Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale thermal unrest of volcanoes for years prior to eruption

Abstract

Identifying the observables that warn of volcanic eruptions is a major challenge in natural hazard management. A potentially important observable is the release of heat through volcano surfaces, which represents a major energy source at quiescent volcanoes. However, it remains unclear whether surface heat emissions respond to pre-eruptive processes and vary before eruption. Here we show through a statistical analysis of satellite-based long-wavelength (10.780–11.280 μm) infrared data that the last magmatic and phreatic eruptions of five different volcanoes were preceded by subtle but significant long-term (years), large-scale (tens of square kilometres) increases in their radiant heat flux (up to ~1 °C in median radiant temperature). Large-scale thermal unrest is detected even before eruptions that were not anticipated from other volcano monitoring methods, such as the 2014 phreatic eruption of Ontake (Japan) and the 2015 magmatic eruption of Calbuco (Chile). We attribute large-scale thermal unrest to the enhancement of underground hydrothermal activity, and suggest that such analysis of satellite-based infrared observations can improve constraints on the thermal budget of volcanoes, early detection of pre-eruptive conditions and assessments of volcanic alert levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal variations of \(\overline {\updelta T}\) at the target volcanoes.
Fig. 2: Conceptual model of the large-scale (tens of square kilometres) thermal unrest detected at the target volcanoes.

Similar content being viewed by others

Data availability

Data (MODIS Terra/Aqua Calibrated Radiances 5-Min Level-1B Swath 1 km V006 and MODIS Terra/Aqua Geolocation Fields 5-Min Level-1A Swath 1 km V006) are available fully, openly and without restrictions at https://earthdata.nasa.gov/. Source data are provided with this paper.

Code availability

Two MATLAB scripts for data processing and analysis are available (contact the corresponding author for further details).

References

  1. Chiodini, G. et al. Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J. Geophys. Res. Solid Earth 110, B08204 (2005).

    Article  Google Scholar 

  2. Chiodini, G. et al. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys. Res. Solid Earth 106, 16213–16221 (2001).

    Article  Google Scholar 

  3. Mannini, S., Harris, A. J. L. & Jessop, D. E. Combining ground- and ASTER-based thermal measurements to constrain fumarole field heat budgets: the case of Vulcano Fossa 2000–2019. Geophys. Res. Lett. 46, 11868–11877 (2019).

    Article  Google Scholar 

  4. Carlino, S., Somma, R., Troise, C. & De Natale, G. The geothermal exploration of Campanian volcanoes: historical review and future development. Renew. Sustain. Energy Rev. 16, 1004–1030 (2012).

    Article  Google Scholar 

  5. Corrado, G., De Lorenzo, S., Mongelli, F., Tramacere, A. & Zito, G. Surface heat flow density at the Phlegrean Fields caldera (southern Italy). Geothermics 27, 469–484 (1998).

    Article  Google Scholar 

  6. Tanaka, A., Yamano, M., Yano, Y. & Sasada, M. Geothermal gradient and heat flow data in and around Japan (I): appraisal of heat flow from geothermal gradient data. Earth Planets Space 56, 1191–1194 (2004).

    Article  Google Scholar 

  7. Ahmad, S. P. et al. MODIS radiances and reflectances for earth system science studies and environmental applications. In Proc. 18th International IIPS Conference (82nd AMS Annual Meeting) 188–192 (2002).

  8. Murase, M. et al. Preparatory process preceding the 2014 eruption of Mount Ontake volcano, Japan: insights from precise leveling measurements. Earth Planets Space 68, 9 (2016).

    Article  Google Scholar 

  9. Sano, Y., Kagoshima, T., Takahata, N., Nishio, Y. & Roulleau, E. Ten-year helium anomaly prior to the 2014 Mt Ontake eruption. Sci. Rep. 5, 13069 (2015).

    Article  Google Scholar 

  10. Kilgour, G. et al. The 25 September 2007 eruption of Mount Ruapehu, New Zealand: directed ballistics, surtseyan jets, and ice-slurry lahars. J. Volcanol. Geotherm. Res. 191, 1–14 (2010).

    Article  Google Scholar 

  11. Caudron, C. et al. Change in seismic attenuation as a long-term precursor of gas-driven eruptions. Geology 47, 632–636 (2019).

    Article  Google Scholar 

  12. Girona, T., Huber, C. & Caudron, C. Sensitivity to lunar cycles prior to the 2007 eruption of Ruapehu volcano. Sci. Rep. 8, 1476 (2018).

    Article  Google Scholar 

  13. Delgado, F., Pritchard, M. E., Ebmeier, S., González, P. & Lara, L. Recent unrest (2002–2015) imaged by space geodesy at the highest risk Chilean volcanoes: Villarrica, Llaima, and Calbuco (southern Andes). J. Volcanol. Geotherm. Res. 344, 270–288 (2017).

    Article  Google Scholar 

  14. Morgado, E. et al. Old magma and a new, intrusive trigger: using diffusion chronometry to understand the rapid-onset Calbuco eruption, April 2015 (southern Chile). Contrib. Mineral. Petrol. 174, 61 (2019).

    Article  Google Scholar 

  15. Bull, K. et al. in Alaska Division of Geological & Geophysical Surveys Report of Investigation (ed. Schaefer, J. R.) 2011-5 (State of Alaska, Department of Natural Resources, 2012).

  16. Dionis, S. M. et al. Diffuse CO2 degassing and volcanic activity at Cape Verde Islands, West Africa. Earth Planets Space 67, 48 (2015).

    Article  Google Scholar 

  17. Report on Fogo (Cape Verde)—November 2014 (Global Volcanism Program, Smithsonian Institution, 2014); https://doi.org/10.5479/si.GVP.BGVN201411-384010

  18. Schwandner, F. M., Seward, T. M., Gize, A. P., Hall, P. A. & Dietrich, V. J. Diffuse emission of organic trace gases from the flank and crater of a quiescent active volcano (Vulcano, Aeolian Islands, Italy). J. Geophys. Res. Atmos. 109, D04301 (2004).

    Article  Google Scholar 

  19. Brombach, T., Hunziker, C., Chiodini, G., Cardellini, C. & Marini, L. Soil diffuse degassing and thermal energy fluxes from the southern Lakki plain, Nisyros (Greece). Geophys. Res. Lett. 28, 69–72 (2001).

    Article  Google Scholar 

  20. Hernández, P. A. et al. Diffuse emission of CO2 from Miyakejima volcano, Japan. Chem. Geol. 177, 175–185 (2001).

    Article  Google Scholar 

  21. Bibby, H. M., Caldwell, T. G., Davey, F. J. & Webb, T. H. Gephysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J. Volcanol. Geotherm. Res. 68, 29–58 (1995).

    Article  Google Scholar 

  22. Jasim, A., Hemmings, B., Mayer, K. & Scheu, B. in Volcanic Unrest: From Science to Society (eds Gottsmann, J. et al.) 83–99 (Advances in Volcanology, Springer, 2019).

  23. Benz, S. A., Bayer, P. & Blum, P. Global patterns of shallow groundwater temperatures. Environ. Res. Lett. 12, 034005 (2017).

    Article  Google Scholar 

  24. Frondini, F. et al. Diffuse CO2 degassing at Vesuvio, Italy. Bull. Volcanol. 66, 642–651 (2004).

    Article  Google Scholar 

  25. Mira, M., Valor, E., Boluda, R. & Coll, C. Influence of soil water content on the thermal infrared emissivity of bare soils: implication for land surface temperature determination. J. Geophys. Res. Earth Surf. 112, F04003 (2007).

    Article  Google Scholar 

  26. Bogue, R. R. et al. Plant responses to volcanically elevated CO2 in two Costa Rican forests. Biogeosciences 16, 1343–1360 (2019).

    Article  Google Scholar 

  27. Gerhards, M., Schlerf, M., Mallick, K. & Udelhoven, T. Challenges and future perspectives of multi-/hyperspectral thermal infrared remote sensing for crop water-stress detection: a review. Remote Sens. 11, 1240 (2019).

    Article  Google Scholar 

  28. Lundgren, P. et al. The dynamics of large silicic systems from satellite remote sensing observations: the intriguing case of Domuyo volcano, Argentina. Sci. Rep. 10, 11642 (2020).

    Article  Google Scholar 

  29. Reed, M. H. et al. The 2018 reawakening and eruption dynamics of Steamboat Geyser, the world’s tallest active geyser. Proc. Natl Acad. Sci. USA 118, e2020943118 (2021).

    Article  Google Scholar 

  30. Wenny, B. N., Xiong, X., Madhavan, S., Wu, A. & Li, Y. Long-term band-to-band calibration stability of MODIS thermal emissive bands. Ocean Sens. Monit. V 8724, 872412 (2013).

    Article  Google Scholar 

  31. Li, Z. L. et al. Satellite-derived land surface temperature: current status and perspectives. Remote Sens. Environ. 131, 14–37 (2013).

    Article  Google Scholar 

  32. Wright, R., Flynn, L. P., Garbeil, H., Harris, A. J. L. & Pilger, E. MODVOLC: near-real-time thermal monitoring of global volcanism. J. Volcanol. Geotherm. Res. 135, 29–49 (2004).

    Article  Google Scholar 

  33. Coppola, D., Laiolo, M., Cigolini, C., Donne, D. D. & Ripepe, M. Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system. Geol. Soc. Spec. Publ. 426, 181–205 (2015).

    Article  Google Scholar 

  34. Reath, K. A., Ramsey, M. S., Dehn, J. & Webley, P. W. Predicting eruptions from precursory activity using remote sensing data hybridization. J. Volcanol. Geotherm. Res. 321, 18–30 (2016).

    Article  Google Scholar 

  35. Van Manen, S. M. & Dehn, J. Satellite remote sensing of thermal activity at Bezymianny and Kliuchevskoi from 1993 to 1998. Geology 37, 983–986 (2009).

    Article  Google Scholar 

  36. Lacava, T. et al. Thermal monitoring of Eyjafjöll volcano eruptions by means of infrared MODIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 3393–3401 (2014).

    Article  Google Scholar 

  37. Laiolo, M. et al. Evidences of volcanic unrest on high-temperature fumaroles by satellite thermal monitoring: the case of Santa Ana volcano, El Salvador. J. Volcanol. Geotherm. Res. 340, 170–179 (2017).

    Article  Google Scholar 

  38. Marchese, F. et al. Inferring phases of thermal unrest at Mt. Asama (Japan) from infrared satellite observations. J. Volcanol. Geotherm. Res. 237–238, 10–18 (2012).

    Article  Google Scholar 

  39. Coppola, D. et al. Thermal remote sensing for global volcano monitoring: experiences from the MIROVA system. Front. Earth Sci. 7, 362 (2020).

    Article  Google Scholar 

  40. Billings, S. A. & Lee, K. L. A smoothing algorithm for nonlinear time series. Int. J. Bifurcat. Chaos 14, 1037–1051 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, when T.G. was supported by the NASA Postdoctoral Program. We appreciate discussions on the matters of this paper with the Powell Volcano Remote Sensing Working Group; Observatorio Volcanológico de Los Andes del Sur (OVDAS) - Servicio Nacional de Geología y Minería (Sernageomin); and Servicio Geológico Minero (SEGEMAR) and Comisión Nacional de Actividades Espaciales (CONAE).

Author information

Authors and Affiliations

Authors

Contributions

T.G. conceived the idea and led the data analysis and writing of the manuscript. V.R. and P.L. collaborated in writing the manuscript and designing figures. T.G., V.R. and P.L. discussed the algorithm, interpretation, results and conclusions.

Corresponding author

Correspondence to Társilo Girona.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Michael Ramsey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editors: Stefan Lachowycz; Melissa Plail.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1 and 2.

Source data

Source Data Fig. 1

Data used to generate graphs in Fig. 1a–e.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girona, T., Realmuto, V. & Lundgren, P. Large-scale thermal unrest of volcanoes for years prior to eruption. Nat. Geosci. 14, 238–241 (2021). https://doi.org/10.1038/s41561-021-00705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00705-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing