Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Late Cenozoic climate change paces landscape adjustments to Yukon River capture

Abstract

Late Cenozoic cooling and changes in glacial–interglacial cycle tempo are thought to increase global rates of erosion starting ~3 million years ago (Ma). Bedrock rivers set rates and patterns of erosion in most landscapes, but constraints on river response to late Cenozoic climate change remain elusive. Here, we determine cosmogenic isotope and luminescence ages of well-preserved bedrock terraces along the Fortymile River (Yukon River basin) to reconstruct an ~5 Myr history of fluvial adjustment to late Cenozoic climate and Yukon River headwater capture at 2.6 Ma. Post-capture Yukon River downcutting lowered the Fortymile River outlet, forcing subsequent bedrock incision throughout the Fortymile basin in two pulses, from 2.4 to 1.8 Ma and at ~1 Ma. These pulses of incision disrupted longer intervals of slow river channel sedimentation under near-consistent climate forcing from 4.8 to 2.4 Ma and from 1.8 to ~1 Ma. The Fortymile River delivers sediment to the Bering Sea, where provenance and accumulation rate changes since 4.3 Ma match observed variations in incision. Our results link alluviation and incision to late Cenozoic climate steadiness and change, respectively, and support the hypothesis that climate-forced changes in precipitation and runoff fundamentally control the pace of river incision and landscape erosion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fortymile River setting and cosmogenic results.
Fig. 2: Fortymile River profiles of channel and terrace elevation, erosion rate and normalized channel steepness.
Fig. 3: Late Cenozoic variations in climate, Bering Sea sedimentation and Fortymile River incision.

Similar content being viewed by others

Data availability

The cosmogenic and luminescence data that support the findings of this study are available in the supplementary materials and through the US Geological Survey Alaska Science Center Science Portal with the identifier https://doi.org/10.5066/P9XVMTAK. The IfSAR-based Alaska digital elevation models and the National Elevation Dataset digital elevation model of Yukon, Canada that support the findings of this study are available by searching https://earthexplorer.usgs.gov.

References

  1. Whipple, K. X. Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sci. 32, 151–185 (2004).

    Google Scholar 

  2. Perron, J. T. Climate and the pace of erosional landscape evolution. Annu. Rev. Earth Planet. Sci. 45, 561–591 (2017).

    Google Scholar 

  3. Pazzaglia, F. J. in Treatise on Geomorphology (eds. Shroder, J.F. & Wohl, E.) 379–412 (Academic, 2013).

  4. Burbank, D. W. et al. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379, 505–510 (1996).

    Google Scholar 

  5. Pan, B. et al. A 900 ky record of strath terrace formation during glacial–interglacial transitions in northwest China. Geology 11, 957–960 (2003).

    Google Scholar 

  6. Yang, R., Willett, S. D. & Goren, L. In situ low-relief landscape formation as a result of river network disruption. Nature 520, 526–529 (2015).

    Google Scholar 

  7. Whipple, K. X., DiBiase, R. A., Ouimet, W. B. & Forte, A. M. Preservation or piracy: diagnosing low-relief, high-elevation surface formation mechanisms. Geology 1, 91–94 (2017).

    Google Scholar 

  8. Hancock, G. S. & Anderson, R. S. Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. Geol. Soc. Am. Bull. 9, 1131–1142 (2002).

    Google Scholar 

  9. Finnegan, N. J., Schumer, R. & Finnegan, S. A signature of transience in bedrock river incision rates over timescales of 104–107 years. Nature 505, 391–394 (2014).

    Google Scholar 

  10. Gallen, S. F., Pazzaglia, F. J., Wegmann, K. W., Pederson, J. L. & Gardner, T. W. The dynamic reference frame of rivers and apparent transience in incision rates. Geology 43, 623–626 (2015).

    Google Scholar 

  11. Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 29–32 (1990).

    Google Scholar 

  12. Peizhen, Z., Molnar, P. & Downs, W. R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410, 891–897 (2001).

    Google Scholar 

  13. Molnar, P. Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates? Annu. Rev. Earth Planet. Sci. 32, 67–89 (2004).

    Google Scholar 

  14. Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426 (2013).

    Google Scholar 

  15. Willenbring, J. K. & von Blanckenburg, F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465, 211–214 (2010).

    Google Scholar 

  16. Willenbring, J. K. & Jerolmack, D. J. The null hypothesis: globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during late Cenozoic mountain uplift and glaciation. Terra Nova 28, 11–18 (2016).

    Google Scholar 

  17. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  18. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Google Scholar 

  19. Wang, Y. H. et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 1090–1093 (2008).

  20. Godard, V., Tucker, G. E., Fisher, G. B., Burbank, D. W. & Bookhagen, B. Frequency‐dependent landscape response to climatic forcing. Geophys. Res. Lett. 40, 859–863 (2013).

    Google Scholar 

  21. Ferrier, K. L., Huppert, K. L. & Perron, J. T. Climatic control of bedrock river incision. Nature 496, 206–209 (2013).

    Google Scholar 

  22. Finnegan, N. J., Sklar, L. S. & Fuller, T. K. Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experimental bedrock channel. J. Geophys. Res. 112, F03S11 (2007).

    Google Scholar 

  23. Sklar, L. S. & Dietrich, W. E. Sediment and rock strength controls on river incision into bedrock. Geology 29, 1087–1090 (2001).

    Google Scholar 

  24. Horikawa, K. et al. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean. Nat. Commun. 6, 7587 (2015).

    Google Scholar 

  25. Tempelman-Kluit, D. Evolution of physiography and drainage in southern Yukon. Can. J. Earth Sci. 9, 1189–1203 (1980).

    Google Scholar 

  26. Duk-Rodkin, A., Barendregt, R. W., White, J. M. & Singhroy, V. H. Geologic evolution of the Yukon River: implications for placer gold. Quat. Int. 82, 5–31 (2001).

    Google Scholar 

  27. Duk-Rodkin, A. et al. Timing and extent of Plio–Pleistocene glaciations in north-western Canada and east-central Alaska. Dev. Quat. Sci. 2, 313–345 (2004).

    Google Scholar 

  28. Bender, A. M., Lease, R. O., Corbett, L. B., Bierman, P. & Caffee, M. W. Ongoing bedrock incision of the Fortymile River driven by Pliocene–Pleistocene Yukon River capture, eastern Alaska, USA, and Yukon, Canada. Geology 46, 635–638 (2019).

    Google Scholar 

  29. Hidy, A. J., Gosse, J. C., Froese, D. G., Bond, J. D. & Rood, D. H. A latest Pliocene age for the earliest and most extensive Cordilleran ice sheet in northwestern Canada. Quat. Sci. Rev. 61, 77–84 (2013).

    Google Scholar 

  30. Whipple, K. X. Fluvial landscape response time: how plausible is steady-state denudation? Am. J. Sci. 4–5, 313–325 (2001).

    Google Scholar 

  31. Weber, F. R. in Glaciation in Alaska, The Geologic Record (eds. Hamilton, T. D., Reed, K. M. & Thorson, R. M.) 79–98 (Alaska Geological Society, 1986).

  32. Bacon, C. R., Dusel-Bacon, C., Aleinikoff, J. N. & Slack, J. F. The Late Cretaceous Middle Fork caldera, its resurgent intrusion, and enduring landscape stability in east-central Alaska. Geosphere 10, 1432–1455 (2014).

    Google Scholar 

  33. Dusel-Bacon, C., Bacon, C. R., O’Sullivan, P. B. & Day, W. C. Apatite fission-track evidence for regional exhumation in the subtropical Eocene, block faulting, and localized fluid flow in east-central Alaska. Can. J. Earth Sci. 53, 260–280 (2016).

    Google Scholar 

  34. Foster, H. L., Weber, F. R., Forbes, R. B. & Brabb, E. E. in Arctic Geology (ed. Pitcher, M. G.) 388–395 (AAPG, 1973).

  35. Forte, A. M. & Whipple, K. X. The Topographic Analysis Kit (TAK) for TopoToolbox. Earth Surf. Dyn. 7, 87–95 (2019).

    Google Scholar 

  36. Schwanghart, W. & Scherler, D. TopoToolbox 2–MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2, 1–7 (2014).

    Google Scholar 

  37. Balco, G. & Rovey, C. W. An isochron method for cosmogenic-nuclide dating of buried soils and sediments. Am. J. Sci. 308, 1083–1114 (2008).

    Google Scholar 

  38. Erlanger, E. D., Granger, D. E. & Gibbon, R. J. Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces. Geology 40, 1019–1022 (2012).

    Google Scholar 

  39. Rittenour, T. M. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37, 613–635 (2008).

    Google Scholar 

  40. Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 3, 174–195 (2008).

    Google Scholar 

  41. Bierman, P. & Steig, E. J. Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surf. Process. Landf. 21, 125–139 (1996).

    Google Scholar 

  42. Whipple, K. X. & Tucker, G. E. Implications of sediment‐flux‐dependent river incision models for landscape evolution. J. Geophys. Res. 107, ETG-3-1–ETG-3-20 (2002).

  43. Montgomery, D. R. & Brandon, M. T. Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet. Sci. Lett. 201, 481–489 (2002).

    Google Scholar 

  44. Corbett, L. B., Bierman, P. R. & Rood, D. H. An approach for optimizing in situ cosmogenic 10Be sample preparation. Quat. Geochronol. 33, 24–34 (2016).

    Google Scholar 

  45. Nishiizumi, K. Preparation of 26Al AMS standards. Nucl. Instrum. Methods Phys. Res. B 223–224, 388–392 (2004).

    Google Scholar 

  46. Nishiizumi, K. et al. Absolute calibration of 10Be AMS standards. Nucl. Instrum. Methods Phys. Res. B 258, 403–413 (2007).

    Google Scholar 

  47. Gosse, J. C. & Phillips, F. M. Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev. 14, 1475–1560 (2001).

    Google Scholar 

  48. Wallinga, J. & Duller, G. A. T. The effect of optical absorption on the infrared stimulated luminescence age obtained on coarse-grain feldspar. Quat. Sci. Rev. 19, 1035–1042 (2000).

    Google Scholar 

  49. Galbraith, R. F. & Roberts, R. G. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quat. Geochronol. 11, 1–27 (2012).

    Google Scholar 

  50. Huntley, D. J. & Lamothe, M. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can. J. Earth Sci. 38, 1093–1106 (2001).

    Google Scholar 

  51. Guérin, G., Mercier, N. & Adamiec, G. Dose-rate conversion factors: update. Ancient TL 29, 5–8 (2011).

    Google Scholar 

  52. Mejdahl, V. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21, 61–72 (1979).

    Google Scholar 

  53. Rees-Jones, J. Optical dating of young sediments using fine-grain quartz. Ancient TL 13, 9–14 (1995).

    Google Scholar 

  54. Bender, A. M. Fortymile River Cosmogenic Isotope and Luminescence Data Collected 2016–2019 (USGS, 2020); https://doi.org/10.5066/P9XVMTAK

Download references

Acknowledgements

We thank W. H. Craddock and C. Bacon for reviews; M. L. Miller and J. Slate for editorial support; J. V. Jones for US Geological Survey project support; Vertical Solutions Helicopters for field support; and A. Neely and L. Williamson for lab assistance. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. Funding was provided by the USGS Mineral Resources Program, and by the National Science Foundation under grant number EAR-1735676 to P.R.B. and grant number EAR-0919759 to M.W.C.

Author information

Authors and Affiliations

Authors

Contributions

A.M.B. and R.O.L. conceptualized the research and conducted field investigations; A.M.B., L.B.C., P.R.B., M.W.C. and T.M.R. conducted laboratory investigations; A.M.B., L.B.C. and T.M.R. curated and formally analysed the data; R.O.L. and P.R.B. acquired funding and resources; A.M.B. wrote the paper and developed figures; all authors contributed to editing and revision.

Corresponding author

Correspondence to Adrian M. Bender.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12.

Supplementary Data

Cosmogenic and luminescence data that support the research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bender, A.M., Lease, R.O., Corbett, L.B. et al. Late Cenozoic climate change paces landscape adjustments to Yukon River capture. Nat. Geosci. 13, 571–575 (2020). https://doi.org/10.1038/s41561-020-0611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-020-0611-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing