Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials and pathways of the organic carbon cycle through time

Abstract

The cycle of organic carbon through the atmosphere, oceans, continents and mantle reservoirs is a hallmark of Earth. Over geological time, chemical exchanges between those reservoirs have produced a diversity of reduced carbon materials that differ in their molecular structures and reactivity. This reactive complexity challenges the canonical dichotomy between the surface and deep, short-term and long-term organic carbon cycle. Old and refractory carbon materials are not confined to the lithosphere but are ubiquitous in the surface environment, and the lithosphere hosts various forms of reduced carbon that can be very reactive. The biological and geological pathways that drive the organic carbon cycle have changed through time; from a synthesis of these changes, it emerges that although a biosphere is required to produce organic carbon, mortality is required to ensure its export to the lithosphere, and graphitization is essential for its long-term stabilization in the solid Earth. Among the by-products of the organic carbon cycle are the accumulation of a massive lithospheric reservoir of organic carbon, the accumulation of dioxygen in the atmosphere and the rise of a terrestrial biosphere. Besides driving surface weathering reactions, free dioxygen has allowed the evolution of new metabolic pathways to produce and respire organic carbon. From the evolution of photosynthesis until the expansion of biomineralization in the Phanerozoic, inorganic controls on the organic carbon cycle have diversified, tightening the connection between the biosphere and geosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topology of the OC cycle.
Fig. 2: Kinetic diversity of petrogenic carbonaceous material.
Fig. 3: Diversity of OCpetro materials.

Similar content being viewed by others

References

  1. Falkowski, P. G. & Godfrey, L. V. Electrons, life and the evolution of Earth’s oxygen cycle. Philos. Trans. R. Soc. B 363, 2705–2716 (2008).

    Google Scholar 

  2. Rothman, D. H. Global biodiversity and the ancient carbon cycle. Proc. Natl Acad. Sci. USA 98, 4305–4310 (2001).

    Google Scholar 

  3. Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B 361, 931–950 (2006).

    Google Scholar 

  4. Galvez, M. E. & Pubellier, M. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 276–312 (Cambridge Univ. Press, 2019).

  5. Catling, D. C., Zahnle, K. J. & McKay, C. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001).

    Google Scholar 

  6. Derry, L. in Treatise on Geochemistry 2nd edn, Vol. 12, 239–249 (Elsevier, 2014).

  7. Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315, 275–316 (2015).

    Google Scholar 

  8. Rothman, D. H. Thresholds of catastrophe in the Earth system. Sci. Adv. 3, e1700906 (2017).

    Google Scholar 

  9. Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003).

    Google Scholar 

  10. del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).

    Google Scholar 

  11. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Google Scholar 

  12. Honjo, S. et al. Understanding the role of the biological pump in the global carbon cycle: an imperative for ocean science. Oceanography 27, 10–16 (2014).

    Google Scholar 

  13. Rosenwasser, S., Ziv, C., Creveld, S. G. v. & Vardi, A. Virocell metabolism: metabolic innovations during host–virus interactions in the ocean. Trends Microbiol. 24, 821–832 (2016).

    Google Scholar 

  14. Bidle, K. D. & Vardi, A. A chemical arms race at sea mediates algal host–virus interactions. Curr. Opin. Microbiol. 14, 449–457 (2011).

    Google Scholar 

  15. Hertkorn, N., Harir, M., Koch, B., Michalke, B. & Schmitt-Kopplin, P. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 10, 1583–1624 (2013).

    Google Scholar 

  16. Druffel, E. R., Williams, P. M., Bauer, J. E. & Ertel, J. R. Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. Oceans 97, 15639–15659 (1992).

    Google Scholar 

  17. Ridgwell, A. Evolution of the ocean’s “biological pump”. Proc. Natl Acad. Sci. USA 108, 16485–16486 (2011).

    Google Scholar 

  18. Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009).

    Google Scholar 

  19. Engel, A., Thoms, S., Riebesell, U., Rochelle-Newall, E. & Zondervan, I. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428, 929–932 (2004).

    Google Scholar 

  20. Raven, M. R. et al. Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization. Nat. Commun. 9, 3409 (2018).

    Google Scholar 

  21. Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010).

    Google Scholar 

  22. Arrieta, J. M. et al. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348, 331–333 (2015).

    Google Scholar 

  23. Hilton, R. G. Climate regulates the erosional carbon export from the terrestrial biosphere. Geomorphology 277, 118–132 (2017).

    Google Scholar 

  24. Milliman, J. D. & Syvitski, J. P. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Google Scholar 

  25. Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).

    Google Scholar 

  26. Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the land-ocean interface. Org. Geochem. 115, 138–155 (2018).

    Google Scholar 

  27. Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).

    Google Scholar 

  28. Trembath-Reichert, E., Wilson, J. P., McGlynn, S. E. & Fischer, W. W. Four hundred million years of silica biomineralization in land plants. Proc. Natl Acad. Sci. USA 112, 5449–5454 (2015).

    Google Scholar 

  29. Cermeño, P., Falkowski, P. G., Romero, O. E., Schaller, M. F. & Vallina, S. M. Continental erosion and the Cenozoic rise of marine diatoms. Proc. Natl Acad. Sci. USA 112, 4239–4244 (2015).

    Google Scholar 

  30. Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).

    Google Scholar 

  31. Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282, 451–473 (1982).

    Google Scholar 

  32. Cartapanis, O., Bianchi, D., Jaccard, S. L. & Galbraith, E. D. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima. Nat. Commun. 7, 10796 (2016).

    Google Scholar 

  33. Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).

    Google Scholar 

  34. Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).

    Google Scholar 

  35. Blair, N. E. & Aller, R. C. The fate of terrestrial organic carbon in the marine environment. Annu. Rev. Mar. Sci. 4, 401–423 (2012).

    Google Scholar 

  36. Husson, J. M. & Peters, S. E. Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir. Earth Planet. Sci. Lett. 460, 68–75 (2017).

    Google Scholar 

  37. Hilton, R. G. et al. Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical mountain forest. Global Biogeochem. Cycles 26, GB3014 (2012).

    Google Scholar 

  38. Jaccard, S. L., Galbraith, E. D., Frölicher, T. L. & Gruber, N. Ocean (de)oxygenation across the last deglaciation: insights for the future. Oceanography 27, 26–35 (2014).

    Google Scholar 

  39. Anderson, R. F. et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Global Biogeochem. Cycles 33, 301–317 (2019).

    Google Scholar 

  40. Vonk, J. E. et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 40, 2689–2693 (2013).

    Google Scholar 

  41. Ciais, P. et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nat. Geosci. 5, 74–79 (2012).

    Google Scholar 

  42. Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochim. Cosmochim. Acta 66, 361–381 (2002).

    Google Scholar 

  43. Caves, J. K., Jost, A. B., Lau, K. V. & Maher, K. Cenozoic carbon cycle imbalances and a variable weathering feedback. Earth Planet. Sci. Lett. 450, 152–163 (2016).

    Google Scholar 

  44. Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

    Google Scholar 

  45. Evans, B. W. Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life(?). Geology 38, 879–882 (2010).

    Google Scholar 

  46. Galvez, M. E. Glaciological window into the pace of the organic carbon cycle. Preprint at https://arxiv.org/abs/2005.02806 (2020).

  47. Hilton, R. G., Galy, A. & Hovius, N. Riverine particulate organic carbon from an active mountain belt: importance of landslides. Global Biogeochem. Cycles 22, GB1017 (2008).

    Google Scholar 

  48. Hilton, R. G. et al. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature 524, 84–87 (2015).

    Google Scholar 

  49. Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

    Google Scholar 

  50. Bao, R. et al. Tectonically-triggered sediment and carbon export to the Hadal zone. Nat. Commun. 9, 121 (2018).

    Google Scholar 

  51. Clift, P. D. A revised budget for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97–125 (2017).

    Google Scholar 

  52. Gulick, S. P. S. et al. Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska. Proc. Natl Acad. Sci. USA 112, 15042–15047 (2015).

    Google Scholar 

  53. Colwell, F. S. & D’Hondt, S. Nature and extent of the deep biosphere. Rev. Mineral. Geochem. 75, 547–574 (2013).

    Google Scholar 

  54. Miyakawa, A., Kinoshita, M., Hamada, Y. & Otsubo, M. Thermal maturity structures in an accretionary wedge by a numerical simulation. Prog. Earth Planet. Sci. 6, 8 (2019).

    Google Scholar 

  55. Boudreau, B. P. & Ruddick, B. R. On a reactive continuum representation of organic matter diagenesis. Am. J. Sci. 291, 507–538 (1991).

    Google Scholar 

  56. Forney, D. & Rothman, D. Inverse method for estimating respiration rates from decay time series. Biogeosciences 9, 3601–3612 (2012).

    Google Scholar 

  57. Canfield, D. E. et al. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113, 27–40 (1993).

    Google Scholar 

  58. Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123, 53–86 (2013).

    Google Scholar 

  59. Siskin, M. & Katritzky, A. R. Reactivity of organic compounds in hot water: geochemical and technological implications. Science 254, 231–237 (1991).

    Google Scholar 

  60. Helgeson, H. C., Richard, L., McKenzie, W. F., Norton, D. L. & Schmitt, A. A chemical and thermodynamic model of oil generation in hydrocarbon source rocks. Geochim. Cosmochim. Acta 73, 594–695 (2009).

    Google Scholar 

  61. Mastalerz, M., Schimmelmann, A., Drobniak, A. & Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 97, 1621–1643 (2013).

    Google Scholar 

  62. Petrenko, V. V. et al. Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event. Nature 548, 443–446 (2017).

    Google Scholar 

  63. Etiope, G., Lassey, K. R., Klusman, R. W. & Boschi, E. Reappraisal of the fossil methane budget and related emission from geologic sources. Geophys. Res. Lett. 35, L09307 (2008).

    Google Scholar 

  64. Fuchs, S., Williams-Jones, A. E., Jackson, S. E. & Przybylowicz, W. J. Metal distribution in pyrobitumen of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa: evidence for liquid hydrocarbon ore fluids. Chem. Geol. 426, 45–59 (2016).

    Google Scholar 

  65. Galvez, M. et al. Micro- and nano-textural evidence of Ti(-Ca-Fe) mobility during fluid–rock interactions in carbonaceous lawsonite-bearing rocks from New Zealand. Contrib. Mineral. Petrol. 164, 895–914 (2012).

    Google Scholar 

  66. Littke, R., Klussmann, U., Krooss, B. & Leythaeuser, D. Quantification of loss of calcite, pyrite, and organic matter due to weathering of Toarcian black shales and effects on kerogen and bitumen characteristics. Geochim. Cosmochim. Acta 55, 3369–3378 (1991).

    Google Scholar 

  67. Aarnes, I., Fristad, K., Planke, S. & Svensen, H. The impact of host-rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochem. Geophys. Geosyst. 12, Q10019 (2011).

    Google Scholar 

  68. Beyssac, O., Rouzaud, J.-N., Goffé, B., Brunet, F. & Chopin, C. Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study. Contrib. Mineral. Petrol. 143, 19–31 (2002).

    Google Scholar 

  69. Mann, P., Gahagan, L. & Gordon, M. B. Tectonic setting of the world’s giant oil fields. World Oil 222, 78–84 (2001).

    Google Scholar 

  70. Beyssac, O., Pattison, D. R. & Bourdelle, F. Contrasting degrees of recrystallization of carbonaceous material in the Nelson aureole, British Columbia and Ballachulish aureole, Scotland, with implications for thermometry based on Raman spectroscopy of carbonaceous material. J. Metamorph. Geol. 37, 71–95 (2019).

    Google Scholar 

  71. Oohashi, K., Hirose, T. & Shimamoto, T. Shear-induced graphitization of carbonaceous materials during seismic fault motion: experiments and possible implications for fault mechanics. J. Struct. Geol. 33, 1122–1134 (2011).

    Google Scholar 

  72. Rajesh, V., Arai, S. & Satish-Kumar, M. Origin of graphite in glimmerite and spinellite in Achankovil Shear Zone, southern India. J. Mineral. Petrol. Sci. 104, 407–412 (2009).

    Google Scholar 

  73. Ortega, L. et al. The graphite deposit at Borrowdale (UK): a catastrophic mineralizing event associated with Ordovician magmatism. Geochim. Cosmochim. Acta 74, 2429–2449 (2010).

    Google Scholar 

  74. Galvez, M. E. et al. Graphite formation by carbonate reduction during subduction. Nat. Geosci. 6, 473–477 (2013).

    Google Scholar 

  75. Rohrbach, A. & Schmidt, M. W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature 472, 209–212 (2011).

    Google Scholar 

  76. Johansson, K. O., Head-Gordon, M. P., Schrader, P. E., Wilson, K. R. & Michelsen, H. A. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 361, 997–1000 (2018).

    Google Scholar 

  77. Atmani, L. et al. From cellulose to kerogen: molecular simulation of a geological process. Chem. Sci. 8, 8325–8335 (2017).

    Google Scholar 

  78. Galvez, M. E., Manning, C. E., Connolly, J. A. & Rumble, D. The solubility of rocks in metamorphic fluids: a model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486–498 (2015).

    Google Scholar 

  79. Connolly, J. A. D. & Cesare, B. C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites. J. Metamorph. Geol. 11, 379–388 (1993).

    Google Scholar 

  80. Connolly, J. A. D. & Galvez, M. E. Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer. Earth Planet. Sci. Lett. 501, 90–102 (2018).

    Google Scholar 

  81. Galvez, M. E., Connolly, J. A. D. & Manning, C. E. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature 539, 420–424 (2016).

    Google Scholar 

  82. O'Neill, H. S. C., Berry, A. J. & Mallmann, G. The oxidation state of iron in Mid-Ocean Ridge Basaltic (MORB) glasses: implications for their petrogenesis and oxygen fugacities. Earth Planet. Sci. Lett. 504, 152–162 (2018).

    Google Scholar 

  83. Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019).

    Google Scholar 

  84. Aarnes, I., Svensen, H., Connolly, J. A. D. & Podladchikov, Y. Y. How contact metamorphism can trigger global climate changes: modeling gas generation around igneous sills in sedimentary basins. Geochim. Cosmochim. Acta 74, 7179–7195 (2011).

    Google Scholar 

  85. Tomkins, A. G., Rebryna, K. C., Weinberg, R. F. & Schaefer, B. F. Magmatic sulfide formation by reduction of oxidized arc basalt. J. Petrol. 53, 1537–1567 (2012).

    Google Scholar 

  86. Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).

    Google Scholar 

  87. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Google Scholar 

  88. Bouchez, J. et al. Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2. Geology 38, 255–258 (2010).

    Google Scholar 

  89. Hilton, R. G., Gaillardet, J., Calmels, D. & Birck, J.-L. Geological respiration of a mountain belt revealed by the trace element rhenium. Earth Planet. Sci. Lett. 403, 27–36 (2014).

    Google Scholar 

  90. Petsch, S. T., Eglinton, T. I. & Edwards, K. J. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. Science 292, 1127–1131 (2001).

    Google Scholar 

  91. Hemingway, J. D. et al. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils. Science 360, 209–212 (2018).

    Google Scholar 

  92. Chang, S. & Berner, R. A. Coal weathering and the geochemical carbon cycle. Geochim. Cosmochim. Acta 63, 3301–3310 (1999).

    Google Scholar 

  93. Galy, V., Beyssac, O., France-Lanord, C. & Eglinton, T. Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust. Science 322, 943–945 (2008).

    Google Scholar 

  94. Braakman, R., Follows, M. J. & Chisholm, S. W. Metabolic evolution and the self-organization of ecosystems. Proc. Natl Acad. Sci. USA 114, E3091–E3100 (2017).

    Google Scholar 

  95. Quigg, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294 (2003).

    Google Scholar 

  96. Galbraith, E. D. & Martiny, A. C. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. Proc. Natl Acad. Sci. USA 112, 8199–8204 (2015).

    Google Scholar 

  97. Coleman, M. L. & Chisholm, S. W. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc. Natl Acad. Sci. USA 107, 18634–18639 (2010).

    Google Scholar 

  98. Ward, L. M., Rasmussen, B. & Fischer, W. W. Primary productivity was limited by electron donors prior to the advent of oxygenic photosynthesis. J. Geophys. Res. Biogeosciences 124, 211–226 (2018).

    Google Scholar 

  99. Prangishvili, D. et al. The enigmatic archaeal virosphere. Nat. Rev. Microbiol. 15, 724–739 (2017).

    Google Scholar 

  100. Fischer, W. et al. Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa. Precambrian Res. 169, 15–27 (2009).

    Google Scholar 

  101. Towe, K. M. Aerobic respiration in the Archaean? Nature 348, 54–56 (1990).

    Google Scholar 

  102. Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W. & Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355, 1436–1440 (2017).

    Google Scholar 

  103. Ader, M. et al. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: a nitrogen isotope perspective. Earth Planet. Sci. Lett. 396, 1–13 (2014).

    Google Scholar 

  104. McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).

    Google Scholar 

  105. Mitchell, R. et al. Mineral weathering and soil development in the earliest land plant ecosystems. Geology 44, 1007–1010 (2016).

    Google Scholar 

  106. Gensel, P. G. The earliest land plants. Annu. Rev. Ecol. Evol. Syst. 39, 459–477 (2008).

    Google Scholar 

  107. Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, E2274–E2283 (2018).

    Google Scholar 

  108. Johnson, J. E., Gerpheide, A., Lamb, M. P. & Fischer, W. W. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geol. Soc. Am. Bull. 126, 813–830 (2014).

    Google Scholar 

  109. Falkowski, P. G. & Isozaki, Y. The Story of O2. Science 322, 540–542 (2008).

    Google Scholar 

  110. Canfield, D., Glazer, A. & Falkowski, P. The evolution and future of Earth’s nitrogen cycle. Science 333, 192–196 (2010).

    Google Scholar 

  111. Johnston, D. T., Wolfe-Simon, F., Pearson, A. & Knoll, A. H. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc. Natl Acad. Sci. USA 106, 16925–16929 (2009).

    Google Scholar 

  112. Galvez, M. Finding Earth. Geoscientist 29, 16–19 (2019).

    Google Scholar 

  113. Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B 361, 903–915 (2006).

    Google Scholar 

  114. Raymond, J. & Segre, D. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311, 1764–1767 (2006).

    Google Scholar 

  115. Avice, G. et al. Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks. Geochim. Cosmochim. Acta 232, 82–100 (2018).

    Google Scholar 

  116. Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).

    Google Scholar 

  117. Ulmer, P., Kägi, R. & Müntener, O. Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1.0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J. Petrol. 59, 11–58 (2018).

    Google Scholar 

  118. Tang, M., Erdman, M., Eldridge, G. & Lee, C.-T. A. The redox “filter” beneath magmatic orogens and the formation of continental crust. Sci. Adv. 4, eaar4444 (2018).

    Google Scholar 

  119. Foley, S. F., Buhre, S. & Jacob, D. E. Evolution of the Archaean crust by delamination and shallow subduction. Nature 421, 249–252 (2003).

    Google Scholar 

  120. Jagoutz, O. & Behn, M. D. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature 504, 131–134 (2013).

    Google Scholar 

  121. Krissansen-Totton, J., Bergsman, D. S. & Catling, D. C. On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16, 39–67 (2016).

    Google Scholar 

  122. Lovelock, J. E. A physical basis for life detection experiments. Nature 207, 568–570 (1965).

    Google Scholar 

  123. Jelen, B. I., Giovannelli, D. & Falkowski, P. G. The role of microbial electron transfer in the coevolution of the biosphere and geosphere. Annu. Rev. Microbiol. 70, 45–62 (2016).

    Google Scholar 

  124. Shi, T., Bibby, T. S., Jiang, L., Irwin, A. J. & Falkowski, P. G. Protein interactions limit the rate of evolution of photosynthetic genes in cyanobacteria. Mol. Biol. Evol. 22, 2179–2189 (2005).

    Google Scholar 

  125. Eck, R. V. & Dayhoff, M. O. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152, 363–366 (1966).

    Google Scholar 

  126. Lin, W. et al. Origin of microbial biomineralization and magnetotaxis during the Archean. Proc. Natl Acad. Sci. USA 114, 2171–2176 (2017).

    Google Scholar 

  127. Raymond, J., Siefert, J. L., Staples, C. R. & Blankenship, R. E. The natural history of nitrogen fixation. Mol. Biol. Evol. 21, 541–554 (2004).

    Google Scholar 

  128. Fischer, W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).

    Google Scholar 

  129. Babcock, G. T. & Wikström, M. Oxygen activation and the conservation of energy in cell respiration. Nature 356, 301–309 (1992).

    Google Scholar 

  130. Dupont, C. L., Yang, S., Palenik, B. & Bourne, P. E. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc. Natl Acad. Sci. USA 103, 17822–17827 (2006).

    Google Scholar 

  131. Moore, E. K., Jelen, B. I., Giovannelli, D., Raanan, H. & Falkowski, P. G. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat. Geosci. 10, 629–636 (2017).

    Google Scholar 

  132. Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    Google Scholar 

  133. Shi, T. & Falkowski, P. G. Genome evolution in cyanobacteria: the stable core and the variable shell. Proc. Natl Acad. Sci. USA 105, 2510–2515 (2008).

    Google Scholar 

  134. Knoll, A. H. Biomineralization and evolutionary history. Rev. Mineral. Geochem. 54, 329–356 (2003).

    Google Scholar 

  135. Rowland, S. M. & Shapiro, R. S. in Phanerozoic Reef Patterns (eds Kiessling, W. et al.) 95–128 (SEPM, 2002).

  136. Monteiro, F. M. et al. Why marine phytoplankton calcify. Sci. Adv. 2, e1501822 (2016).

    Google Scholar 

  137. Suchéras-Marx, B. & Henderiks, J. Downsizing the pelagic carbonate factory: impacts of calcareous nannoplankton evolution on carbonate burial over the past 17 million years. Global Planet. Change 123, 97–109 (2014).

    Google Scholar 

  138. Ridgwell, A. A mid Mesozoic revolution in the regulation of ocean chemistry. Mar. Geol. 217, 339–357 (2005).

    Google Scholar 

  139. Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

    Google Scholar 

  140. Knoll, A. H., Bambach, R., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and Late Permian mass extinction. Science 273, 452–457 (1996).

    Google Scholar 

  141. Hong, H. et al. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium. Science 356, 527–531 (2017).

    Google Scholar 

  142. Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).

    Google Scholar 

  143. Peters, S. E. & Gaines, R. R. Formation of the Great Unconformity as a trigger for the Cambrian explosion. Nature 484, 363–366 (2012).

    Google Scholar 

  144. Hemingway, J. D., Rothman, D. H., Rosengard, S. Z. & Galy, V. V. An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation. Biogeosciences 14, 5099–5114 (2017).

    Google Scholar 

  145. Luque, F. J. et al. Deposition of highly crystalline graphite from moderate-temperature fluids. Geology 37, 275–278 (2009).

    Google Scholar 

  146. Rumble, D. III, Duke, E. F. & Hoering, T. L. Hydrothermal graphite in New Hampshire: evidence of carbon mobility during regional metamorphism. Geology 14, 452–455 (1986).

    Google Scholar 

  147. Crowe, S. A. et al. Photoferrotrophs thrive in an Archean ocean analogue. Proc. Natl Acad. Sci. USA 105, 15938–15943 (2008).

    Google Scholar 

  148. Pape, T., Blumenberg, M., Seifert, R., Bohrmann, G. & Michaelis, W. in Links Between Geological Processes, Microbial Activities & Evolution of Life 281–311 (Springer, 2008).

  149. Margolin, A. R., Gerringa, L. J., Hansell, D. A. & Rijkenberg, M. J. Net removal of dissolved organic carbon in the anoxic waters of the Black Sea. Mar. Chem. 183, 13–24 (2016).

    Google Scholar 

  150. Jessen, G. L. et al. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci. Adv. 3, e1601897 (2017).

    Google Scholar 

  151. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).

    Google Scholar 

  152. Trembath-Reichert, E. et al. Gene sequencing-based analysis of microbial-mat morphotypes, Caicos Platform, British West Indies. J. Sediment. Res. 86, 629–636 (2016).

    Google Scholar 

  153. Ward, L. M., Kirschvink, J. L. & Fischer, W. W. Timescales of oxygenation following the evolution of oxygenic photosynthesis. Orig. Life Evol. Biosph. 46, 51–65 (2016).

    Google Scholar 

  154. Pierson, B. K. & Parenteau, M. N. Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs. FEMS Microbiol. Ecol. 32, 181–196 (2000).

    Google Scholar 

  155. Kuntz, L., Laakso, T., Schrag, D. & Crowe, S. Modeling the carbon cycle in Lake Matano. Geobiology 13, 454–461 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank M. Santosh for providing the phlogopitite sample depicted in Fig. 3b and L. Marki for the suspended sediment samples from which we obtained the spectra in Fig. 2a. We thank M. Plotze for access to his TGA-MS. We thank P. Sossi and O. Bachmann for feedback on an earlier version of the manuscript. M.E.G. thanks G. Cody, J. Hayes, J. Husson, J. Hemingway, J. Connolly, D. Rumble and O. Beyssac for helpful discussions. This project was supported through a Branco Weiss Society in Science fellowship to M.E.G. S.L.J. acknowledges support from the Swiss National Science Foundation (grants PP00P2_144811 and PP00P2_172915).

Author information

Authors and Affiliations

Authors

Contributions

M.E.G. conceived the study and led the preparation of the manuscript with writing input from all co-authors.

Corresponding author

Correspondence to Matthieu E. Galvez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Rebecca Neely.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Method (for Fig. 2), Supplementary Fig. 1 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvez, M.E., Fischer, W.W., Jaccard, S.L. et al. Materials and pathways of the organic carbon cycle through time. Nat. Geosci. 13, 535–546 (2020). https://doi.org/10.1038/s41561-020-0563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-020-0563-8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology