Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Geological evidence for multiple climate transitions on Early Mars

Abstract

Landforms and deposits observed on the Martian surface suggest that Mars’ early climate supported rivers and lakes over a time span of more than a billion years. But, like Earth, which has over the past billion years experienced periods of global glaciations and hyperthermals, the climate history of Early Mars may have been intermittent. Here we synthesize sedimentary and erosional evidence for multiple climate transitions on Early Mars. We suggest that Mars did not undergo a single wet-to-dry transition, but rather experienced seven major climate transitions, with the planet intermittently under climates warm enough to support surface liquid water even after 3.0 billion years ago (Ga). However, there is evidence for long dry spells, with some locations fully dry after 3.6 Ga. We evaluate hypotheses for the cause of the climate transitions, such as volcanic eruptions and changes in mean obliquity. Testing the sequence of events and understanding the underlying drivers of environmental change will require future missions to Mars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of major Early Mars climate transitions recorded by geology.
Fig. 2: Options for correlating Mars’ sedimentary record.
Fig. 3: Major environmental transitions of Early Mars.
Fig. 4: Timescales τ for the wettest climates.
Fig. 5: Graphical summary of possible environmental evolution trajectories.

Similar content being viewed by others

References

  1. Grotzinger, J. P. & Milliken, R. E. The sedimentary rock record of Mars: distribution, origins and global stratigraphy. SEPM Spec. Publ. 102, 1–48 (2012).

    Google Scholar 

  2. Fassett, C. I. & Head, J. W. Sequence and timing of conditions on early Mars. Icarus 211, 1204–1214 (2011).

    Article  Google Scholar 

  3. Holo, S. J., Kite, E. S., Wilson, S. A. & Morgan, A. M. The timing of alluvial fan formation on Mars. Planet. Sci. J. 2, 210 (2021).

    Article  Google Scholar 

  4. Kite, E. S., Sneed, J., Mayer, D. P. & Wilson, S. A. Persistent or repeated surface habitability on Mars during the late Hesperian‐Amazonian. Geophys. Res. Lett. 44, 3991–3999 (2017).

    Article  Google Scholar 

  5. Catling, D. C. & Kasting, J. F. Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge Univ. Press, 2017)

  6. Wordsworth, R. et al. Global modelling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).

    Article  Google Scholar 

  7. Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).

    Article  Google Scholar 

  8. Zahnle, K. J. & Catling, D. C. The cosmic shoreline: the evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri B. Astrophys. J. 843.2, 122 (2017).

    Article  Google Scholar 

  9. Ehlmann, B. L. et al. The sustainability of habitability on terrestrial planets: insights, questions and needed measurements from Mars for understanding the evolution of Earth‐like worlds. J. Geophys. Res. Planets 121, 1927–1961 (2016).

    Article  Google Scholar 

  10. Stone, S. W. et al. Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science 370, 824–831 (2020).

    Article  Google Scholar 

  11. Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).

    Article  Google Scholar 

  12. Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).

    Article  Google Scholar 

  13. Andrews‐Hanna, J. C. & Lewis, K. W. Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. J. Geophys. Res. Planets https://doi.org/10.1029/2010JE003709 (2011).

  14. Kite, E. S. et al. Stratigraphy of Aeolis Dorsa, Mars: stratigraphic context of the great river deposits. Icarus 253, 223–242 (2015).

    Article  Google Scholar 

  15. McLennan, S. M., Grotzinger, J. P., Hurowitz, J. A. & Tosca, N. J. The sedimentary cycle on early Mars. Annu. Rev. Earth Planet. Sci. 47, 91–118 (2019).

    Article  Google Scholar 

  16. Martin, P. E. et al. A two-step K‐Ar experiment on Mars: dating the diagenetic formation of jarosite from Amazonian groundwaters. J. Geophys. Res. Planets 122, 2803–2818 (2017).

    Article  Google Scholar 

  17. Kite, E. S. Geologic constraints on Early Mars climate. Space Sci. Rev. 215, 10 (2019).

  18. Skinner, J. A. Jr, Fortezzo, C. M. & Mouginis-Mark, P. J. Exposure of an Early to Middle Noachian valley network in three dimensions on Mars. Icarus 354, 114071 (2021).

    Article  Google Scholar 

  19. Michael, G. G. Planetary surface dating from crater size-frequency distribution measurements: multiple resurfacing episodes and differential isochron fitting. Icarus 226, 885–890 (2013).

    Article  Google Scholar 

  20. Forsberg-Taylor, N. K., Howard, A. D. & Craddock, R. A. Crater degradation in the Martian highlands: morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes. J. Geophys. Res. 109, E05002 (2004).

    Article  Google Scholar 

  21. El-Maarry, M. R., Dohm, J. M., Michael, G., Thomas, N. & Maruyama, S. Morphology and evolution of the ejecta of Hale crater in Argyre basin, Mars. Icarus 226, 905–922 (2013).

    Article  Google Scholar 

  22. Quantin-Nataf, C., Craddock, R. A., Dubuffet, F., Lozac’h, L. & Martinot, M. Decline of crater obliteration rates during early Martian history. Icarus 317, 427–433 (2019).

    Article  Google Scholar 

  23. Matsubara, Y., Howard, A. D. & Irwin, R. P.III Constraints on the Noachian paleoclimate of the Martian highlands from landscape evolution modeling. J. Geophys. Res. Planets 123, 2958–2979 (2018).

    Article  Google Scholar 

  24. Strom, R. G. et al. The inner solar system cratering record and the evolution of impactor populations. Res. Astron. Astrophys. 15, 407 (2015).

    Article  Google Scholar 

  25. Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014).

    Article  Google Scholar 

  26. Treiman, A. H. Uninhabitable and potentially habitable environments on Mars: evidence from meteorite ALH 84001. Astrobiology 21, 940–953 (2021).

    Article  Google Scholar 

  27. Mittlefehldt, D. W. et al. Diverse lithologies and alteration events on the rim of Noachian-aged Endeavour crater, Meridiani Planum, Mars. J. Geophys. Res. Planets 123, 1255–1306 (2018).

    Article  Google Scholar 

  28. Squyres, S. W. et al. Rocks of the Columbia hills. J. Geophys. Res. Planets https://doi.org/10.1029/2005JE002562 (2006).

  29. Bishop, J. L. et al. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars. Nat. Astron. 2, 206–213 (2018).

    Article  Google Scholar 

  30. Goodwin, A., Garwood, R. J. & Tartèse, R. A review of the ‘Black Beauty’ Martian Regolith Breccia and its Martian habitability record. Astrobiology https://doi.org/10.1089/ast.2021.0069 (2022).

    Article  Google Scholar 

  31. Warren, A. O., Kite, E. S., Williams, J. P. & Horgan, B. Through the thick and thin: new constraints on Mars paleopressure history 3.8–4 Ga from small exhumed craters. JGR Planets 124, 2793–2818 (2019).

    Article  Google Scholar 

  32. Cassata, W. S., Zahnle, K. J., Samperton, K. M., Stephenson, P. C. & Wimpenny, J. Xenon isotope constraints on ancient Martian atmospheric escape. Earth Planet. Sci. Lett. 580, 117349 (2022).

    Article  Google Scholar 

  33. Kite, E. S., Steele, L. J., Mischna, M. A. & Richardson, M. I. Warm early Mars surface enabled by high-altitude water ice clouds. Proc. Natl Acad. Sci. USA 118, e2101959118 (2021).

    Article  Google Scholar 

  34. Loizeau, D. et al. Quantifying widespread aqueous surface weathering on Mars: plateaus south of Coprates Chasma. Icarus 302, 451–469 (2018).

    Article  Google Scholar 

  35. Zolotov, M. Y. & Mironenko, M. V. Chemical models for Martian weathering profiles: insights into formation of layered phyllosilicate and sulfate deposits. Icarus 275, 203–220 (2016).

    Article  Google Scholar 

  36. Irwin, R. P. III, Maxwell, T. A., Howard, A. D., Craddock, R. A. & Leverington, D. W. A large paleolake basin at the head of Ma’adim Vallis, Mars. Science 296, 2209–2212 (2002).

    Article  Google Scholar 

  37. Orofino, V., Alemanno, G., Di Achille, G. & Mancarella, F. Estimate of the water flow duration in large Martian fluvial systems. Planet. Space Sci. 163, 83–96 (2018).

    Article  Google Scholar 

  38. Rampe, E. B. et al. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: a review after six Earth years of exploration with Curiosity. Geochemistry 80, 125605 (2020).

    Article  Google Scholar 

  39. Berger, G. et al. Evidence in favor of small amounts of ephemeral and transient water during alteration at Meridiani Planum, Mars. Am. Mineral. 94, 1279–1282 (2009).

    Article  Google Scholar 

  40. Berger, J. A. et al. Elemental composition and chemical evolution of geologic materials in Gale Crater, Mars: APXS results from Bradbury landing to the Vera Rubin ridge. J. Geophys. Res. Planets 125, e2020JE006536 (2020).

    Article  Google Scholar 

  41. Rampe, E. B. et al. A mineralogical study of glacial flour from Three Sisters, Oregon: an analog for a cold and icy early Mars. Earth Planet. Sci. Lett. 584, 117471 (2022).

    Article  Google Scholar 

  42. McKay, C. P. et al. in Polar Lakes, Streams and Springs as Analogs for the Hydrological Cycle on Mars, in Water on Mars and Life 219–233 (Springer, 2005).

  43. Fairén, A. G. A cold and wet Mars. Icarus 208, 165–175 (2010).

    Article  Google Scholar 

  44. Kress, A. M. & Head, J. W. Late Noachian and early Hesperian ridge systems in the south circumpolar Dorsa Argentea Formation, Mars: evidence for two stages of melting of an extensive late Noachian ice sheet. Planet. Space Sci. 109, 1–20 (2015).

    Article  Google Scholar 

  45. Tian, F., Kasting, J. F. & Solomon, S. C. Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36, L02205 (2009).

    Article  Google Scholar 

  46. Lillis, R. J., Robbins, S., Manga, M., Halekas, J. S. & Frey, H. V. Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. Planets 118, 1488–1511 (2013).

    Article  Google Scholar 

  47. Grotzinger, J. P. et al. Stratigraphy and sedimentology of a dry to wet Eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 11–72 (2005).

    Article  Google Scholar 

  48. Flahaut, J. et al. Embedded clays and sulfates in Meridiani Planum, Mars. Icarus 248, 269–288 (2015).

    Article  Google Scholar 

  49. Rampe, E. B. et al. Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth Planet. Sci. Lett. 471, 172–185 (2017).

    Article  Google Scholar 

  50. Rapin, W. et al. Sustained wet–dry cycling on early Mars. Nature 620, 299–302 (2023).

    Article  Google Scholar 

  51. Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).

    Article  Google Scholar 

  52. Szynkiewicz, A. & Bishop, J. L. Assessment of sulfate sources under cold conditions as a geochemical proxy for the origin of sulfates in the circumpolar dunes on Mars. Minerals 11, 507 (2021).

    Article  Google Scholar 

  53. Baccolo, G. et al. Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars. Nat. Commun. 12, 436 (2021).

    Article  Google Scholar 

  54. Kite, E. S., Halevy, I., Kahre, M. A., Wolff, M. J. & Manga, M. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223, 181–210 (2013).

    Article  Google Scholar 

  55. McCollom, T. M. Geochemical trends in the Burns formation layered sulfate deposits at Meridiani Planum, Mars, and implications for their origin. J. Geophys. Res. Planets 123, 2393–2429 (2018).

    Article  Google Scholar 

  56. Kite, E. S. & Melwani Daswani, M. Geochemistry constrains global hydrology on Early Mars. Earth Planet. Sci. Lett. 524, 115718 (2019).

    Article  Google Scholar 

  57. Kite, E. S. et al. Changing spatial distribution of water flow charts major change in Mars greenhouse effect. Sci. Adv. 8, eabo5894 (2022).

    Article  Google Scholar 

  58. Mahaffy, P. R. et al. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347, 412–414 (2015).

    Article  Google Scholar 

  59. Zabrusky, K., Andrews-Hanna, J. C. & Wiseman, S. M. Reconstructing the distribution and depositional history of the sedimentary deposits of Arabia Terra, Mars. Icarus 220, 311–330 (2012).

    Article  Google Scholar 

  60. Milliken, R. E., Ewing, R. C., Fischer, W. W. & Hurowitz, J. Wind‐blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars. Geophys. Res. Lett. 41, 1149–1154 (2014).

    Article  Google Scholar 

  61. Okubo, C. H. Bedrock Geologic and Structural Map through the Western Candor Colles Region of Mars. US Geological Survey Scientific Investigations Map 3309 (USGS, 2014); https://doi.org/10.3133/sim3309

  62. Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).

    Article  Google Scholar 

  63. Mischna, M. A., Baker, V., Milliken, R., Richardson, M. & Lee, C. Effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate. J. Geophys. Res. Planets 118, 560–576 (2013).

    Article  Google Scholar 

  64. Soto, A., Mischna, M., Schneider, T., Lee, C. & Richardson, M. Martian atmospheric collapse: idealized GCM studies. Icarus 250, 553–569 (2015).

    Article  Google Scholar 

  65. Warner, N. H., Sowe, M., Gupta, S., Dumke, A. & Goddard, K. Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology 41, 675–678 (2013).

    Article  Google Scholar 

  66. Palucis, M. C. et al. Sequence and relative timing of large lakes in Gale crater (Mars) after the formation of Mount Sharp. J. Geophys. Res. Planets 121, 472–496 (2016).

    Article  Google Scholar 

  67. Kite, E. S. & Noblet, A. High and dry: billion-year trends in the aridity of river-forming climates on Mars. Geophys. Res. Lett. 49, e2022GL101150 (2022).

    Article  Google Scholar 

  68. Stucky de Quay, G., Goudge, T. A. & Fassett, C. I. Precipitation and aridity constraints from paleolakes on early Mars. Geology 48, 1189–1193 (2020).

    Article  Google Scholar 

  69. Irwin, R. P. III, Lewis, K. W., Howard, A. D. & Grant, J. A. Paleohydrology of Eberswalde crater, Mars. Geomorphology 240, 83–101 (2015).

    Article  Google Scholar 

  70. Kite, E. S. et al. Persistence of intense, climate-driven runoff late in Mars history. Sci. Adv. 5, eaav7710 (2019).

    Article  Google Scholar 

  71. Wilson, S. A., Howard, A. D., Moore, J. M. & Grant, J. A. A cold‐wet middle‐latitude environment on Mars during the Hesperian‐Amazonian transition: evidence from northern Arabia valleys and paleolakes. J. Geophys. Res. Planets 121, 1667–1694 (2016).

    Article  Google Scholar 

  72. Lichtenegger, H. I. M. et al. Non-thermal escape of the Martian CO2 atmosphere over time: constrained by Ar isotopes. Icarus 382, 115009 (2022).

    Article  Google Scholar 

  73. Ingersoll, A. P. Mars: occurrence of liquid water. Science 168, 972–973 (1970).

    Article  Google Scholar 

  74. Golombek, M. P. et al. Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res. Planets 119, 2522–2547 (2014).

    Article  Google Scholar 

  75. Leask, E. K. & Ehlmann, B. L. Evidence for deposition of chloride on Mars from small‐volume surface water events into the Late Hesperian‐Early Amazonian. AGU Adv. 3, e2021AV000534 (2022).

    Article  Google Scholar 

  76. Schmidt, F. et al. Circumpolar ocean stability on Mars 3 Gy ago. Proc. Natl Acad. Sci. USA 119, e2112930118 (2022).

    Article  Google Scholar 

  77. Madeleine, J. B. et al. Recent ice ages on Mars: the role of radiatively active clouds and cloud microphysics. Geophys. Res. Lett. 41, 4873–4879 (2014).

    Article  Google Scholar 

  78. Tornabene, L. L. et al. Widespread crater-related pitted materials on Mars: further evidence for the role of target volatiles during the impact process. Icarus 220, 348–368 (2012).

    Article  Google Scholar 

  79. Lewis, K. W. & Aharonson, O. Occurrence and origin of rhythmic sedimentary rocks on Mars. J. Geophys. Res. Planets 119, 1432–1457 (2014).

    Article  Google Scholar 

  80. Edgett, K. S. & Sarkar, R. Recognition of sedimentary rock occurrences in satellite and aerial images of other worlds—insights from Mars. Remote Sens. 13, 4296 (2021).

    Article  Google Scholar 

  81. Chojnacki, M. et al. Ancient Martian aeolian sand dune deposits recorded in the stratigraphy of Valles Marineris and implications for past climates. J. Geophys. Res. Planets 125, e2020JE006510 (2020).

    Article  Google Scholar 

  82. Knoll, A. H. et al. Veneers, rinds and fracture fills: relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2007JE002949 (2008).

  83. Udry, A. et al. What Martian meteorites reveal about the interior and surface of Mars. J. Geophys. Res. Planets 125, e2020JE006523 (2020).

    Article  Google Scholar 

  84. Goddard, K., Warner, N. H., Gupta, S. & Kim, J. R. Mechanisms and timescales of fluvial activity at Mojave and other young Martian craters. J. Geophys. Res. Planets 119, 604–634 (2014).

    Article  Google Scholar 

  85. Fassett, C. I., Dickson, J. L., Head, J. W., Levy, J. S. & Marchant, D. R. Supraglacial and proglacial valleys on Amazonian Mars. Icarus 208, 86–100 (2010).

    Article  Google Scholar 

  86. Morgan, G. A., Head, J. W. III & Marchant, D. R. Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region, Mars: constraints on the extent, age and episodicity of Amazonian glacial events. Icarus 202, 22–38 (2009).

    Article  Google Scholar 

  87. Butcher, F. E., Conway, S. J. & Arnold, N. S. Are the Dorsa Argentea on Mars eskers? Icarus 275, 65–84 (2016).

    Article  Google Scholar 

  88. Dundas, C. M. et al. The formation of gullies on Mars today. Geol. Soc. Lond. Spec. Publ. 467, 67–94 (2019).

    Article  Google Scholar 

  89. Conway, S. J., de Haas, T. & Harrison, T. N. Martian gullies: a comprehensive review of observations, mechanisms and insights from Earth analogues. Geol. Soc. Lond. Spec. Publ. 467, 7–66 (2019).

    Article  Google Scholar 

  90. Dundas, C. Dry formation of recent Martian slope features, in Mars geological enigmas from the Late Noachian Epoch to the present day (eds Soare, R. J. et al.) 263–288 (Elsevier, 2021).

  91. Chevrier, V. F., Fitting, A. B. & Rivera-Valentín, E. G. Limited stability of multicomponent brines on the surface of Mars. Planet. Sci. J. 3, 125 (2022).

    Article  Google Scholar 

  92. Lasue, J. et al. (eds) in Volatiles in the Martian Crust 185–246 (Elsevier, 2019).

  93. Orosei, R. et al. Radar evidence of subglacial liquid water on Mars. Science 361, 490–493 (2018).

    Article  Google Scholar 

  94. Hu, R., Kass, D. M., Ehlmann, B. L. & Yung, Y. L. Tracing the fate of carbon and the atmospheric evolution of Mars. Nat. Commun. 6, 10003 (2015).

    Article  Google Scholar 

  95. Nemchin, A. A. et al. Record of the ancient martian hydrosphere and atmosphere preserved in zircon from a Martian meteorite. Nat. Geosci. 7, 638–642 (2014).

    Article  Google Scholar 

  96. Onstott, T. C. et al. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. Astrobiology 19, 1230–1262 (2019).

    Article  Google Scholar 

  97. Ramirez, R. M. et al. Warming early Mars with CO2 and H2. Nat. Geosci. 7, 59–63 (2014).

    Article  Google Scholar 

  98. Wordsworth, R. et al. A coupled model of episodic warming, oxidation and geochemical transitions on early Mars. Nat. Geosci. 14, 127–132 (2021).

    Article  Google Scholar 

  99. Black, B. A., Karlstrom, L. & Mather, T. A. The life cycle of large igneous provinces. Nat. Rev. Earth Environ. 2, 840–857 (2021).

    Article  Google Scholar 

  100. Steakley, K. E., Kahre, M. A., Haberle, R. M. & Zahnle, K. J. Impact induced H2-rich climates on early Mars explored with a global climate model. Icarus 2022, 115401 (2022).

    Google Scholar 

  101. Urata, R. A. & Toon, O. B. Simulations of the martian hydrologic cycle with a general circulation model: implications for the ancient Martian climate. Icarus 226, 229–250 (2013).

    Article  Google Scholar 

  102. Turbet, M. et al. The environmental effects of very large bolide impacts on early Mars explored with a hierarchy of numerical models. Icarus 335, 113419 (2020).

    Article  Google Scholar 

  103. Steakley, K., Murphy, J., Kahre, M., Haberle, R. & Kling, A. Testing the impact heating hypothesis for early Mars with a 3-D global climate model. Icarus 330, 169–188 (2019).

    Article  Google Scholar 

  104. Stanley, B. D., Hirschmann, M. M. & Withers, A. C. CO2 solubility in Martian basalts and Martian atmospheric evolution. Geochim. Cosmochim. Acta 75, 5987–6003 (2011).

    Article  Google Scholar 

  105. Tian, F. et al. Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Planet. Sci. Lett. 295, 412–418 (2010).

    Article  Google Scholar 

  106. Holo, S. J., Kite, E. S. & Robbins, S. J. Mars obliquity history constrained by elliptic crater orientations. Earth Planet. Sci. Lett. 496, 206–214 (2018).

    Article  Google Scholar 

  107. Grimm, R. E. & Painter, S. L. On the secular evolution of groundwater on Mars. Geophys. Res. Lett. https://doi.org/10.1029/2009GL041018 (2009).

  108. Ramstad, R., Barabash, S., Futaana, Y., Nilsson, H. & Holmström, M. Ion escape from Mars through time: an extrapolation of atmospheric loss based on 10 years of Mars Express measurements. J. Geophys. Res. Planets 123, 3051–3060 (2018).

    Article  Google Scholar 

  109. Buhler, P. B. & Piqueux, S. Obliquity‐driven CO2 exchange between Mars’ atmosphere, Regolith and Polar Cap. J. Geophys. Res. Planets 126, e2020JE006759 (2021).

    Article  Google Scholar 

  110. Matsubara, Y., Howard, A. D. & Gochenour, J. P. Hydrology of early Mars: valley network incision. J. Geophys. Res. Planets 118, 1365–1387 (2013).

    Article  Google Scholar 

  111. Matsubara, Y., Howard, A. D. & Drummond, S. A. Hydrology of early Mars: lake basins. J. Geophys. Res. Planets 116, https://doi.org/10.1029/2010JE003739 (2011).

  112. Horvath, D. G. & Andrews‐Hanna, J. C. Reconstructing the past climate at Gale crater, Mars, from hydrological modeling of late‐stage lakes. Geophys. Res. Lett. 44, 8196–8204 (2017).

    Article  Google Scholar 

  113. Horvath, D. G. & Andrews-Hanna, J. C. The hydrology and climate of Mars during the sedimentary infilling of Gale crater. Earth Planet. Sci. Lett. 568, 117032 (2021).

    Article  Google Scholar 

  114. Olsen, A. A. & Rimstidt, J. D. Using a mineral lifetime diagram to evaluate the persistence of olivine on Mars. Am. Mineral. 92, 598–602 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin S. Kite.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Alberto Fairén and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

Data sources for Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kite, E.S., Conway, S. Geological evidence for multiple climate transitions on Early Mars. Nat. Geosci. 17, 10–19 (2024). https://doi.org/10.1038/s41561-023-01349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01349-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing