Google Scholar 

  37. Ruddiman, W. F., Sarnthein, M., Baldauf, J. & Shipboard Scientific Party Proceedings of the Ocean Drilling Program: Initial Reports Vol. 108 (Ocean Drilling Program, 1988).

  38. Ruddiman, W. F. et al. Late Miocene to Pleistocene evolution of climate in Africa and the low-latitude Atlantic: overview of Leg 108 results. In Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (eds Ruddiman, W. F. et al.) 463–484 (Ocean Drilling Program, 1989).

  39. Mascle, J., Lohmann, G. P., Clift, P. D. & Shipboard Scientific Party Proceedings Ocean Drilling Program: Initial Reports Vol. 159 (Ocean Drilling Program, 1996).

  40. Tiedemann, R. Acht Millionen Jahre Klimageschichte von Nordwest Afrika und Paläo-Ozeanographie des angrenzenden Atlantiks: Hochauflösende Zeitreihen von ODP-Sites 658-661. PhD thesis, Christian-Albrechts-Univ. Kiel (1991).

  41. Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).

    Article  Google Scholar 

  42. Shipboard Scientific Party. Site 659. In Proceedings Ocean Drilling Program: Initial Reports Vol. 108 (eds Ruddiman, W. F. et al.) 221–325 (Ocean Drilling Program, 1988).

  43. Weaver, P. P. E. et al. Biostratigraphic synthesis: Leg 108, Eastern Equatorial Atlantic. In Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (eds Ruddiman, W. F. et al.) 455–462 (Ocean Drilling Program, 1989).

  44. Shipboard Scientific Party. Site 959. In Proceedings Ocean Drilling Program: Initial Reports Vol. 159 (eds Mascle, J. et al.) 65–150 (Ocean Drilling Program, 1996).

  45. Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Sci. Rev. 104, 111–142 (2011).

    Article  Google Scholar 

  46. Backman, J., Raffi, I., Rio, D., Fornaciari, E. & Pälike, H. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsl. Stratigr. 45, 221–244 (2012).

    Article  Google Scholar 

  47. Raffi, I. et al. A new low-to middle-matitude biozonation and revised biochronology of Palaeogene calcareous nannofossils. In STRATI 2013: The First International Conference on Stratigraphy (eds Rocha, R. et al.) 137–141 (Springer Geology, 2014).

  48. Polissar, P. J. & D’Andrea, W. J. Uncertainty in paleohydrologic reconstructions from molecular δD values. Geochim. Cosmochim. Acta 129, 146–156 (2014).

    Article  Google Scholar 

  49. Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies. Paleoceanography 25, PA3202 (2010).

    Article  Google Scholar 

  50. Francey, R. J. et al. A 1000‐year high precision record of δ13C in atmospheric CO2. Tellus B 51, 170–193 (1999).

    Article  Google Scholar 

  51. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  52. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature 451, 279–283 (2008).

    Article  Google Scholar 

  53. Schrag, D. P. et al. The oxygen isotopic composition of seawater during the last glacial maximum. Quat. Sci. Rev. 21, 331–342 (2002).

    Article  Google Scholar 

  54. Garcin, Y. et al. Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa. Geochim. Cosmochim. Acta 142, 482–500 (2014).

    Article  Google Scholar 

  55. Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).

    Article  Google Scholar 

  56. Schenau, S. J. et al. Organic-rich layers in the Metochia section (Gavdos, Greece): evidence for a single mechanism of sapropel formation during the past 10 My. Mar. Geol. 153, 117–135 (1999).

    Article  Google Scholar 

  57. Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).

    Article  Google Scholar 

  58. Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature 513, 401–404 (2014).

    Article  Google Scholar 

  59. Tierney, J. E., deMenocal, P. B. & Zander, P. D. A climatic context for the out-of-Africa migration. Geology 45, 1023–1026 (2017).

    Article  Google Scholar 

  60. Rose, C., Polissar, P. J., Tierney, J. E., Filley, T. & deMenocal, P. B. Changes in northeast African hydrology and vegetation associated with Pliocene-Pleistocene sapropel cycles. Phil. Trans. R. Soc B 371, 20150243 (2016).

  61. Stein, R., ten Haven, H. L., Littke, R., Rullkötter, J. & Welte, D. H. Accumulation of marine and terrigenous organic carbon at upwelling Site 658 and nonupwelling Sites 657 and 659: implications for the reconstruction of paleoenvironments in the eastern subtropical Atlantic through late Cenozoic times. In Proceedings Ocean Drilling Program: Scientific Results Vol. 108 (eds Ruddiman, W. F. et al.) 361–385 (Ocean Drilling Program, 1989).

  62. Tiedemann, R., Sarnthein, M. & Stein, R. Climatic changes in the Western Sahara: aeolo-marine sediment record of the last 8 million years (Sites 657-661). In Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (eds W. F. Ruddiman et al.) 241–277 (Ocean Drilling Program, 1989).

Download references

Acknowledgements

We thank I. Raffi and J. Backman for assistance with updating nannofossil ages, W. Ryan for discussions and G. Janigian, K. Jackson and N. deRoberts for laboratory assistance. This research used samples and data provided by the IODP. This is Lamont-Doherty Earth Observatory Contribution 8331. This research was supported by the US National Science Foundation through graduate research fellowships to C.R. and S.R.P (grant no. DGE16-44869) and undergraduate student participation through the LDEO intern programme (grant no. OCE13-59194) and by the Center for Climate and Life at Columbia University.

Author information

Authors and Affiliations

Authors

Contributions

C.R., P.J.P., K.T.U. and P.deM. conceived the study. C.R., P.J.P., K.T.U. and S.R.P. conducted the investigation. All authors wrote the manuscript. P.J.P. and P.deM. supervised the study.

Corresponding authors

Correspondence to Pratigya J. Polissar or Cassaundra Rose.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary material

Supplementary Table 1

Site information

Supplementary Table 2

Site 659 composite depth

Supplementary Table 3

Site 659 age model

Supplementary Table 4

Site 959 age model

Supplementary Table 5

Leaf-wax data

Supplementary Table 6

Leaf-wax epsilon

Supplementary Table 7

Site 659 dust flux

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polissar, P.J., Rose, C., Uno, K.T. et al. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019). https://doi.org/10.1038/s41561-019-0399-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0399-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing