Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Longwave radiative effect of the cloud twilight zone

Abstract

Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry aerosols. The twilight zone is an inherent component of cloud fields, yet its influence on longwave-infrared radiation remains unknown. Here we analyse spectral data from global satellite observations of shallow cloud fields over the ocean to estimate a lower bound on the twilight zone’s effect on longwave radiation. We find that the average longwave radiative effect of the twilight zone is ~0.75 W m–2, which is equivalent to the radiative forcing from increasing atmospheric CO2 by 75 ppm. We also find that the twilight zone in the longwave occupies over 60% of the apparent clear sky within the analysed low-level cloud fields. As low-level clouds are relatively warm, the overall longwave radiative contribution from the twilight zone is likely to be higher. We suggest that the twilight zone needs to be accounted for to accurately quantify cloud radiative effects and close the global energy budget.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clouds’ TLW.
Fig. 2: Twilight zone signal as a function of DFNC.
Fig. 3: Global distribution of samples.
Fig. 4: The TLW RE.
Fig. 5: Global analysis results.

Similar content being viewed by others

Data availability

The MODIS level 2 products—cloud mask, cloud properties and level 1B raw data—are available from the Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive Center (DAAC), https://ladsweb.modaps.eosdis.nasa.gov/. The MODIS sea surface temperature products of levels 2 and 3 are available from Ocean Color Web, https://oceancolor.gsfc.nasa.gov/Source data are provided with this paper.

Code availability

The radiation transfer codes are open access; SHDOM is available at http://coloradolinux.com/shdom/; SBDART is available at https://github.com/paulricchiazzi/SBDART.

References

  1. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (IPCC, Cambridge Univ. Press, 2013).

  2. Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505, 37–42 (2014).

    Article  Google Scholar 

  3. Clement, A. C., Burgman, R. & Norris, J. R. Observational and model evidence for positive low-level cloud feedback. Science 325, 460–464 (2009).

    Article  Google Scholar 

  4. Ceppi, P., Brient, F., Zelinka, M. D. & Hartmann, D. L. Cloud feedback mechanisms and their representation in global climate models. Wiley Interdiscip. Rev. Clim. Change 8, e465 (2017).

    Article  Google Scholar 

  5. Hartmann, D. L., Ockert-Bell, M. E. & Michelsen, M. L. The effect of cloud type on Earth’s energy balance: global analysis. J. Clim. 5, 1281–1304 (1992).

    Article  Google Scholar 

  6. Koren, I., Remer, L. A., Altaratz, O., Martins, J. V. & Davidi, A. Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmos. Chem. Phys. 10, 5001–5010 (2010).

    Article  Google Scholar 

  7. Chen, T., Rossow, W. B. & Zhang, Y. Radiative effects of cloud-type variations. J. Clim. 13, 264–286 (2000).

    Article  Google Scholar 

  8. Zelinka, M. D., Klein, S. A. & Hartmann, D. L. Computing and partitioning cloud feedbacks using cloud property histograms. Part I: cloud radiative kernels. J. Clim. 25, 3715–3735 (2012).

    Article  Google Scholar 

  9. Yue, Q. et al. Observation-based longwave cloud radiative kernels derived from the A-train. J. Clim. 29, 2023–2040 (2016).

    Article  Google Scholar 

  10. Calbó, J., Long, C. N., González, J.-A., Augustine, J. & McComiskey, A. The thin border between cloud and aerosol: sensitivity of several ground based observation techniques. Atmos. Res. 196, 248–260 (2017).

    Article  Google Scholar 

  11. Koren, I., Remer, L. A., Kaufman, Y. J., Rudich, Y. & Martins, J. V. On the twilight zone between clouds and aerosols. Geophys. Res. Lett. 34, L08805 (2007).

    Article  Google Scholar 

  12. Charlson, R. J., Ackerman, A. S., Bender, F. A.-M., Anderson, T. L. & Liu, Z. On the climate forcing consequences of the albedo continuum between cloudy and clear air. Tellus B 59, 715–727 (2007).

    Article  Google Scholar 

  13. Bar-Or, R. Z., Altaratz, O. & Koren, I. Global analysis of cloud field coverage and radiative properties, using morphological methods and MODIS observations. Atmos. Chem. Phys. 11, 191–200 (2011).

    Article  Google Scholar 

  14. Twohy, C. H., Coakley, J. A. & Tahnk, W. R. Effect of changes in relative humidity on aerosol scattering near clouds. J. Geophys. Res. 114, D05205 (2009).

    Article  Google Scholar 

  15. Koren, I., Oreopoulos, L., Feingold, G., Remer, L. A. & Altaratz, O. How small is a small cloud? Atmos. Chem. Phys. 8, 3855–3864 (2008).

    Article  Google Scholar 

  16. Hirsch, E., Koren, I., Levin, Z., Altaratz, O. & Agassi, E. On transition-zone water clouds. Atmos. Chem. Phys. 14, 9001–9012 (2014).

    Article  Google Scholar 

  17. Leahy, L. V. et al. On the nature and extent of optically thin marine low clouds. J. Geophys. Res. 117, D22201 (2012).

    Article  Google Scholar 

  18. Wen, G., Marshak, A., Cahalan, R. F., Remer, L. A. & Kleidman, R. G. 3-D aerosol–cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J. Geophys. Res. 112, D13204 (2007).

    Article  Google Scholar 

  19. Marshak, A., Platnick, S., Várnai, T., Wen, G. & Cahalan, R. F. Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes. J. Geophys. Res. 111, D09207 (2006).

    Article  Google Scholar 

  20. Bar-Or, R. Z., Koren, I., Altaratz, O. & Fredj, E. Radiative properties of humidified aerosols in cloudy environment. Atmos. Res. 118, 280–294 (2012).

    Article  Google Scholar 

  21. Fuchs, J. & Cermak, J. Where aerosols become clouds—potential for global analysis based on CALIPSO data. Remote Sens. 7, 4178–4190 (2015).

    Article  Google Scholar 

  22. Schwarz, K., Cermak, J., Fuchs, J. & Andersen, H. Mapping the twilight zone—what we are missing between clouds and aerosols. Remote Sens. 9, 577 (2017).

    Article  Google Scholar 

  23. Brown, O. B. et al. MODIS Infrared Sea Surface Temperature Algorithm: Algorithm Theoretical Basis Document: Version 2.0 (Univ. of Miami, 1999).

  24. Reid, J. S., Hobbs, P. V., Rangno, A. L. & Hegg, D. A. Relationships between cloud droplet effective radius, liquid water content, and droplet concentration for warm clouds in Brazil embedded in biomass smoke. J. Geophys. Res. 104, 6145–6153 (1999).

    Article  Google Scholar 

  25. Evans, K. F. The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci. 55, 429–446 (1998).

    Article  Google Scholar 

  26. Mätzler, C. MATLAB functions for Mie Scattering and Absorption Research Report No. 2002-08 (IAP, 2002).

  27. Várnai, T. & Marshak, A. MODIS observations of enhanced clear sky reflectance near clouds. Geophys. Res. Lett. 36, L06807 (2009).

    Article  Google Scholar 

  28. Minnett, P. J., Brown, O. B. & Evans, R. H. Sea-surface temperature measurements from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra. In Proc. IEEE International Geoscience and Remote Sensing Symposium Vol. 7, 4576–4579 (IEEE, 2004).

  29. Kilpatrick, K. A. et al. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 165, 27–41 (2015).

    Article  Google Scholar 

  30. Platnick, S. et al. The MODIS cloud products: algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 41, 459–473 (2003).

    Article  Google Scholar 

  31. Ackerman, S. A. et al. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 103, 32141–32157 (1998).

    Article  Google Scholar 

  32. Várnai, T. & Marshak, A. Analysis of co-located MODIS and CALIPSO observations near clouds. Atmos. Meas. Tech. 5, 389–396 (2012).

    Article  Google Scholar 

  33. Perry, K. D. & Hobbs, P. V. Influences of isolated cumulus clouds on the humidity of their surroundings. J. Atmos. Sci. 53, 159–174 (1996).

    Article  Google Scholar 

  34. Wang, Y. & Geerts, B. Humidity variations across the edge of trade wind cumuli: observations and dynamical implications. Atmos. Res. 97, 144–156 (2010).

    Article  Google Scholar 

  35. Gaffen, D. J. & Elliott, W. P. Column water vapor content in clear and cloudy skies. J. Clim. 6, 2278–2287 (1993).

  36. Sohn, B. J., Nakajima, T., Satoh, M. & Jang, H. S. Impact of different definitions of clear-sky flux on the determination of longwave cloud radiative forcing: NICAM simulation results. Atmos. Chem. Phys. 10, 11641–11646 (2010).

    Article  Google Scholar 

  37. Loeb, N. G., Kato, S., Loukachine, K. & Manalo-Smith, N. Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the Earth’s radiant energy system instrument on the Terra satellite. Part I: methodology. J. Atmos. Ocean. Technol. 22, 338–351 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (CloudCT, grant agreement No. 810370). A.B.K. is supported in part by NSF AGS-1639868.

Author information

Authors and Affiliations

Authors

Contributions

E.E. and I.K. jointly conceived the principal idea. E.E. carried out the analysis. E.E., I.K., O.A., A.B.K. and A.R. discussed results and wrote the paper.

Corresponding author

Correspondence to Ilan Koren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editors: Tamara Goldin; Heike Langenberg; Tom Richardson.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs 1–7, discussion and references.

Supplementary Data 1

Imaging Source Data for Supplementary Fig. 3.

Supplementary Data 2

Statistical Source Data for Supplementary Fig. 7.

Source data

Source Data Fig. 1

Imaging Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eytan, E., Koren, I., Altaratz, O. et al. Longwave radiative effect of the cloud twilight zone. Nat. Geosci. 13, 669–673 (2020). https://doi.org/10.1038/s41561-020-0636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-020-0636-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing