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Correction to: Nature Geoscience https://doi.org/10.1038/s41561-020-0542-0, published online 2 March 2020.

In the version of this Article originally published, references 65–91 were in the wrong order in the reference list. These references should 
have appeared as below. In addition, four reference citations were incorrectly numbered in the Extended Data captions.

In the Extended Data Fig. 2 caption, the citation to ref. 76 should have been a citation to ref. 65.

In the Extended Data Fig. 5 caption, the citations to refs. 77 and 78 should have been citations to refs. 66 and 67, respectively.

In the Extended Data Table 3 caption, the citation to ref. 91 should have been a citation to ref. 82.

All of these errors have now been corrected.
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