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The continental subsurface is the planet’s largest carbon res-
ervoir1, housing up to 19% of its total biomass2,3 and 99% 
of its freshwater4. Despite accounting for only 6% of total 

stores, modern groundwater (the fraction accrued in aquifers over 
the past 50 years) is the single most significant source of potable 
water. Carbonate karst aquifers alone are thought to supply people 
with nearly 10% of their drinking water5. Unfortunately, modern 
groundwater is also the most vulnerable to anthropogenic and cli-
matic impacts4. While subsurface ecosystems have long fascinated 
ecologists6, and more recently microbiologists7, accessibility, enor-
mous spatial heterogeneity and challenges in interpreting process 
rate measurements have obscured a meaningful understanding of 
their contributions to global biogeochemical cycles8.

The widespread recognition that Earth’s biosphere extends deep 
into the subsurface occurred only recently9. Historically, carbon sup-
ply in such environments was thought to be limited to the trickling 
of surface-produced organic matter into the shallow subsurface10 
or what was stored within sedimentary rocks11. By stark contrast, 
a wealth of compelling genetic evidence suggests that in situ car-
bon fixation is critical for sustaining highly diverse microbial meta-
bolic networks in groundwater, in both the shallow and the deep 
subsurface12–19. Despite the implications of gene-based surveys, the 
empirically derived activity measurements required to corrobo-
rate such inferences, constrain biogeochemical fluxes, understand 
system dynamics and integrate processes into regional and global 
models have yet to be reported. Here we report our use of a novel  

radiocarbon method to derive empirical carbon fixation rates and 
place them in the context of global groundwater.

Groundwater CO2 fixation rates resemble marine waters
Primary productivity in the shallow subsurface (groundwater 
wells 5–90 m deep), experimental carbon fixation rates varied 
from 0.043 ± 0.01 to 0.23 ± 0.10 μgC l−1 d−1 (mean ± 1 standard 
deviation (s.d.); Fig. 1a, Extended Data Table 1 and Supplementary 
Information). The ultra-low level 14C-labelling approach developed 
in this investigation exploits the high sensitivity of accelerator mass 
spectrometry, thereby minimizing impacts to groundwater hydro-
chemical equilibria and affording shorter incubation times. This 
method is particularly useful within a carbonate geological setting, 
where high dissolved inorganic carbon (DIC) backgrounds and a 
scarcity of microbes warrant greater sensitivity than is achievable via 
scintillation-based 14C-labelling approaches. Rates resulting from 
our new labelling technique probably approximate net primary pro-
ductivity rather than gross productivity, as has been reported for 
marine systems20,21, and we further expect them to be conservative 
estimates for carbon fixation as they consider only contributions 
from the planktonic portion of the community (Supplementary 
Information).

We compared these carbon fixation rates that were measured in 
groundwater of varying biogeochemical characteristics22 with the 
only other subsurface 14CO2 assimilation measurements reported: 
those of a deep (830–1,078 m) groundwater borehole from crystalline  
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bedrock in Sweden23. To do so, we converted the published rates 
of isotopic incorporation to carbon equivalents, revealing the lower 
but overlapping range of 0.0095 to 0.0560 μgC l−1 d−1.

To better understand the relevance of the rates measured, we 
compared them with those of well-documented oligotrophic marine 
surface waters. Unlike our samples, the carbon fixed in these waters 
was sourced almost entirely by bacterial photoautotrophs24,25. When 
compared directly with a comprehensive dataset compiled by ref. 26, 
our rates overlapped with those of global marine waters at depths 
to 140 m, equating to roughly 10% of the reported global median 

for 0–20 m depths (2.65 μg l−1 d−1, interquartile range (IQR) = 1.74, 
6.02) and 20% of the median for 20–140 m depths (1.2 μg l−1 d−1, 
IQR = 0.6, 1.7). Comparisons with the extensively studied Sargasso 
Sea in the Bermuda Atlantic Timeseries Study (BATS)27,28 and the 
Hawaiian Oceanographic Timeseries (HOTs)29 datasets yielded 
similar findings (Fig. 2). Our rate measurements ranged between 
3% and 23% of the median reported net primary productivity in 
the upper euphotic zones (down to ~120 m) and between 20% and 
600% of the median of the lower euphotic region (100–120 m).

We also considered contributions to existing particulate organic 
carbon (POC) stocks and new carbon inputs per microbial cell 
count. After normalizing for estimated total bacterial cell numbers, 
groundwater yielded 0.3–10.8 fg fixed carbon per bacterial cell per 
day (Extended Data Table 2), which matched estimates of 0.25–
12.1 fgC per bacterial cell per day across the marine photic zone 
(5–150 m). However, groundwater received new daily carbon inputs 
of only 0.47% ± 0.22% (mean ± s.d.; Extended Data Table 2) of its 
existing POC, much lower than the marine system’s 2.6% ± 2.9% 
gain in the lower euphotic zone and 22% ± 18% at the surface30,31. 
This disparity might stem from the larger recalcitrant fraction of 
POC in groundwater compared with oligotrophic oceans, which is 
supported by deviations in 14C and 13C signatures of total groundwa-
ter POC concentrations compared with lipid signatures of resident 
microbes32.

An ecosystem dominated by chemolithoautotrophs
To identify dominant microbial primary producers, a dereplicated 
and quality-controlled set of 1,224 metagenome-assembled genomes 
(MAGs) were generated from groundwater samples. Of these, 102 
putative chemolithoautotrophs exhibiting at least 50% completion 
scores for carbon fixation pathways were identified (Fig. 3). Almost 
exclusively bacterial (101), these MAGs represented 17 distinct 
phyla, 21 classes and 35 families (Fig. 3 and Supplementary Dataset 
1). In some samples, up to 12% of metagenomic reads from a sam-
ple could be recruited to these potentially chemolithoautotrophic 
MAGs (Supplementary Information and Extended Data Figs. 1 and 
2). A single archaeal MAG of the family Nitrosopumilaceae encoded 
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Fig. 1 | Carbon fixation rates and metagenomic potentials across the 
aquifer. a, Rates of carbon fixation. Outer error bars depict one standard 
deviation; inner grey bars delineate standard error of the mean. Rates 
for well H51 are derived from non-labelled controls (Supplementary 
Information). Letters denote the results of ANOVA and post hoc Tukey 
tests (excluding H51). b, Relative importance of the predicted carbon 
fixation pathways. c, Electron donor sources in each well. Values are 
averages from the triplicate 0.2 μm filtered fraction metagenome  
samples. d, Mean dissolved oxygen (DO) concentrations in groundwater 
collected in summer months (May–September 2010–2018); error bars 
depict standard deviation. e, Redox-potential measurements from identical 
time points; error bars depict standard deviation. While groundwater 
from H52 and H43 exhibited anoxic or hypoxic conditions, the positive 
redox potentials were due to oligotrophic conditions and mean nitrate 
concentrations of ~4 mg l–1.
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Fig. 2 | Comparison of carbon fixation rates within groundwater and 
the marine euphotic zone. Violin plots depicting the distribution of 
carbon fixation rates measured in oligotrophic marine surface waters 
and groundwater. HOTs, Hawaiian Oceanographic Timeseries (1999, 
cruises 101–110); BATs, data from 1988 to 2016 for the Bermuda Atlantic 
Timeseries; Liang, a collated dataset compiled by Liang et al.26; GW, the 
range of groundwater samples shown in Fig. 1.
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gene products for the 4-hydroxybutyrate/3-hydroxypropionate 
pathway and was not relatively abundant (<5× maximum normal-
ized coverage).

Three chemolithoautotrophic pathways were detected (Fig. 1b):  
the Calvin–Benson–Bassham (CBB), Wood–Ljungdahl (WL) and 
reverse tricarboxylic acid (rTCA) cycles were present in 37, 50 
and 15 MAGs, respectively. The summed and normalized rela-
tive coverages of MAGs equipped with these metabolic pathways 
aligned with the carbon fixation rates measured in wells H52, H32 
and H14 while contrasting with rate data from wells H41 and H43 
(Fig. 1, Extended Data Fig. 2 and Supplementary Information). 
The greatest relative abundances of predicted chemolithoau-
totrophs were detected in oxic well H41 and anoxic well H52. 

Anoxic groundwater was dominated by putative sulfur-oxidizing 
(53% of summed and normalized coverages of all chemolithoau-
totrophic MAGs) and putative anaerobic ammonium-oxidizing 
(anammox (10%)) autotrophic microbes, while oxic groundwa-
ters harboured greater abundances of potential nitrifiers (76%; 
Fig. 1c and Supplementary Information).

uncharacterized microbes influence CO2 fixation potential
The most abundant putative chemolithoautotrophic populations 
represented by MAGs generated from anoxic groundwater were of 
poorly studied and/or uncharacterized microbial lineages. Those 
most abundant in oxic groundwaters, however, were phyloge-
netically and metabolically similar to well-characterized microbes 
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Fig. 3 | Phylogeny, relative abundances and transcriptional activities of putative chemolithoautotrophic MAGs. Approximately maximum-likelihood 
phylogenetic tree based on concatenated single-copy protein alignments for all bacterial MAGs considered. Branches are coloured according to the 
predicted carbon fixation pathway, and the matching leaf is indicated by a point. Bar charts present average normalized metagenomic coverages within 
each well from triplicate 0.2 μm filtered fractions. Pie charts show the coverage of mRNA transcripts recruited, normalized to gene number and library size. 
Asterisks denote MAGs discussed in greater detail in Supplementary Information. The tree is rooted using Patescibacteria (CPR) as an outgroup, indicated 
by the collapsed grey leaf in the upper left. Node numbers: (1) c_Nitrospiria, (2) c_Thermodesulfovibrionia, (3) o_Nitrospirales, (4) f_Nitrospiraceae, (5) 
g_Nitrospira_D, (6) g_Nitrospira, (7) p_Nitrospinota, (8) c_Gammaproteobacteria, (9) o_Acidiferrobacterales, (10) f_Sulfurifustaceae, (11) g_SM1-46, (12) 
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(Supplementary Information). In both cases, metabolic reconstruc-
tions suggested that dominant subpopulations could access a diverse 
suite of (in)organic electron acceptors and donors. We mapped pre-
viously generated transcripts to these MAGs to confirm the active 
expression of gene products involved in energy acquisition and 
carbon fixation. As opposed to the broad distributions posited by 
deoxyribonucleic acid- (DNA-) based abundances, transcript data 
revealed far more restrictive ranges in which specific gene prod-
ucts were favoured (Fig. 3). Given their metabolic versatility and 
the results of previous cultivation-based analyses33, these popula-
tions are expected to be mixotrophic (capable of supplementing 
carbon requirements with available organic matter). Overall, car-
bon fixation in anoxic groundwater was predicted to be fuelled 
by reduced sulfur, and there were three highly abundant, putative 
sulfur-oxidizing MAGs identified, each accounting for >2% of the 
total metagenomic reads in some samples (100–400× normalized 
coverages). Diverse reduced sulfur species fuelling these metabo-
lisms are released from pyrite weathering of the karst rock34.

The most abundant MAG (H51-bin250-1) encountered in this 
study belongs to a deep-branching order, 9FT-COMBO-42-15, of 
class Nitrospira and is the first representative of class Nitrospiria 
thought to fix carbon via the WL pathway (Fig. 3, Fig. 4a and 
Supplementary Information). As there is precedence for auto-
trophic WL-utilizing bacteria within phylum Nitrospirota, and 
Candidatus Magnetobacterium was characterized with an equally 
flexible metabolism, these traits may be more widespread within 
the phylum than previously thought35. In addition, two MAGs 
with the potential to couple sulfur oxidation to carbon fixation via 
the CBB cycle were identified as members of the Sulfurifustaceae 
family of Proteobacteria (Supplementary Information and Fig. 4b; 
H32-bin014, H32-bin069). These MAGs recruited tenfold more tran-
scripts than their Nitrospirota counterparts and were among the most 
transcriptionally active putative chemolithoautotrophic genomes 
detected (Figs. 3 and 4, Extended Data Fig. 4 and Supplementary 
Information). With its closest reference genomes Sulfuricaulis 
limicola and Ca. Muproteobacteria (RIFCSPHIGHO2_12_
FULL_60_33), the taxonomic identity of this family is under debate. 
Per Genome Taxonomy Database (GTDB) classification nomencla-
ture, Muproteobacteria belong to the Sulfurifustaceae family, and 
members of this family have been posited to oxidize sulfur in both 
aquatic and terrestrial environments36–38.

Planctomycetota MAGs, predicted to couple anaerobic ammo-
nium oxidation to carbon fixation via the WL pathway, exhibited 
mean transcriptional activities on par with their Sulfurifustaceae 
MAG counterparts (Figs. 3 and 4c, Extended Data Fig. 5 and 
Supplementary Information). The elevated transcriptional activity 
of gene products within the CBB and WL pathways suggests that 
these taxa play a disproportionately large role in chemolithoautot-
rophy relative to their DNA-based abundances. Surprisingly, all 
putative anammox MAGs detected were transcriptionally active in 
oxic groundwater (Figs. 3 and 4b; wells H41 and H51). Anammox 
reactions are typically inhibited in the presence of oxygen39, 
although microbes will still express critically important genes in 
low oxygen environments40,41.

N-based rate measurements validate carbon fixation rates
To evaluate the relationship between anammox and carbon fixation 
in anoxic groundwaters, we compared the rates of each in a well 
harbouring the greatest relative abundance of putative anaerobic 

ammonium-oxidizing bacteria (well H52). Here, anammox rates of 
1.2 ± 0.5 nmol l−1 d−1 N2 were measured, similar to rates in another 
freshwater aquifer42. Empirical stoichiometric data demonstrate 
that 1.02 moles of N2 is produced via anaerobic ammonium oxi-
dation for every 0.066 moles of CH2O0.5N0.15 reduced to biomass43. 
Assuming equivalent stoichiometry, the rate of carbon fixation via 
anammox in groundwater would be 0.93 ± 0.39 ngC l−1 d−1, more 
than 200 times lower than the 220 ngC l−1 d−1 measured. This result 
is corroborated by metagenomic data that suggest the high rate 
of carbon fixation in anoxic groundwater is more likely driven by 
reduced sulfur than by reduced nitrogen.

Metagenomic and metatranscriptomic data predicted that nearly 
all the organic carbon produced under oxic conditions in well H41 
would be coupled to nitrification. To test this, we monitored the rate 
of aerobic ammonium oxidation in this well and recorded a mean 
production of 125.8 ± 5.9 nmol NO2– + NO3

− l−1 d−1. Since the most 
abundant nitrifiers detected were most closely related to complete 
ammonium-oxidizing bacteria (Supplementary Information), we 
based our calculations on the 394 mg protein per mol of ammo-
nia growth yields of Nitrospira inopinata, a comammox organ-
ism44. Assuming a cellular composition of C5H7O2N (ref. 45) and 
55% protein content, we estimated a rate of 48.5 ± 1.9 ngC l−1 d−1, 
which was well within the range of error for our measured rate of 
43 ± 13 ngC l−1 d−1 and confirms the importance of nitrification for 
carbon fixation at this site. Furthermore, the stoichiometry deter-
mined for oligotrophic marine rTCA nitrifiers46 of 0.0216 mol C/
mol N matched our calculated ratio of 0.0276 ± 0.0084, indicating 
they are responsible for most of the fixed carbon.

Global estimates for groundwater primary productivity
There are an estimated 22.6 million km3 of groundwater on Earth4, 
2.26 and 12.66 million km3 of which are housed in carbonate and 
crystalline aquifers, respectively. If we assume that our average 
rates accurately represent carbonate groundwater systems, then 
0.108 ± 0.069 PgC (mean ± s.d.) is fixed every year in this global 
ecosystem (Extended Data Table 3). If the values reported from 
crystalline aquifers23 are representative of this environment, then 
another 0.15 ± 0.11 PgC would be fixed there annually. Collectively, 
the net primary productivity of ~66% of the planet’s groundwa-
ter reservoirs would total 0.26 PgC yr−1, approximately 0.5% that 
of marine systems and 0.25% of global NPP estimates47. As these 
projections exclude the missing contributions from groundwaters 
within siliciclastic and volcanic geologic settings and activities of 
attached microorganisms, global contributions to the carbon cycle 
are expected be many-fold higher.

We showed that conservative estimates of carbon fixation rates 
in a carbonate aquifer reached 10% of the median rates reported in 
oligotrophic marine surface waters and six-fold greater than those 
observed in the lower euphotic zone. Within oxic groundwaters, our 
carbon fixation method was independently validated by nitrification 
rate measurements. Normalizing carbon fixation rates by estimated 
bacterial numbers revealed equivalent carbon input (0.3–12 fgC per 
cell) for both marine and groundwater systems, despite the fact that 
daily inputs of new POC were 40 times greater in marine waters. 
This disparity makes sense since trophic webs are simpler in the 
subsurface, and the export of organic matter is constrained by long 
water residence times within the aquifer. Complementary metage-
nomic analyses revealed that groundwater carbon fixation is not 
dominated by a single functional guild but rather has contributions 

Fig. 4 | Metabolic reconstructions of dominant putatively chemolithoautotrophic MAGs. Bar charts below each metabolic model summarize the average 
normalized coverage across each sample, scaled proportionally. Values within the bar chart indicate the sum normalized coverage for each MAG. Balloon 
plots depict normalized transcript coverages for genes affiliated with each pathway. If multiple copies were present, only the most active copy was plotted. 
The text information over each panel includes the predicted taxonomy (a, Nitrospiria; b, Sulfurifustaceae; c, Brocadiaceae), MAG identifier and estimated 
% completion/% redundancy. DNRA, dissimilatory nitrate reduction to ammonia.
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from diverse pathways and versatile microorganisms that are setting 
specific. As the majority of photosynthetically derived carbon in 
marine systems is labile (half-life <1 day), the findings of this study 
solicit new hypotheses regarding carbon cycling in the subsurface, 
particularly those positing newly synthesized carbon rather than 
surface-derived organic matter as the primary source of fuel for 
microbiota. Indeed, subsurface primary producers need to be con-
sidered as important to ecosystem processes as marine phototrophs 
are known to be in the surface ocean. Applying these rates of car-
bon fixation to ecosystem processes alters the way we think about 
these environments, challenges the importance of surface-derived 
organic matter fluxes on shallow subsurface functioning and estab-
lishes a framework broadly applicable across groundwater systems.
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Methods
Site description. Groundwater samples were sampled from the Hainich Critical 
Zone Exploratory (NW Thuringia, Germany)22,48,49. This aquifer assemblage 
consists of a multistory fractured system composed of alternating layers of 
limestone and mudstone that developed along a hillslope of Upper Muschelkalk 
bedrock22. The primary aquifer, represented in this study by wells H41 and H51, 
is oxic and lies within the Trochitenkalk Formation (moTK). Primarily suboxic 
to anoxic, mudstone-dominated overhanging strata lie within the Meissner 
Formation (moM) and are represented here by wells H14 (moM—substory 1), H32 
(moM—5, 6, 7), H43 (moM—8) and H52 (moM—3, 4). Geochemically, H32 and 
H41 coalesce into a single cluster while each of the other wells represents a distinct 
regime. Consistent with previous microbiological characterizations, however, each 
well studied represented a distinct community state50.

14C–DIC incorporation assay. This method, similar to a sensitive methane 
oxidation technique previously described51, is a modification of traditional  
14C–CO2 primary productivity approaches52 predicated on the sensitivity 
offered by accelerator-based mass spectrometry. Groundwater was collected 
in July 2020 during sampling campaign PNK130, as described by ref. 19. After 
approximately three well volumes had been discharged and physicochemical 
parameters stabilized, groundwater was collected directly into nine pre-sterilized 2 l 
borosilicate bottles, from the bottom up. Bottles were then overfilled with greater 
than two volumes and sealed with gas-tight rubber stoppers. Triplicate samples 
from each well were then subjected to three treatments. A labelling treatment 
consisted of 6.77 × 10−7 mmol C–NaHCO3 that contained 200 Bq of activity (50 μCi; 
American Radiolabeled Chemicals) diluted to 9.38 Bq μl–1 with sterilized milliQ 
water, adjusted to pH 10 and verified using a scintillation counter. An advantage 
of this 14C technique is that the small amount of tracer added (representing 
0.000006% of the total DIC) did not change the substrate concentration or 
influence conditions such as pH that could affect microbial populations. Kill 
controls were prepared in the same way, except 10 ml 50% ZnCl2 (w/v; final 
concentration 36.7 mM) was added to inhibit microbial activity. Unamended 
groundwater was also used as a control. All bottles were incubated in the dark at 
near in situ temperature for ~24 hours. Entire volumes were acidified to pH 4 with 
3 M HCl, bubbled with N2 for one hour to remove DIC and then filtered through 
pre-baked (550 °C, eight hours) quartz fibres (47 mm, 0.3 um pore size, Macherey–
Nagel QN-10) using pre-baked filter stands (EMD Millipore).

Filters were vacuum dried, sealed in quartz tubes with cupric oxide wire 
under vacuum and combusted at 900 °C for two hours. Evolved CO2 was purified 
cryogenically, measured as pressure in a known volume to determine C content 
and reduced to graphite for measurement by accelerator mass spectrometry at the 
WM Keck Carbon Cycle Accelerator Mass Spectrometry facility53. From the label 
incorporation and amount of carbon retained on the filters (Supplementary Data 
File 2), fixation rates were calculated using equation (1):

The technical variation was at most 3.6% (median = 0.78%) of the biological 
variation for the 14C measurements and was not considered in standard error 
of the mean calculations. Standard error of the mean was determined for 
both the 14C-based measurements (difference between two sets of triplicates, 
label and control, or label and kill controls) and POC measurements (all nine 
bottles from each well), separately. These errors were then propagated to yield 
the final error estimations. Analyses of variance and post hoc Tukey honestly 
significant difference (HSD) tests were conducted on resulting summary statistics 
(mean ± s.e.m.) using the following utility54. All 14C enrichment values were 
calculated using the differences between the 200 Bq-labelled samples and the 
200 Bq-labelled kill controls. Rates calculated on the basis of no-label addition 
controls are presented in Extended Data Table 1. Data from global oligotrophic 
marine systems were included from Supplementary Data Sheet 126, the Bermuda 
Atlantic Timeseries years 1988–2016 via FTP27,55 and the Hawaiian Oceanographic 
Timeseries via FTP56. POC data from both sites were extracted from Dryad 
datasets generated by refs. 30,31. Bacterial cell number estimates for Hawaiian 
Oceanographic Timeseries were obtained from the FTP site57.

15N-isotope incubation experiments. Groundwater from wells H41 and H52 was 
collected in September 2018 and November 2018 to measure nitrification rates and 
anammox rates, respectively. Briefly, groundwater was collected into sterile glass 
bottles, from the bottom up, using a sterile tube. Bottles were then overfilled with 
three volume exchanges and sealed headspace free with silicone septa. Each sample 
was collected in triplicate alongside one control bottle per well. Samples were kept 
at 4 °C until they were processed (no more than 2 hours post-collection).

For nitrification measurements, 10 ml was removed from each sampling 
bottle (total volume 0.5 l) and replaced with N2 to analyse inorganic nitrogen and 
pH. Groundwater from control bottles was sterile filtered through a 0.2 µm filter 
(Supor, Pall Corporation). Sterile filtered 15N ammonium sulfate solution (98%, 
Cambridge Isotope Laboratories), serving as a substrate for ammonia-oxidizing 
prokaryotes, was then added to a final concentration of 50 µM. Samples were 
incubated at 15 °C in the dark sans agitation for five days. Ten-millilitre fractions 
were removed and replaced with N2 at the outset of the experiment and after 12, 
24, 48, 70 and 120 hours via filtration through 0.2 µm filters; these fractions were 
stored at –20 °C for isotopic ratio mass spectrometry analyses. Additional 10 ml 

fractions were removed at intervals to monitor pH and inorganic nitrogen during 
the incubation.

For anammox rate measurements, sampling bottles (total volume 1 l) were 
flushed with N2 under sterile conditions for 30 minutes to remove all remnants 
of oxygen. Five-millilitre fractions were removed and replaced with N2 from 
each sample (and control) bottle to assess background 14NH4

+ concentrations. 
Subsequently, samples were spiked with either (1) 50 µM 15NH4

+ + 5 µM 14NO2
− 

or (2) 5 µM 15NO2
− as previously described58. Control bottles, serving as abiotic 

controls, were sterile filtered (0.2 µm filters; Supor, Pall Corporation) before 
flushing and the addition of nitrogen compounds. To facilitate destructive 
sampling at eight time points, groundwater (30 ml; in triplicate) was dispensed 
into sterile serum bottles leaving ~8 ml of headspace. Bottles were immediately 
sealed with butyl septa and crimp sealed and the headspace was purged with He. 
All bottles were then incubated in the dark at 15 °C sans agitation, and incubations 
were terminated after 0, 12, 24, 36, 48, 60, 72 and 96 hours by adding 300 µl 50% 
(v/w) aqueous zinc chloride solution.

Nitrification rates were determined on the basis of 15NO2
− + 15NO3

− production 
in incubations with 15NH4

+. 15NO2- and 15NO3
− were converted to N2 via cadmium 

reduction followed by a sulfamic acid addition59,60. The N2 produced (14N15N and 
15N15N) was analysed on a gas chromatography isotope ratio mass spectrometer as 
previously described61. Rates were evaluated from the slope of the linear regression 
of 15N produced with time and corrected for the fraction of the NH4

+ pool labelled 
in the initial substrate pool. The production of 15N-labelled N2 from anammox was 
analysed on the same isotopic ratio mass spectrometer as for nitrification rates 
and calculated as described62. Note, denitrification was not detected in any of the 
15NO2

− incubations. T tests were applied (P < 0.05) to assess whether rates were 
significantly different from zero (Extended Data Fig. 3).

DNA extraction and sample preparation. Samples used to generate metagenomic 
libraries were collected in January 2019 during sampling campaign PNK 110. 
For each sample replicate, approximately 50–100 l of groundwater was filtered 
sequentially through 0.2-µm- and 0.1-µm-pore-sized polytetrafluoroethylene 
(PTFE) filters (142 mm, Omnipore Membrane, Merck Millipore; Supplementary 
Data File 3). With the exception of H32 (which did not yield sufficient volumes), 
each well was sampled in triplicate. H32 was duplicated using a sample previously 
collected during campaign PNK108 (November 2018). Filters were frozen 
on dry ice and stored at –80 °C before extraction. DNA was extracted using a 
phenol-chloroform-based method, as previously described63, and resulting DNA 
extracts were purified using a Zymo DNA Clean & Concentrator kit. Metagenome 
libraries were generated with a NEBNext Ultra II FS DNA library preparation kit, 
in accordance with manufacturer’s protocols. DNA fragment sizes were estimated 
using an Agilent Bioanalyzer DNA 7500 instrument with High Sensitivity 
kits depending on DNA concentrations and recommendations of protocols 
(Supplementary Data File 3). Sequencing of the 32 samples was performed at the 
Core DNA Sequencing Facility of the Fritz Lipmann Institute using an Illumina 
NextSeq 500 system (2 × 150 bp). Resulting metagenomic library sizes ranged from 
16.4 to 22.1 Gbp (mean = 19.6 Gbp; Supplementary Data File 3), and raw data were 
deposited into the European Nucleotide Archive under project PRJEB36523.

Metagenomic assembly and binning. Adaptors were trimmed and raw sequences 
subjected to quality control processing using BBduk v.38.5164. Assembly and 
binning were performed as previously described65. Briefly, all libraries were 
independently assembled into scaffolds using metaSPAdes v.3.1266, all of which 
were taxonomically classified per ref. 65. For individual assemblies, open reading 
frames (ORFs) were identified using Prodigal v.2.6.3 in meta mode67. To generate 
coverage profiles, all quality-assessed and quality-controlled (QAQC) sequences 
from each of the 32 metagenomic libraries were mapped back to each of the 32 
scaffold databases using Bowtie2 v.2.3.4.3 in the sensitive mode68.

Scaffolds were binned using differential coverages and tetranucleotide 
frequencies with Maxbin269. In addition, ESOM and abawaca70 were used for both 
manual and automatic binning, based on tetranucleotide sequence signatures, using 
3 kbp and 5 kbp or 5 kbp and 10 kbp as minimum scaffold sizes, respectively. DAS 
Tool71 was used with default parameters to reconcile resulting bin sets. Complete 
sets of bins from each of the samples were dereplicated using dRep v.2.4.072. All 
scaffolds, bin assignments, ORF predictions and taxonomic annotations were then 
imported into Anvi’o v.6.073. Each of the resulting 1,275 bins was manually curated 
in Anvi’o v.6, considering both coverage and sequence compositions. In the end, 
1,224 bins passed the 30% completeness (median = 61%, IQR = (49%,73%)) and 
10% redundancy (median = 0%, IQR = (0%,1.4%)) quality thresholds.

Characterizations of the MAGs. ORFs originating from all of the resulting MAGs 
were annotated using kofamscan74 with the ‘detail’ flag, and KO annotations were 
filtered using a custom script (https://git.io/JtHVw). This utility preserves hits 
with scores of at least 80% of the kofamscan defined threshold, as well as those 
exhibiting a score >100 if there is no threshold. We elected to relax the default 
thresholds since all MAGs representing putatively chemolithoautotrophic microbes 
were verified manually, and we noticed that the best reciprocal blast hits with 
known reference sequences routinely scored below the kofamscan thresholds; that 
is, we favoured false positives over false negatives since we included a secondary 
verification step.
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KEGGDecoder75 was used to assess the metabolic potential of five of the 
primary chemolithoautotrophic pathways: the CBB cycle, the WL pathway, the 
reverse citric acid cycle, the 4-hydroxybutyrate 3-hydroxypropionate pathway 
and the 3-hydroxypropionate bi-cycle. MAGs were examined in greater depth 
if a given pathway was >50% complete. The MAGs representing potential 
chemolithoautotrophs were re-annotated using the online BlastKoala server76 with 
essential steps verified through blast77 against the RefSeq database. A collection of 
HMM models was used to determine which form of Rubisco was detected, along 
with potential hydrogenases37. Using blastp77, dissimilatory bisulfite reductases 
(dsrAB) were compared with a database compiled by ref. 78 to predict whether the 
pathway operated in an oxidative or reductive manner. Blast was used to compare 
gene hits for narGH/nxrAB (nitrate reductase/nitrite oxidoreductase) with a 
custom database based on sequences presented within ref. 79.

All QAQC reads were remapped to a database consisting of only contigs of 
dereplicated MAGs. Normalized coverages for each of the MAGs were determined 
by scaling the resulting Anvi’o-determined coverages on the basis of the number 
of RNA polymerase B (rpoB) genes identified in the QAQC filtered reads. RpoB 
sequences were identified using ROCker with the precomputed model80. Scaling 
factors were calculated by dividing the maximum number of rpoB identified in the 
32 metagenomic libraries by the number of rpoB detected in each sample. Reported 
values represent averages of the triplicates/replicates, unless stated otherwise. 
The taxonomy of each MAG was evaluated using the GTDB_TK tool kit81 in 
concert with the Genome Taxonomy Database (release 89)82,83 and its associated 
utilities67,84–88. Single-copy marker genes were identified and aligned with GTDB_
TK for all bacterial MAGs, and a phylogenetic tree of the concatenated alignment 
was constructed using FastTree2 v.2.1.10 in accordance with the JTT + CAT 
evolutionary model. The resulting phylogenetic tree was then imported into iToL89 
for visualization, and all MAGs were subjected to growth rate index analysis within 
each metagenomic library90.

Previously generated mRNA-enriched and post-processed metatranscriptomic 
libraries were procured from project PRJEB2878391. The groundwater source of 
these metatranscriptomes was collected in August and November 2015. QAQC 
filtered reads were mapped to MAGs using Bowtie2 v.2.3.5 in sensitive mode68, and 
the total number of rpoB transcripts from each metatranscriptomic library was 
determined, as described in the preceding for metagenomes. The transcriptomic 
coverages for each ORF from each MAG were determined using Anvi’o v.6 and 
normalized via scaling-factor calculations based on the total number of rpoB reads 
from the original metatranscriptome library (the coverage of each ORF from each 
MAG was normalized to a community-wide estimate of the transcriptional activity 
of a housekeeping gene in each sample). Means were determined considering all of 
the metatranscriptomes generated from a given well, including different sampling 
time points. While well H32 was sampled only once, mean values from all other 
wells account for three to four metatranscriptome coverages each. In addition, an 
average of the resulting normalized coverages for each MAG from each sample 
(sum of the MAG transcriptional coverage divided by the number of ORFs) was 
determined to estimate the relative transcriptional activity of the MAGs across 
the transect. Data were compiled and processed using R v.3.5.2 with Rstudio 
v.1.1.46392,93 and the tidyverse package94, and colour schemes were generated  
using the RColorBrewer utility95. All MAGs were deposited in project 
PRJEB36505’s data repository.

Data availability
The metagenomic raw data for this study was uploaded to the European Nucleotide 
Archive (ENA) under project PRJEB36505, while the individual sample assemblies 
and the metagenome-assembled-genomes were deposited into the ENA under 
project PRJEB36523. To improve ease of access, we also uploaded all MAGs and 
their associated data to the Open Science Framework (OSF) Project https://osf.
io/4ceqs/. All raw and summarized accelerator mass spectrometry (AMS) data are 
available in Supplementary Data File 2, which was also uploaded to the same OSF 
project as the MAGs.
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Extended Data Fig. 1 | relative abundances of putative chemolithoautotrophic MAGs. (Top) Proportion of metagenomic short reads that mapped to the 
putatively chemolithoautotrophic MAGs. Colors indicate the phylum and each bar indicates a specific MAG. (Bottom) The normalized coverages assigned 
to the MAGs, which unlike the proportional representation is independent of MAG size. For each plot, 0.1 µm and 0.2 µm represent the filter fraction from 
which the DNA was extracted from.
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Extended Data Fig. 2 | relative abundances of transcripts mapping to putative chemolithoautotrophic MAGs. Top panels are reproduced from Fig. 1 B, C.  
Middle panels are the corresponding values for the RNA-based reads. These values are derived from the ORF-based average normalized transcriptional 
activity of all putatively chemolithoautotrophic MAGs, as described in the methods and represent the sample-wise sum of the pie charts shown in Fig. 3.  
Bottom panel shows the average proportion of metatranscriptomic reads that map to the putatively chemolithoautotrophic MAGs. We did not have 
metatranscriptomes from H14 and the single H32 sample did not recruit reads.
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Extended Data Fig. 3 | Nitrification and anammox linear regressions. Assessment of nitrogen transformation process rates in groundwater incubations  
by linear regression of measured increase in 15N over time for (a) nitrification with 15NH4

+ label, (b) anammox with 15NH4
+ label and (c) anammox with 

15NO2- label. Shown are the slopes of the regression line for each replicate and control sample from which nitrification and anammox rates were calculated. 
R2 values describe the accuracy of the linearity and p-values the significance of results for p < 0.05.
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Extended Data Fig. 4 | Transcriptional activity of Sulfurifustaceae MAGs. Transcriptional activity of both dominant and putatively chemolithoautotrophic 
MAGs within the family Sulfurifustaceae. These bins exhibited nearly identical distributions throughout the aquifer transect and a > 94% AAI. H32-bin014 
is also shown in Fig. 4b. Bubble size is relative to the normalized ORF transcriptional coverage.
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Extended Data Fig. 5 | Phylogenetic tree of putative anammox MAGs. Approximately maximum-likelihood phylogenetic tree of Wood Ljungdahl 
containing anammox MAGs and reference genomes. The multiple protein sequence alignment from GTDB_TK (5040 positions) was used with the 
JTT + CAT model, manually rooted with a MAG classified to the sister class Phycisphaerae within the phylum Planctomycetota.
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Extended Data Table 1 | CO2 fixation rates

CO2 fixation rates, calculated from both the kill controls and the no-label addition controls. Significance testing uses the mean and SEM values and results from the posthoc Tukey test that were significant 
are reported.
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Extended Data Table 2 | Predicted global rates

Estimations of global subsurface carbon fixation rates.
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Extended Data Table 3 | Normalized rates

Normalizing the rate of carbon fixation to standing particulate organic carbon concentrations and estimated bacterial cell numbers.
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