Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: No 182W evidence for early Moon formation

The Original Article was published on 13 September 2021

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plot of μ182W versus HSE relative to primitive mantle (PM) for different Archean cratons compared with modelled curves for missing late accretion.
Fig. 2: Plot of 182W versus W/Th illustrating the compositions of the lunar mantle compared with a putative proto-Earth mantle devoid of late-accreted components.

References

  1. Thiemens, M. M., Sprung, P., Fonseca, R. O. C., Leitzke, F. P. & Münker, C. Early Moon formation inferred from hafnium–tungsten systematics. Nat. Geosci. 12, 696–700 (2019).

    Article  Google Scholar 

  2. Kruijer, T. S., Archer, G. J. & Kleine, T. No 182W evidence for early Moon formation. Nat. Geosci. https://doi.org/10.1038/s41561-021-00820-2 (2021).

  3. Melosh, H. J. New approaches to the Moon’s isotopic crisis. Phil. Trans R. Soc. A 372, 20130168 (2014).

    Article  Google Scholar 

  4. Hosono, N., Karato, S. I., Makino, J. & Saitoh, T. R. Terrestrial magma ocean origin of the Moon. Nat. Geosci. 12, 418–423 (2019).

    Article  Google Scholar 

  5. Young, E. D. et al. Giant impact. Science 351, 493–496 (2016).

    Article  Google Scholar 

  6. Zhang, J., Dauphas, N., Davis, A. M., Leya, I. & Fedkin, A. The proto-Earth as a significant source of lunar material. Nat. Geosci. 5, 251–255 (2012).

    Article  Google Scholar 

  7. Wang, K. & Jacobsen, S. B. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature 538, 487–490 (2016).

    Article  Google Scholar 

  8. Georg, R. B., Halliday, A. N., Schauble, E. A. & Reynolds, B. C. Silicon in the Earth’s core. Nature 447, 1102–1106 (2007).

    Article  Google Scholar 

  9. Mougel, B., Moynier, F. & Göpel, C. Chromium isotopic homogeneity between the Moon, the Earth, and enstatite chondrites. Earth Planet. Sci. Lett. 481, 1–8 (2018).

    Article  Google Scholar 

  10. Touboul, M., Puchtel, I. S. & Walker, R. J. 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1070 (2012).

    Article  Google Scholar 

  11. Rizo, H. et al. Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochim. Cosmochim. Acta 175, 319–336 (2016).

    Article  Google Scholar 

  12. Puchtel, I. S., Blichert-Toft, J., Touboul, M., Horan, M. F. & Walker, R. J. The coupled 182W–142Nd record of early terrestrial mantle differentiation. Geochem. Geophys. Geosyst. 17, 2168–2193 (2016).

    Article  Google Scholar 

  13. Van de Loecht, J. et al. Earth’ s oldest mantle peridotites show full record of late accretion. Geology 46, 199–299 (2018).

    Article  Google Scholar 

  14. Bennett, V. C., Brandon, A. D. & Nutman, A. P. Coupled 142Nd–143Nd isotopic evidence for Hadean mantle dynamics. Science 318, 1907–1910 (2007).

    Article  Google Scholar 

  15. Archer, G. J. et al. Lack of late-accreted material as the origin of 182W excesses in the Archean mantle: evidence from the Pilbara Craton, Western Australia. Earth Planet. Sci. Lett. 528, 115841 (2019).

    Article  Google Scholar 

  16. Tusch, J. et al. Convective isolation of Hadean mantle reservoirs through Archean time. Proc. Natl Acad. Sci. USA 118, e2012626118 (2021).

    Article  Google Scholar 

  17. Tusch, J. et al. Uniform 182W isotope compositions in Eoarchean rocks from the Isua region, SW Greenland: the role of early silicate differentiation and missing late veneer. Geochim. Cosmochim. Acta 257, 284–310 (2019).

    Article  Google Scholar 

  18. Braukmüller, N., Wombacher, F., Funk, C. & Münker, C. Earth’s volatile element depletion pattern inherited from a carbonaceous chondrite-like source. Nat. Geosci. 12, 564–568 (2019).

    Article  Google Scholar 

  19. Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archean rocks. Nature 579, 240–244 (2020).

    Article  Google Scholar 

  20. Steenstra, E. S., Rai, N., Knibbe, J. S., Lin, Y. H. & van Westrenen, W. New geochemical models of core formation in the Moon from metal–silicate partitioning of 15 siderophile elements. Earth Planet. Sci. Lett. 441, 1–9 (2016).

    Article  Google Scholar 

  21. Day, J. M. D. & Walker, R. J. Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423, 114–124 (2015).

    Article  Google Scholar 

  22. Brenan, J. M., Mungall, J. E. & Bennett, N. R. Abundance of highly siderophile elements in lunar basalts controlled by iron sulfide melt. Nat. Geosci. 12, 701–706 (2019).

    Article  Google Scholar 

  23. Leitzke, F. P. et al. Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: implications for the Mo/W of the bulk silicate Moon. Earth Planet. Sci. Lett. 474, 503–515 (2017).

    Article  Google Scholar 

  24. Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).

    Article  Google Scholar 

  25. Maltese, A. & Mezger, K. The Pb isotope evolution of bulk silicate Earth: constraints from its accretion and early differentiation history. Geochim. Cosmochim. Acta 271, 179–193 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

M.M.T. and C.M. acknowledge funding through the European Commission by ERC grant 669666 ‘Infant Earth.’ M.M.T. and V.D. acknowledge funding from EoS project ET-HOME. V.D. acknowledges funding from the FNRS-FRS ERC StG ‘IsoSyC’. R.F. acknowledges research funding from the Deutsche Forschungsgemeinschaft (DFG grants FO 698/6-1 and FO 698/13-1). P.S. acknowledges funding from UoC emerging fields grant ‘ULDETIS’. F.L. acknowledges funding from the Federal University of Rio Grande do Sul.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the production of this manuscript.

Corresponding author

Correspondence to Maxwell Marzban Thiemens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Stephen Mojzsis and Alan Brandon for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Methods

Supplementary Methods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiemens, M.M., Tusch, J., O. C. Fonseca, R. et al. Reply to: No 182W evidence for early Moon formation. Nat. Geosci. 14, 716–718 (2021). https://doi.org/10.1038/s41561-021-00821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00821-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing