Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale flow of Indian Ocean asthenosphere driven by Réunion plume

Abstract

Volcanic hotspot islands are thought to be surface manifestations of mantle plumes that rise from the core–mantle boundary. When mantle plumes approach the surface, their mostly vertical rise must be deflected into near-horizontal flow beneath tectonic plates. This creates an opportunity to constrain their dynamics and their interactions with lithospheric plates and mid-ocean ridges. Seafloor observations have been used to propose that a focused flow in the asthenosphere transports plume heat to the nearest mid-ocean ridge, where it efficiently dissipates through formation of lithosphere. Here we present imaging results from a seismological survey of a proposed plume-to-ridge flow channel between the Réunion hotspot and the Central Indian Ridge. Rayleigh-wave tomography and shear-wave splitting confirm the presence of a channelized flow of shallow asthenosphere, eastward from the hotspot to the spreading ridge. At a larger scale, a deeper reservoir of hot asthenosphere fills vast tracts of the Indian Ocean basin east and north of Réunion Island. Its flows, decoupled from overlying lithospheres, are also directed towards the Central Indian Ridge but extend well beyond, tapped but not significantly depleted by the spreading ridge. Based on seismic and geochemical observations, we suggest that this hidden heat reservoir is generated and driven by the mantle plume, which buffers more heat near the surface than expected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Seismological imaging of the Rodrigues Corridor region, from Réunion to the CIR.
Fig. 2: Surface-wave tomography18 of the western Indian Ocean.
Fig. 3: Shape and dynamics of the MBAR.
Fig. 4: Upper mantle structure and Poiseuille-like asthenospheric flow beneath the Western Indian Ocean.
Fig. 5: Conceptual summary of shallow and deep flows in the asthenosphere beneath the western Indian Ocean.

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are freely available from the RESIF data centre (http://seismology.resif.fr, https://doi.org/10.15778/RESIF.YV2011).

The RHUM-RUM dataset (https://www.fdsn.org/networks/detail/YV_2011/) has been assigned the FDSN network code YV and is hosted and freely accessible at the French RESIF data centre (http://seismology.resif.fr). MACOMO data are archived at the IRIS DMC (http://www.iris.edu) under the FDSN network code XV (https://doi.org/10.7914/SN/XV_2011). The individual RHUM-RUM SKS splitting measurements presented in this article can be found online in the SKS splitting data base https://doi.org/10.18715/sks_splitting_database and mirrored and accessible at IRIS (Incorporated Research Institutions for Seismology) at https://ds.iris.edu/spud/swsmeasurement. We acknowledge the GEOSCOPE network (https://doi.org/10.18715/GEOSCOPE.G) for installing and maintaining permanent stations in the Indian Ocean.

Code availability

The shear-wave splitting measurements were performed with the MATLAB-based SplitLab code available at https://github.com/IPGP/splitlab. The surface-wave tomography codes are not available online because they are tailored for laboratory work, but they can be requested by email to E.S. or S.K.

References

  1. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  Google Scholar 

  2. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  3. Courtillot, V. et al. Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature 333, 843–846 (1988).

    Article  Google Scholar 

  4. Duncan, R. A. & Hargraves, R. B. 40Ar/39Ar geochronology of basement rocks from the Mascarene plateau, the Chagos bank and the Maldives ridge. Proc. Ocean Drill. Program, Sci. Results 115, 43–51 (1990).

    Google Scholar 

  5. Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem. Geophys. Geosyst. 7, Q11007 (2006).

    Article  Google Scholar 

  6. French, S. W. & Romanovicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–101 (2015).

    Article  Google Scholar 

  7. Ritsema, J. Evidence for shear velocity anisotropy in the lowermost mantle beneath the Indian Ocean. Geophys. Res. Lett. 27, 1041–1044 (2000).

    Article  Google Scholar 

  8. Morgan, W. J. Rodriguez, Darwin, Amsterdam, …, a second type of hotspot island. J. Geophys. Res. 83, 5355–5360 (1978).

    Article  Google Scholar 

  9. Duncan, R. A. The volcanic record of the Réunion hotspot. Proc. Ocean Drill. Program, Sci. Results 115, 3–10 (1990).

    Google Scholar 

  10. Dyment, J., Lin, J. & Baker, E. T. Ridge–hotspot interactions: what mid-ocean ridges tell us about deep Earth processes. Oceanography 20, 102–115 (2007).

    Article  Google Scholar 

  11. McDougall, I., Upton, B. G. J. & Wadsworth, W. J. A geological reconnaissance of Rodriguez Island Indian Ocean. Nature 206, 26–27 (1965).

    Article  Google Scholar 

  12. Mahoney, J. J. et al. Isotopic and geochemical provinces of the western Indian Ocean spreading centers. J. Geophys. Res. 94, 4033–4052 (1989).

    Article  Google Scholar 

  13. Nauret, F. et al. Correlated trace element-Pb isotope enrichments in Indian MORB along 18–20° circle S, Central Indian Ridge. Earth Planet. Sci. Lett. 245, 137–152 (2006).

    Article  Google Scholar 

  14. Füri, E. et al. Helium isotope variations between Réunion Island and the Central Indian Ridge (17°–21° S): new evidence for ridge-hot spot interaction. J. Geophys. Res. 116, B02207 (2011).

    Article  Google Scholar 

  15. Murton, B. J., Tindle, A. G., Milton, J. A. & Sauter, D. Heterogeneity in southern Central Indian Ridge MORB: implications for ridge–hot spot interaction. Geochem. Geophys. Geosyst. 6, Q03E20 (2005).

    Article  Google Scholar 

  16. Okal, E. A. & Stewart, L. M. Slow earthquakes along oceanic fracture zones: evidence for asthenospheric flow away from hotspots? Earth Planet. Sci. Lett. 57, 75–87 (1982).

    Article  Google Scholar 

  17. Barruol, G. & Sigloch, K. Investigating La Réunion hot spot from crust to core. EOS Trans. Am. Geophys. Union 94, 205–207 (2013).

    Article  Google Scholar 

  18. Mazzullo, A. et al. Anisotropic tomography around La Réunion island from Rayleigh waves. J. Geophys. Res. 122, 9132–9148 (2017).

    Article  Google Scholar 

  19. Scholz, J.-R. et al. SKS splitting in the Western Indian Ocean from land and seafloor seismometers: plume, plate and ridge signatures. Earth Planet. Sci. Lett. 498, 169–184 (2018).

    Article  Google Scholar 

  20. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  21. Stixrude, L. & Lithgow-Bertelloni, C. Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. J. Geophys. Res. 110, B03204 (2005).

    Article  Google Scholar 

  22. Debayle, E. & Lévêque, J. J. Upper mantle heterogeneities in the Indian Ocean from waveform inversion. Geophys. Res. Lett. 24, 245–248 (1997).

    Article  Google Scholar 

  23. Ma, Z. & Dalton, C. A. Evolution of the lithosphere in the Indian Ocean from combined earthquake and ambient noise tomography. J. Geophys. Res. 122, 354–371 (2017).

    Article  Google Scholar 

  24. Nicolas, A. & Christensen, N. I. in Composition, Structure and Dynamics of the Lithosphere–Asthenosphere System Vol. 16 (eds Fuchs, K. & Froidevaux, C.) 111–123 (American Geophysical Union, 1987).

  25. Mainprice, D., Barruol, G. & Ben Ismail, W. in Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale Vol. 117 (eds Karato, S. I. et al.) 237–264 (American Geophysical Union, 2000).

  26. Barruol, G. & Fontaine, F. R. Mantle flow beneath La Réunion hotspot track from SKS splitting. Earth Planet. Sci. Lett. 362, 108–121 (2013).

    Article  Google Scholar 

  27. Stotz, I. L., Iaffaldano, G. & Davies, D. R. Pressure-driven Poiseuille flow: a major component of the torque-balance governing Pacific Plate motion. Geophys. Res. Lett. 45, 117–125 (2018).

    Article  Google Scholar 

  28. Natarov, S. I. & Conrad, C. P. The role of Poiseuille flow in creating depth-variation of asthenospheric shear. Geophys. J. Int. 190, 1297–1310 (2012).

    Article  Google Scholar 

  29. Lin, P.-Y. P. et al. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere. Nature 535, 538–541 (2016).

    Article  Google Scholar 

  30. Becker, T. W. & Faccenna, C. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet. Sci. Lett. 310, 453–461 (2011).

    Article  Google Scholar 

  31. Forte, A. et al. Joint seismic–geodynamic–mineral physical modelling of African geodynamics: a reconciliation of deep-mantle convection with surface geophysical constraints. Earth Planet. Sci. Lett. 295, 329–341 (2010).

    Article  Google Scholar 

  32. Morgan, W. J. & Morgan, J. P. in Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.) 65–78 (Geological Society of America, 2007).

  33. Argus, D. F., Gordon, R. G. & DeMets, C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem. Geophys. Geosyst. 12, Q11001 (2011).

    Article  Google Scholar 

  34. Kim, J., Pak, S.-J., Moon, J.-W., Lee, S.-M. & Stuart, F. M. Mantle heterogeneity in the source region of mid-ocean ridge basalts along the northern Central Indian Ridge (8° S–17° S). Geochem. Geophys. Geosyst. 18, 1419–1434 (2017).

    Article  Google Scholar 

  35. Hable, S., Sigloch, K., Stutzmann, E., Kiselev, S. & Barruol, G. Tomography of crust and lithosphere in the western Indian Ocean from noise cross-correlations of land and ocean bottom seismometers. Geophys. J. Int. 219, 924–944 (2019).

    Article  Google Scholar 

  36. Ito, G., Lin, J. & Gable, C. W. Interaction of mantle plumes and migrating mid-ocean ridges: implications for the Galapagos plume-ridge system. J. Geophys. Res. 102, 15403–15417 (1997).

    Article  Google Scholar 

  37. Mittal, T. & Richards, M. A. Plume–ridge interaction via melt channelization at Galápagos and other near-ridge hotspot provinces. Geochem. Geophys. Geosyst. 18, 1711–1738 (2017).

    Article  Google Scholar 

  38. Maia, M. et al. Building of the Amsterdam-Saint Paul plateau: a 10 Myr history of a ridge–hot spot interaction and variations in the strength of the hot spot source. J. Geophys. Res. 116, B09104 (2011).

    Article  Google Scholar 

  39. Iaffaldano, G., Davies, D. R. & DeMets, C. Indian Ocean floor deformation induced by the Réunion plume rather than the Tibetan Plateau. Nat. Geosci. 11, 362–366 (2018).

    Article  Google Scholar 

  40. Kumagai, I., Davaille, A., Kurita, K. & Stutzmann, E. Mantle plumes: thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophys. Res. Lett. 35, L16301 (2008).

    Article  Google Scholar 

  41. Debayle, E. & Ricard, Y. Seismic observations of large-scale deformation at the bottom of fast-moving plates. Earth Planet. Sci. Lett. 376, 165–177 (2013).

    Article  Google Scholar 

  42. Tsekhmistrenko, M., Sigloch, K. & Hosseini, K. Whole-Mantle Structure under the Réunion Hotspot in the Western Indian Ocean from Multifrequency P-wave Tomography EGU2018-1076 (European Geosciences Union, 2018).

  43. Sleep, N. H. Channeling at the base of the lithosphere during the lateral flow of plume material beneath flow line hot spots. Geochem. Geophys. Geosyst. 9, Q08005 (2008).

    Google Scholar 

  44. French, S., Lekic, V. & Romanovicz, B. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342, 227–230 (2013).

    Article  Google Scholar 

  45. Montagner, J. P. Upper mantle low anisotropy channels below the Pacific plate. Earth Planet. Sci. Lett. 202, 263–274 (2002).

    Article  Google Scholar 

  46. O’Connor, J., Jokat, W., Wijbrans, J. & Colli, L. Hotspot tracks in the South Atlantic located above bands of fast flowing asthenosphere driven by waning pulsations from the African LLSVP. Gondwana Res. 53, 197–208 (2018).

    Article  Google Scholar 

  47. Yamamoto, M., Morgan, J. P. & Morgan, W. J. in Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.) 189–208 (Geological Society of America, 2007).

  48. Morgan, J. P., Morgan, W. J., Zhang, Y. S. & Smith, W. H. F. Observational hints for a plume-fed, suboceanic asthenosphere and its role in mantle convection. J. Geophys. Res. 100, 12753–12767 (1995).

    Article  Google Scholar 

  49. Fontaine, F. R. et al. Crustal and uppermost mantle structure variation beneath La Réunion hotspot track. Geophys. J. Int. 203, 107–126 (2015).

    Article  Google Scholar 

  50. Barruol, G. Marion Dufresne MD192 Cruise Report Sept–Oct 2012 https://doi.org/10.13140/2.1.2492.0640 (2013).

  51. Sigloch, K. Cruise Report R/V Meter, Cruise No. 101: Seismological Imaging of a Mantle Plume under La Réunion, Western Indian Ocean https://doi.org/10.2312/cr_m101 (2014).

  52. Stähler, S. C. et al. Performance report of the RHUM-RUM ocean bottom seismometer network around La Réunion, western Indian Ocean. Adv. Geosci. 41, 43–63 (2016).

    Article  Google Scholar 

  53. Scholz, J.-R. et al. Orienting ocean-bottom seismometers from P- and Rayleigh waves polarizations. Geophys. J. Int. 208, 1277–1289 (2017).

    Article  Google Scholar 

  54. Hable, S., Sigloch, K., Barruol, G., Stähler, S. C. & Hadziioannou, C. Clock errors in land and ocean bottom seismograms: high-accuracy estimates from multiple-component noise cross-correlations. Geophys. J. Int. 214, 2014–2034 (2018).

    Article  Google Scholar 

  55. Pratt, M. J. et al. Shear velocity structure of the crust and upper mantle of Madagascar derived from surface wave tomography. Earth Planet. Sci. Lett. 458, 405–417 (2017).

    Article  Google Scholar 

  56. Ramirez, C. et al. Complex seismic anisotropy in Madagascar revealed by shear wave splitting measurements. Geophys. J. Int. 215, 1718–1727 (2018).

    Google Scholar 

  57. Beucler, E., Stutzmann, E. & Montagner, J. P. Surface wave higher-mode phase velocity measurements using a roller-coaster-type algorithm. Geophys. J. Int. 155, 289–307 (2003).

    Article  Google Scholar 

  58. Tommasi, A. Forward modeling of the development of seismic anisotropy in the upper mantle. Earth Planet. Sci. Lett. 160, 1–13 (1998).

    Article  Google Scholar 

  59. Montagner, J. P. & Nataf, H. C. A simple method for inverting the azimuthal anisotropy of surface-waves. J. Geophys. Res. 91, 511–520 (1986).

    Article  Google Scholar 

  60. Burgos, G. et al. Oceanic lithosphere–asthenosphere boundary from surface wave dispersion data. J. Geophys. Res. 119, 1079–1093 (2014).

    Article  Google Scholar 

  61. Kawakatsu, H. et al. Seismic evidence of sharp lithosphere–asthenosphere boundaries of oceanic plates. Science 324, 499–502 (2009).

    Article  Google Scholar 

  62. Kawakatsu, H. & Utada, H. Seismic and electrical signatures of the lithosphere–asthenosphere system of the normal oceanic mantle. Ann. Rev. Earth Planet. Sci. 45, 139–167 (2017).

    Article  Google Scholar 

  63. Silver, P. G. & Chan, W. W. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res. 96, 16429–16454 (1991).

    Article  Google Scholar 

  64. Silver, P. G. Seismic anisotropy beneath the continents: probing the depths of geology. Ann. Rev. Earth Planet. Sci. 24, 385–432 (1996).

    Article  Google Scholar 

  65. Vinnik, L. P., Farra, V. & Romanovicz, B. Azimuthal anisotropy in the earth from observations of SKS at geoscope and NARS broadband stations. Bull. Seismol. Soc. Am. 79, 1542–1558 (1989).

    Google Scholar 

  66. Barruol, G. et al. Mapping upper mantle flow beneath French Polynesia from broadband ocean bottom seismic observations. Geophys. Res. Lett. 36, L14301 (2009).

    Article  Google Scholar 

  67. Martin-Short, R., Allen, R. M., Bastow, I. D., Totten, E. & Richards, M. A. Mantle flow geometry from ridge to trench beneath the Gorda–Juan de Fuca plate system. Nat. Geosci. 8, 965–969 (2015).

    Article  Google Scholar 

  68. Takeo, A. et al. Seismic azimuthal anisotropy in the oceanic lithosphere and asthenosphere from broadband surface wave analysis of OBS array records at 60 Ma seafloor. J. Geophys. Res. 121, 1927–1947 (2016).

    Article  Google Scholar 

  69. Reiss, M. C. et al. Seismic anisotropy of the lithosphere and asthenosphere beneath southern Madagascar from teleseismic shear wave splitting analysis and waveform modeling. J. Geophys. Res. 121, 6627–6643 (2016).

    Article  Google Scholar 

  70. Barruol, G. & Ben Ismail, W. Upper mantle anisotropy beneath the African IRIS and Geoscope stations. Geophys. J. Int. 146, 549–561 (2001).

    Article  Google Scholar 

  71. Behn, M. D., Conrad, C. P. & Silver, P. G. Detection of upper mantle flow associated with the African Superplume. Earth Planet. Sci. Lett. 224, 259–274 (2004).

    Article  Google Scholar 

  72. Hammond, J. O. S. et al. Upper mantle anisotropy beneath the Seychelles microcontinent. J. Geophys. Res. 110, B11401 (2005).

    Article  Google Scholar 

  73. Wuestefeld, A., Bokelmann, G. H. R., Zaroli, C. & Barruol, G. SplitLab: a shear-wave splitting environment in Matlab. Computer Geosci. 34, 515–528 (2008).

    Article  Google Scholar 

  74. Griot, D. A., Montagner, J. P. & Tapponnier, P. Confrontation of mantle seismic anisotropy with two extreme models of strain in Asia. Geophys. Res. Lett. 25, 1447–1450 (1998).

    Article  Google Scholar 

  75. Wuestefeld, A., Bokelmann, G. H. R., Barruol, G. & Montagner, J. P. Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Phys. Earth Planet. Int. 176, 198–212 (2009).

    Article  Google Scholar 

  76. Becker, T. W. & Lebedev, S. & Long, M. D. On the relationship between azimuthal anisotropy from shear waves splitting and tomographic models. J. Geophys. Res. 117, B01306 (2012).

    Article  Google Scholar 

  77. Silver, P. G. & Savage, M. K. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophys. J. Int. 119, 949–963 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

RHUM-RUM was funded by the Agence Nationale de la Recherche in France (project ANR-11-BS56-0013) and by the Deutsche Forschungsgemeinschaft in Germany (grants SI1538/2-1 and SI1538/4-1), with additional support from the Centre National de la Recherche Scientifique—Institut National des Sciences de l’Univers (CNRS-INSU), Terres Australes et Antarctiques Françaises (TAAF), Institut Polaire Paul Emile Victor (IPEV), Université de La Réunion and Alfred Wegener Institut (AWI). OBS were provided by DEPAS (Deutsche Geräte-Pool für Amphibische Seismologie, Germany), GEOMAR (GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Germany) and INSU-IPGP (Institut National des Sciences de l’Univers—Institut de Physique du Globe de Paris, France). K.S. was funded by Deutsche Forschungsgemeinschaft grants SI1538/2-1 and SI1538/4-1, and by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no. PCIG14-GA-2013-631104 ‘RHUM-RUM’. J.-P.M. was funded by IUF (Institut Universitaire de France). Thanks to the crews of cruises Marion Dufresne 192 and Meteor 101 and to TIDES Cost Action for organizing meetings and discussions. We thank M. Wysession for sharing MACOMO data, and C. Davy and E. Delcher for their field and instrumental help. This is IPGP contribution 4068.

Author information

Authors and Affiliations

Authors

Contributions

G.B., K.S., J.-R.S., A.M., E.S., S.K., F.R.F. and J.-P.M. performed the analysis of the data, G.B. and K.S. were in charge of data acquisition and pre-processing, and led the writing of the manuscript. All the authors participated in interpreting the results.

Corresponding author

Correspondence to G. Barruol.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor(s): Melissa Plail; Rebecca Neely.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barruol, G., Sigloch, K., Scholz, JR. et al. Large-scale flow of Indian Ocean asthenosphere driven by Réunion plume. Nat. Geosci. 12, 1043–1049 (2019). https://doi.org/10.1038/s41561-019-0479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0479-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing