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Regional variations in relative sea-level 
changes influenced by nonlinear vertical 
land motion

Julius Oelsmann    1 , Marta Marcos    2,3, Marcello Passaro1, Laura Sanchez    1, 
Denise Dettmering    1, Sönke Dangendorf    4 & Florian Seitz    1

Vertical land movements can cause regional relative sea-level changes to 
differ substantially from climate-driven absolute sea-level changes. Whereas 
absolute sea level has been accurately monitored by satellite altimetry since 
1992, there are limited observations of vertical land motion. Vertical land 
motion is generally modelled as a linear process, despite some evidence 
of nonlinear motion associated with tectonic activity, changes in surface 
loading or groundwater extraction. As a result, the temporal evolution of 
vertical land motion, and its contribution to projected sea-level rise and its 
uncertainty, remains unresolved. Here we generate a probabilistic vertical 
land motion reconstruction from 1995 to 2020 to determine the impact 
of regional-scale and nonlinear vertical land motion on relative sea-level 
projections up to 2150. We show that regional variations in projected 
coastal sea-level changes are equally influenced by vertical land motion and 
climate-driven processes, with vertical land motion driving relative sea-level 
changes of up to 50 cm by 2150. Accounting for nonlinear vertical land 
motion increases the uncertainty in projections by up to 1 m on a regional 
scale. Our results highlight the uncertainty in future coastal impacts and 
demonstrate the importance of including nonlinear vertical land motions in 
sea-level change projections.

Global mean absolute sea-level (GMSL) change has been increasing from 
rates of 1.4 mm yr−1 over the twentieth century to 3.25 mm yr−1 over the 
past decades (1993–2018) and is expected to accelerate further to rates 
of 5.2–12.1 mm yr−1 (during 2080–21001). Coastal subsidence and uplift 
substantially modify the regional impacts of sea-level rise, generating 
signals in the order of 1–10 mm yr−1, which is similar to the regional varia-
tions of absolute sea-level change itself2–4. Accurate estimates of coastal 
vertical land motion (VLM) are thus needed to quantify future regional 
sea-level changes and associated socio-economic consequences.

However, several factors hamper the accurate estimation of 
VLM and its predictability along the world’s coastlines. Direct VLM 

observations (for example, by Global Navigation Satellite Systems; 
GNSS) are inhomogeneously distributed in space, often incomplete 
in time, and can be affected by several error sources such as equip-
ment changes or platform settlement. The superposition of long-term 
processes such as the glacial isostatic adjustment (GIA), tectonic 
activity5, surface mass loading changes6,7 and other local natural or 
anthropogenic effects8–10 further complicates the assessment of 
the spatio-temporal characteristics of VLM. Despite this wide spec-
trum of VLM processes, previous research focusing on past sea-level 
changes and on sea-level projections for the forthcoming decades1,11–13 
often implemented simplified assumptions about VLM. The current 
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from decades to centuries between earthquake events29,30. Several 
other processes such as contemporary mass changes (CMR6,7,16), ero-
sion31, human-induced extraction of groundwater, oil and gas8,10,32,33, 
sediment loading and compaction34,35 and volcanism (tide gauge record 
at Miyake Sima in Fig. 1a) can also produce highly localized and nonlin-
ear VLM. As an example, human-induced subsidence caused a strong 
acceleration in RSL around 1960 in Manila and Bangkok, leading to an 
overall RSL change of 75 cm since the beginning of the records, a change 
about four times as high as the GMSL change. Such high subsidence 
rates are problematic for many other large coastal cities36 and because 
of their nonlinear nature, introduce large uncertainties in future projec-
tions of the contribution of VLM to relative sea-level change.

Hence, to account for the non-GIA and nonlinear effects on VLM, 
we develop a new methodology to generate a time- and space-resolving 
VLM reconstruction for the global coastlines. We use this knowledge of 
the rates and temporal variations of VLM to assess the regional-scale 
impact of VLM on sea-level changes over the twentieth century and 
on projected (up to 2150) coastal RSL change and its associated 
uncertainties.

Nonlinear VLM along global coastlines
We reconstruct coastal VLM based on the joint probabilistic analy-
sis of a comprehensive network of more than 11,000 GNSS stations37, 
tide gauges and satellite altimetry over the period of 1995–2020 
(Methods 6.1.4, Extended Data Figs. 1–3 and Extended Data Table 1). 
We estimate linear trends, a set of common modes of variability and 
station-dependent noise using a Bayesian principal component analysis 
(BPCA). The temporal variations of the common modes of variability 
are modelled using auto-correlated Gaussian Random Walks (GRWs; 
Extended Data Figs. 3 and 5). The continuous 3D (in space and time) VLM 
reconstruction is obtained from the sum of the re-combined GRWs and 
interpolated spatial weighting pattern and the secular trend estimates. 
Accordingly, the uncertainties of the individual components (trends 
and modes of variability) are propagated into the final reconstruction.

This analysis allows us not only to disentangle the individual com-
ponents (that is, trends and common modes of variability) but also to 
rigorously quantify uncertainties, associated with each of the compo-
nents, and space/time-dependent uncertainties (BPCA; Methods). This 
approach advances state-of-the-art VLM estimates (for example, as 
currently used for sea-level (SL) projections), which lack any informa-
tion of time-dependent VLM, and increases the number of observations 
by tenfold. As a result, based on the significance ratio, the trends and 
uncertainty estimates of our VLM reconstruction are about two times 
more accurate than the data currently employed in SL projections38 
(validation in Methods and in Extended Data Fig. 4).

The reconstructed coastal VLM (red lines) is compared to 
point-wise observations (purple lines) at selected sites in Fig. 2a–c,f-h. 
The estimated linear trends and uncertainties are represented by the 
green lines. When focusing only on the linear trends from recon-
structed VLM (Fig. 2d,e), the spatial patterns largely reflect the GIA 
signatures, most visible in North America and Fennoscandia (Extended 
Data Fig. 6). These patterns are superimposed on regional non-GIA 
related effects, due to natural or anthropogenic causes. Using the 
reconstruction, we find subsidence along the coasts of the Gulf of 
Mexico (−1 to −7 mm yr−1) and the Australian coastlines (with average 
rates of −0.82 mm yr−1), which agrees with previous research10,39,40 and 
confirms systematic differences between observed subsidence rates 
and GIA model estimates.

We identify strong regional variations in the estimated  
trend uncertainties (Fig. 2e). In particular, in subduction zones (for exam-
ple, in South America, Indonesia and Japan; Fig. 2e), increased trend 
uncertainties are associated with enhanced nonlinear vari ability 
in VLM. This finding is supported by Extended Data Fig. 7b, in which  
we show the standard deviations of the estimated nonlinear compo-
nents of the VLM reconstruction, which are increased in these regions. 

assumption is that VLM can be modelled as a linear process and as such 
projected into the future, which has been increasingly challenged in 
recent years14,15. In this study, we demonstrate that this assumption is 
not valid and show that VLM can introduce substantial uncertainties of 
up to 1 m in relative sea-level (RSL) change projections in 2150.

Previous sea-level projection studies so far mostly incorporated 
GIA models (for example, refs. 16–18) or indirect VLM estimates from 
long tide gauge records19 (as in the Sixth Assessment Report (AR6) of 
the Intergovernmental Panel on Climate Change (IPCC)1). However, the 
poor geographic coverage of tide gauges used and the lack of direct 
constraints, for example, GNSS measurements, which are the most 
precise and accurate technique for VLM determination, present some 
limitations of this dataset. More recent studies that have exploited 
existing networks of GNSS stations, tide gauges and altimetry data4,20–22 
thus provide more robust interpolated VLM estimates. Notwithstand-
ing the evidences of nonlinear VLM, these studies—including the esti-
mates applied in sea-level projections—are based on the assumption 
of purely linear VLM. Therefore, we have only limited knowledge about 
the temporal variability of VLM, which impedes meaningful projections 
of VLM in areas where these variations are dominant.

Nonlinear VLM is not only present in current GNSS data, but it has 
also affected relative sea-level data from long tide gauge records (Fig. 1).  
Whereas tectonic activity can be associated with long-term VLM on 
timescales from hundreds of thousands to millions of years23–25, earth-
quakes often lead to instantaneous vertical displacements (as shown 
by the tide gauge in Kozu Sima), which are in many cases followed  
by postseismic decays26–28. Such nonlinear motion can hamper the 
determination of the inter-seismic trends, which is necessary for VLM 
projections into the upcoming centuries, as these rates can sustain 
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Lower uncertainties (< 1 mm yr−1) are estimated for central Europe and 
the US East Coast, which is in accordance with a reduced estimated 
variance of nonlinear processes (Extended Data Fig. 7) and with higher 
station density.

Changes in coastal VLM are nonlinear at many locations, as evi-
denced in Fig. 2. At the coasts of Japan, earthquakes and the associ-
ated seismic deformation generate highly nonlinear VLM responses. 
One of the advantages of the BPCA is that the secular background 
trend (such as the inter-seismic trend) can be separated from the 
earthquake-related dynamics in contrast to previous global-scale 
analyses2,4,21. Knowledge of the secular background trends is essential 
to extrapolate VLM beyond the observational period in such a way 
that it is unbiased by present-day variability, in this case the motion 
during the postseismic deformation, which converges to the estimated 
inter-seismic velocity.

Also surface mass loading changes are attainable with the Bayesian 
VLM reconstruction. Predominantly hydrologically forced interan-
nual VLM variations are visible in the VLM time series of Rio de Janeiro 
and Curlew Island, which correlate with the independently derived 
estimate of contemporary mass redistribution effects22 (with correla-
tion coefficients of 0.5 and 0.9). The identification of these regional 
nonlinear processes is crucial to estimate the contribution of VLM to 
contemporary RSL change and its uncertainties.

VLM contribution to contemporary regional 
sea-level change
To understand the contribution of VLM to SL change over the twenti-
eth century from regional to global scales, we adjust tide gauges for 
VLM and derive the absolute coastal sea-level change from 1995 to 
2020 (Fig. 3a and Extended Data Fig. 4c) and 1900 to 2000 (Fig. 3b). 
We find high consistency between absolute SL trend from 1995–2020 
inferred from 542 tide gauges and the regional coastal altimetry-based 
trends (which are interpolated onto the tide gauge location). Absolute 
SL trends averaged over all globally distributed tide gauges result in 
3.09 mm yr−1 (median: 3.18 mm yr−1) using the closest altimetry point 
and 3.21 mm yr−1 (median: 2.93 mm yr−1) using VLM-adjusted tide gauge 
records for the period 1995–2020.

We quantify coastal averages of absolute SL trends, VLM and their 
uncertainties, which are computed from 1995 to 2020, at six different 
coastal macro regions (Fig. 3c,d). Note that the linear rates of VLM 
are computed from the full Bayesian reconstruction including the 
present-day VLM variability.

Subsidence in Western Europe and at the US East Coast adds to the 
absolute SL change and yields relative SL trends from 2.6 ± 1.0 mm yr−1 
and 5.6 ± 1.6 mm yr−1, respectively, for the period 1995–2020 (Fig. 3c). A 
large share of the subsidence in western Europe and the US East Coast 
(between 31° N and 41° N) can be associated with the GIA forebulge 
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collapse4,41,42. Compared with late Holocene geological rates43, both the 
GIA model and the VLM reconstruction predict stronger subsidence 
south of 40° N along the US East Coast (Extended Data Fig. 8). This 
was also reported in previous work42 and was attributed to the ongo-
ing groundwater extraction in these areas. When taking into account 
its combined uncertainties, the inferred VLM does not significantly 
deviate from the GIA model44, averaged along the same coastal profiles 
(Extended Data Fig. 6). There is low temporal variability in these regions 
(Extended Data Fig. 7b), leading to similar uncertainty estimates as 
provided by the GIA model. Other regions are, however, subjected to 
tectonic processes that can nearly exponentially inflate uncertainties 
of VLM (note the nonlinear scale in Fig. 3d). This is particularly evident 
for eastern Japan and western South America, where tectonic uplift 
completely offsets the present absolute SL change.

Averaged along the global coastal profile shown in Fig. 2d, VLM 
explains a significant fraction of the variance of relative SL change (34%) 
and its uncertainties (26%) over the altimetry era. In total, the estimated 
uncertainties of the VLM reconstruction, which take into account 
nonlinear processes, are higher than the uncertainties provided by 
the GIA model44 (explaining 19% of the relative SL trend uncertainties).

The VLM reconstruction represents a crucial observation-based 
constraint to SL estimates over the last century. Hence, we explore the 
impact of VLM on relative SL change over the period 1900–2000 using 

64 tide gauges with at least 80 years of data (Fig. 3b). Relative SL change 
at tide gauges is corrected for VLM in two ways: using the VLM recon-
struction of this study and a GIA model. The effect of contemporary 
mass redistribution is subtracted from the ASL sea-level reconstruction 
and from both VLM datasets (Methods). We compare the outputs with 
absolute SL change from an independent global SL reconstruction13 for 
which we extract the same tide gauge locations.

The median absolute SL change estimates (from 1900 to 2000) 
for the SL reconstruction13 are 1.39 mm yr−1, 1.38 mm yr−1 for the 
VLM-adjusted tide gauges and 1.27 mm yr−1 for the GIA-adjusted tide 
gauges (Fig. 3e). Using bootstrapped confidence intervals, we find that 
none of these averages are significantly different from each other (at 
the 95% confidence level). This high agreement indicates that the linear 
rates of the VLM reconstruction derived in this study are suitable to 
be extrapolated back into the last century (at the location of the tide 
gauges), to constrain the VLM at tide gauges and to derive absolute 
sea-level estimates. It also supports the validity of indirectly inferring 
VLM rates from long tide gauge records in sea-level reconstructions. 
However, it should be noted, that these results are based on a relatively 
small subset of tide gauges, which are mostly located in northern 
Europe and the United States. These regions are found to be associated 
with relatively stable VLM in time, mostly due to GIA (after removing 
the effect of CMR), which facilitates the extrapolation of the rates back 
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in time. Regions, which are affected by nonlinear VLM (such as the 
Gulf of Mexico, Australia or Japan) may be less suited to extrapolate 
VLM back in time, if VLM is derived only from a limited observational 
period (1995–2020) (Methods and Extended Data Fig. 5). Thus, there is 
an urgent need to investigate the extent to which nonlinear VLM effects 
are also present in century-long tide gauge (TG) records.

Nonlinear VLM limits regional coastal sea-level 
projections
To quantify the different contributions of absolute SL change and VLM 
to projected coastal relative SL, we utilize the outputs of the Coupled 
Model Intercomparison Project Phase 645, under the Shared Socio-
economic Pathway SSP2–4.5 (ref. 46). We consider here the ensemble 
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median and 1σ confidence intervals of the integrated contributions 
from ice sheets, glaciers, land water storage and ocean dynamics47,48. 
We combine the projected absolute coastal SL with the long-term linear 
trends of the VLM reconstruction. To project the VLM uncertainties, 
we generate a 1,000-member ensemble of possible future trajectories 
modelled by GRWs starting from 2020 until 2150, which are informed 
by the parameters estimated to determine the present-day variability.  
To derive the final VLM uncertainties, we compute the root sum  
square of the standard deviation of the ensemble spread and the trend 
uncertainties estimated in the Bayesian model.

Figure 4a–c,f–h provide an overview of different projected local 
relative SL change estimates based on both the VLM reconstruction and 
GIA model at six different locations. GIA-induced uplift and subsidence 
strongly contribute to future SL in the Bothnian Bay (Skellefte) and the 
eastern US coast (New York), which is consistent with our VLM recon-
struction. As shown in the previous analyses, unresolved processes 
in GIA models inevitably contribute to regional deviations of relative 
SL change projections in areas affected by localized subsidence (for 
example, in Venice, the Gulf of Mexico or the Nile Delta) or in regions 
impacted by high tectonic activity (western South America and Japan).

In Fig. 4e, we illustrate the regional future relative SL change in 
absolute terms and as the deviation from the global mean SL rise (0.8 m 
in 2150), obtained as the median of the ensemble model outputs. The 
bars depicting the VLM component indicate its estimated contribution 
to relative SL change. With respect to the altimetry era, the absolute 
explained spatial variance of coastal relative SL change by VLM is pro-
jected to decrease to about 22% in 2150 along the world’s coastlines, 
where coastal SL change is by implication more strongly dominated 
by the increased mean absolute SL rise. However, on a regional scale, 
VLM plays a predominant role in future SL change as shown in Fig. 4e. 
We estimate that VLM will explain 51% of the spatial variance of the rela-
tive SL deviations from the global mean in 2150. The regional impact 
of VLM is thus of the same magnitude as the combined responses to 
ocean dynamics and mass change fingerprints, causing a much larger 
range in the projected RSL rates (from −1 m to 1.5 m change in 2150), 
than the ASL change alone (0 m to 1.1 m; Extended Data Fig. 9). The bulk 
of the contribution of VLM is attributable to GIA44, which accounts for 
41%. The influence of VLM remains of comparable importance when 
considering other radiative forcing scenarios, explaining 49% (for 
SSP3–7.0) and 47% (for SSP5–8.5) of the spatial variances of projected 
relative SL changes.

We find that VLM uncertainties explain a considerable propor-
tion of relative SL change uncertainties (33%), corresponding to the 
combined uncertainties of the VLM and the 17th to 83rd percentiles 
of the ASL projections. Particularly large uncertainties in relative SL 
change projections, with values up to 1 m, are introduced in areas where 
nonlinear VLM is dominant, as exemplified in Extended Data Fig. 9b, 
or in Fig. 4c. Our uncertainty estimates in tectonically active regions 
(South America, Alaska, Japan) are systematically higher (by a factor of 
2–5) than the coastal VLM uncertainties estimates, which are provided 
at tide gauges by the IPCC AR6 report1,19 (Extended Data Fig. 4d).

We provide evidence that the reconstructed VLM and uncertainty 
estimates more realistically reflect direct observations than alternative 
estimates19,44 because we explicitly take nonlinear effects into account 
(Extended Data Fig. 4h). By comparing different independent estimates 
of coastal VLM, we find that large discrepancies between these inde-
pendent estimates (>10 mm yr−1) are associated with high temporal 
variability of VLM, as derived from the VLM reconstruction (Extended 
Data Fig. 7a). These regional errors due to large VLM variability must 
be compensated by large uncertainty ranges in RSL projections, which 
is ensured by our approach.

The way forward
In this study, we incorporate observational VLM constraints to com-
plete our picture of the spatio-temporal patterns of coastal VLM. 

Neglecting the effect of VLM in SL projections could lead to an under-
estimation of RSL in 2150 by up to 50 cm on a regional scale. Nonlinear 
VLM significantly raises the uncertainty limits of projected coastal SL 
change above previously reported levels19. We note that the underlying 
assumption here is that all contributing uncertainties (from VLM, ice 
sheets, thermal expansion and so on) are captured with equal accuracy. 
Currently this cannot be ensured, because of the different method-
ologies applied, which also differ for the individual ASL components 
(emulators, process models, Atmosphere-Ocean General Circulation 
Model ensembles and so on; refs. 1,15) and because of the structural 
uncertainty in ASL projections47. The choice is therefore to follow cur-
rent practice in the determination of these uncertainties.

Another caveat is that in this work we project the linear VLM rates 
and estimate uncertainties based on the information of present-day 
variability. However, our results reinforce that it is not clear that VLM 
will continue to be linear everywhere and that the observed variability 
of VLM is a robust predictor of future behaviour. Some processes, 
such as earthquakes, which can cause nearly instantaneous vertical 
displacements on the order of metres, or changes in human-induced 
subsurface fluid withdrawal rates, make it difficult or even impossible 
to generate meaningful future predictions49,50. It is therefore possible 
that current SL projections1, including those provided in this work, 
still underestimate the uncertainty introduced by unpredictable VLM 
processes. Another remaining challenge is the low station coverage, in 
particular in highly populated regions, which are especially vulnerable 
due to high subsidence rates36,51. Therefore, recent studies have increas-
ingly expanded VLM observations in space using InSAR to enable local 
SL projections at an unprecedented spatial resolution30,51,52. However, 
because VLM from InSAR is still relatively imprecise, covers only short 
periods of time and requires local geodetic ties, large networks of 
extended and high-quality VLM observations are indispensable to 
enhancing our understanding of the mechanisms shaping regional 
and nonlinear VLM. Our data-driven reconstruction is a crucial step 
in that direction.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41561-023-01357-2.

References
1. Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science 

Basis (eds Masson-Delmotte, V. et al.) Ch. 9 (Cambridge Univ. Press, 
2021).

2. Wöppelmann, G. & Marcos, M. Vertical land motion as a key to 
understanding sea level change and variability. Rev. Geophys. 54, 
64–92 (2016).

3. Pfeffer, J., Spada, G., Mmin, A., Boy, J.-P. & Allemand, P. Decoding 
the origins of vertical land motions observed today at coasts. 
Geophys. J. Int. 210, 148–165 (2017).

4. Hammond, W. C., Blewitt, G., Kreemer, C. & Nerem, R. S. GPS 
imaging of global vertical land motion for studies of sea level rise. 
J. Geophys. Res.: Solid Earth 126, 2021–022355 (2021).

5. Klos, A., Kusche, J., Fenoglio-Marc, L., Bos, M. S. & Bogusz, J. 
Introducing a vertical land motion model for improving estimates 
of sea level rates derived from tide gauge records affected by 
earthquakes. GPS Solutions 23, 102 (2019).

6. Frederikse, T., Landerer, F. W. & Caron, L. The imprints of 
contemporary mass redistribution on local sea level and vertical 
land motion observations. Solid Earth 10, 1971–1987 (2019).

7. Ray, R., Loomis, B. & Zlotnicki, V. The mean seasonal cycle in 
relative sea level from satellite altimetry and gravimetry. J. Geod. 
95, 80 (2021).

http://www.nature.com/naturegeoscience
https://doi.org/10.1038/s41561-023-01357-2


Nature Geoscience | Volume 17 | February 2024 | 137–144 143

Article https://doi.org/10.1038/s41561-023-01357-2

8. Emery, K.O. & Aubrey, D.G. Sea Levels, Land Levels, and Tide 
Gauges (Springer, 1991); https://doi.org/10.1007/978-1-4613-9101-2

9. Kolker, A.S., Allison, M.A. & Hameed, S. An evaluation of  
subsidence rates and sea-level variability in the northern  
Gulf of Mexico. Geophys. Res. Lett. https://doi.org/10.1029/ 
2011GL049458 (2011).

10. Liu, Y., Li, J., Fasullo, J. & Galloway, D. L. Land subsidence 
contributions to relative sea level rise at tide gauge Galveston Pier 
21, Texas. Sci. Rep. 10, 17905 (2020).

11. Church, J. & White, N. Sea-level rise from the late 19th to the early 
21st century. Surv. Geophys. 32, 585–602 (2011).

12. Hay, C. C., Morrow, E., Kopp, R. E. & Mitrovica, J. X. Probabilistic 
reanalysis of twentieth-century sea-level rise. Nature https://doi.
org/10.1038/nature14093 (1990).

13. Dangendorf, S. et al. Persistent acceleration in global sea-level 
rise since the 1960s. Nat. Clim. Change 9, 705–710 (2019).

14. Oelsmann, J. et al. Bayesian modelling of piecewise trends and 
discontinuities to improve the estimation of coastal vertical land 
motion. J. Geod. 96, 62 (2022).

15. Slangen, A. B. A. et al. The evolution of 21st century sea-level 
projections from IPCC AR5 to AR6 and beyond. Camb. Prisms: 
Coast. Futur. 1, e7 (2023).

16. Slangen, A. B. A. et al. Projecting twenty-first century regional 
sea-level changes. Climatic Change 124, 317–332 (2014).

17. Jackson, L. P. & Jevrejeva, S. A probabilistic approach to 21st 
century regional sea-level projections using RCP and high-end 
scenarios. Glob. Planet. Change 146, 179–189 (2016).

18. Oppenheimer, M. et al. in IPCC Special Report on the Ocean and 
Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 4 
(Cambridge Univ. Press, 2019).

19. Kopp, R. E. et al. Probabilistic 21st and 22nd century sealevel 
projections at a global network of tidegauge sites. Earth’s Future 
2, 383–406 (2014).

20. Husson, L., Bodin, T., Spada, G., Choblet, G. & Kreemer, C. 
Bayesian surface reconstruction of geodetic uplift rates: mapping 
the global fingerprint of Glacial Isostatic Adjustment. J. Geodyn. 
122, 25–40 (2018).

21. Hawkins, R., Husson, L., Choblet, G., Bodin, T. & Pfeffer, J. Virtual 
tide gauges for predicting relative sea level rise. J. Geophys. Res.: 
Solid Earth 124, 13367–13391 (2019).

22. Frederikse, T. et al. The causes of sea-level rise since 1900. Nature 
584, 393–397 (2020).

23. Inman, D. L. & Nordstrom, C. E. On the tectonic and morphologic 
classification of coasts. J. Geol. 79, 1–21 (1971).

24. Pedoja, K. et al. Relative sea-level fall since the last interglacial 
stage: are coasts uplifting worldwide? Earth Sci. Rev. 108, 1–15 
(2011).

25. Pedoja, K. et al. On the long-lasting sequences of coral reef 
terraces from SE Sulawesi (Indonesia): distribution, formation, 
and global significance. Quat. Sci. Rev. 188, 37–57 (2018).

26. Vigny, C. et al. The 2010 Mw 8.8 Maule megathrust earthquake of 
central Chile, monitored by GPS. Science 332, 1417–1421 (2011).

27. Imakiire, T. & Koarai, M. Wide-area land subsidence caused by the 
2011 off the Pacific Coast of Tohoku earthquake. Soils Found. 52, 
842–855 (2012).

28. Gunawan, E. et al. A comprehensive model of postseismic 
deformation of the 2004 Sumatra Andaman earthquake deduced 
from GPS observations in northern Sumatra. J. Asian Earth Sci. 88, 
218–229 (2014).

29. Houlié, N. & Stern, T. A. Vertical tectonics at an active continental 
margin. Earth Planet. Sci. Lett. 457, 292–301 (2017).

30. Naish, T. et al. The significance of vertical land movements at 
convergent plate boundaries in probabilistic sea-level projections 
for AR6 scenarios: the New Zealand case. Earth Space Sci. Open 
Arch. https://doi.org/10.1002/essoar.10511878.1 (2022).

31. Gómez, J. F., Kwoll, E., Walker, I. J. & Shirzaei, M. Vertical land 
motion as a driver of coastline changes on a deltaic system in the 
Colombian Caribbean. Geosciences 11, 300 (2021).

32. Raucoules, D. et al. Remote sensing of environment high 
nonlinear urban ground motion in Manila (Philippines) from 
1993 to 2010 observed by DInSAR: implications for sea-level 
measurement. Remote Sens. Environ. 139, 386–397 (2013).

33. Buzzanga, B., Bekaert, D. P. S., Hamlington, B. D. & Sangha, S. S. 
Toward sustained monitoring of subsidence at the coast using 
INSAR and GPS: an application in Hampton Roads, Virginia. 
Geophys. Res. Lett. https://doi.org/10.1029/2020GL090013 
(2020).

34. Syvitski, J. P. M. et al. Sinking deltas due to human activities.  
Nat. Geosci. 2, 681–686 (2009).

35. Ericson, J., Vorosmarty, C., Dingman, S., Ward, L. & Meybeck, M. 
Effective sea-level rise and deltas: causes of change and human 
dimension implications. Glob. Planet. Change 50, 63–82 (2006).

36. Nicholls, R. J. et al. A global analysis of subsidence, relative 
sea-level change and coastal flood exposure. Nat. Clim. Change 
11, 338–342 (2021).

37. Blewitt, G. & Kreemer, C. Harnessing the GPS data explosion for  
interdisciplinary science. Eos https://doi.org/10.1029/2018EO104623 
(2018).

38. Kopp, R. E. Does the mid-Atlantic United States sea level 
acceleration hot spot reflect ocean dynamic variability?: sea 
level acceleration hot spot. Geophys. Res. Lett. 40, 3981–3985 
(2013).

39. Letetrel, C. et al. Estimation of vertical land movement rates along 
the coasts of the Gulf of Mexico over the past decades.  
Cont. Shelf Res. 111, 42–51 (2015).

40. Riddell, A.R., King, M.A. & Watson, C.S. Present day vertical land  
motion of Australia from GPS observations and geophysical 
models. J. Geophys. Res. Solid Earth https://doi.org/10.1029/ 
2019JB018034 (2020).

41. Piecuch, C. G. et al. Origin of spatial variation in US East Coast 
sea-level trends during 1900–2017. Nature 564, 400–404 (2018).

42. Karegar, M. A., Dixon, T. H., Malservisi, R., Kusche, J. & Engelhart, S. E.  
Nuisance flooding and relative sea-level rise: the importance of 
present day land motion. Sci. Rep. 7, 11197 (2017).

43. Karegar, M. A., Dixon, T. H. & Engelhart, S. E. Subsidence along  
the Atlantic coast of North America: Insights from GPS and  
late Holocene relative sea level data. Geophys. Res. Lett. 43, 
3126–3133 (2016).

44. Caron, L. et al. GIA model statistics for grace hydrology, 
cryosphere, and ocean science. Geophys. Res. Lett. 45,  
2203–2212 (2018).

45. Eyring, V. et al. Overview of the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) experimental design and organization. 
Geosci. Model Dev. 9, 1937–1958 (2016).

46. O’Neill, B. C. et al. The Scenario Model Intercomparison Project 
(ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

47. Kopp, R. E., et al.: The Framework for Assessing Changes To 
Sea-level (FACTS) v1.0: a platform for characterizing parametric 
and structural uncertainty in future global, relative, and extreme 
sea-level change. Geosci. Model Dev. 16, 7461–7489 (2023).

48. Garner, G. et al. IPCC AR6 sea level projections. Zenodo  
https://doi.org/10.5281/zenodo.6382554 (2021).

49. Geller, R. J. Earthquake prediction: a critical review. Geophys. J. Int. 
131, 425–450 (1997).

50. Kanamori, H. in International Handbook of Earthquake and 
Engineering Seismology, Part B. International Geophysics vol. 81 
(eds Lee, W. H. K. et al.) 1205–1216 (Academic Press, 2003).

51. Tay, C. et al. Sea-level rise from land subsidence in major coastal 
cities. Nat. Sustain. https://doi.org/10.1038/s41893-022-00947-z 
(2022).

http://www.nature.com/naturegeoscience
https://doi.org/10.1007/978-1-4613-9101-2
https://doi.org/10.1029/2011GL049458
https://doi.org/10.1029/2011GL049458
https://doi.org/10.1038/nature14093
https://doi.org/10.1038/nature14093
https://doi.org/10.1002/essoar.10511878.1
https://doi.org/10.1029/2020GL090013
https://doi.org/10.1029/2018EO104623
https://doi.org/10.1029/2019JB018034
https://doi.org/10.1029/2019JB018034
https://doi.org/10.5281/zenodo.6382554
https://doi.org/10.1038/s41893-022-00947-z


Nature Geoscience | Volume 17 | February 2024 | 137–144 144

Article https://doi.org/10.1038/s41561-023-01357-2

52. Hamling, I. J., Wright, T. J., Hreinsdóttir, S. & Wallace, L. M. A 
snapshot of New Zealand’s dynamic deformation field from 
Envisat INSAR and GNSS observations between 2003 and 2011. 
Geophys. Res. Lett. https://doi.org/10.1029/2021GL096465  
(2022).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 

as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/naturegeoscience
https://doi.org/10.1029/2021GL096465
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Geoscience

Article https://doi.org/10.1038/s41561-023-01357-2

Methods
Datasets
To reconstruct VLM, we combine GNSS VLM time series and indirect 
VLM estimates inferred from the differences of relative sea-level obser-
vations from tide gauges and absolute sea-level measurements from 
altimetry (hereinafter called SATTG), an approach that was steadily 
developed and extensively used over the last decades (for example, 
refs. 2,53–57). Although GNSS VLM data provide more accurate VLM 
information58 compared with SATTG56,57, SATTG time series are essen-
tial to increase the station density in coastal regions and to constrain 
the VLM reconstruction back in time. Whereas SATTG time series can 
be computed from approximately 1992 (at the start of the TOPEX/
Poseidon mission), most (∼ 90%) of the available GNSS time series start 
after the year 20024. As a compromise, considering the limitations in 
data availability before 2000, the VLM reconstruction is computed 
over 1995–2020.

GNSS data. We use 24-hour GNSS position time series from the Nevada 
Geodetic Laboratory (NGL) of the University of Nevada (http://geod-
esy.unr.edu)37 aligned to the IGS14 reference frame59. We select time 
series with a duration of at least five years and two years of valid data. 
We omit time series with an absolute trend larger than 20 mm yr−1 and 
a trend uncertainty higher than 3 mm yr−1 (based on MIDAS (Median 
Interannual Difference Adjusted for Skewness)60 trend and uncer-
tainty estimates), similarly as done in previous studies (for example, 
ref. 20). With this selection we aim to reject time series, which are 
probably associated with very localized extreme VLM, which are not 
representative for regional-scale VLM and might otherwise increase 
uncertainties in the interpolated maps (due to higher spatial variance 
of the trends). As an example, less than 2% of the trends (estimated 
with MIDAS) have magnitude greater 20 mm yr−1 and are randomly 
distributed over the globe, which supports that these cases represent 
individual very local movements. After applying the subsequently 
described post-processing, we obtain a global dataset consisting of 
10,957 station time series.

Tide gauge data. We use 713 monthly tide gauge time series from the 
revised local reference PSMSL database61. The revised local reference 
data present the commonly used data in sea-level analyses, as they are 
quality checked for errors such as datum inconsistencies, or jumps, and 
are additionally compared with respect to records of neighbouring tide 
gauge stations61. The tide gauges are corrected for dynamic atmos-
pheric correction62 and tides (FES201463). Time series with less than 120 
months of valid data (over 1995–2020) are rejected from the analysis.

SATTG data. SATTG VLM time series are computed based on monthly 
PSMSL tide gauges61 and gridded 0.25 satellite altimetry data (SAT) 
(https://resources.marine.copernicus.eu/product-detail/SEALEVEL_
GLO_PHY_L4_MY_008_047/INFORMATION). The monthly altimetry SL 
anomalies are available from 1 January 1993 to 31 December 2020. The 
combination of SATTG data is optimized by using the highest correlated 
grid point with respect to monthly tide gauge observations (based 
on de-trended and de-seasoned data) (for example, refs. 2,54,58,64) 
because it decreases the discrepancies between the observed oceanic 
signal of altimetry and tide gauges and thus the noise in the time series. 
It should be noted that the noise level in the resulting SATTG time series 
is still a magnitude larger than in GNSS data, which can also be further 
inflated by instrumental issues of both systems (SAT and tide gauges). 
We only keep SATTG time series with at least 120 months of valid data.

Sea-level reconstructions. To investigate implications of the VLM 
reconstruction for contemporary SL change estimates, we compare 
VLM corrected tide gauge data with the SL reconstruction by ref. 13. 
The sea-level reconstruction combines several observations (tide 
gauges, satellite altimetry) and model estimates (for example, from 

GIA models and global climate models) to resolve the spatio-temporal 
global sea-level variations during 1900–2015. Here relative sea-level 
change data from tide gauge observations are used as constraints to 
estimate the superimposed contributions (from short- and long-term 
sea-level changes and VLM) to global sea-level changes. The hybrid 
reconstruction combines low-frequency SL information based on 
the Kalman Smoother (KS)12 and high-frequency SL estimates derived 
with the Reduced Space Optimal Interpolation technique11,12. The KS 
approach fits known SL fingerprints (present-day ice melting, GIA and 
dynamic sea surface height pattern) to a set of 622 long tide gauge 
records and provides estimates of the century-long SL change. In the 
KS, a term addressing the local non-climatic factors (such as VLM) 
with a decorrelation length scale of 1,500 km was considered12. We 
note, however, that the fields used in the hybrid reconstruction13 were 
solely based on the weighted sum of ice melt and ocean dynamics. 
Thus they are not directly affected by any smearing effects from the 
residual term65.

Sea-level projections. We use sea-level projections of the IPCC AR61 
report, based on climate model results of the Coupled Model Intercom-
parison Project Phase 6 (https://esgf-node.llnl.gov/search/cmip6/)45. 
We explore different scenarios (SSP2–4.5, SSP3–7.0 and SSP5–8.546), 
each relying on different emission scenarios. We particularly focus on 
the SSP2–4.5 scenario, which represents the medium pathway of future 
emissions in which CO2 levels are assumed to decline mid-century, 
causing a temperature increase of 2.7° in 2100. Higher greenhouse gas 
emissions are assumed for SSP3–7.0 and SSP5–8.5 scenarios, which are 
associated with a radiative forcing of 7 W m−2 and 8.5 W m−2 or global 
CO2 concentrations of more than 800 or 1,100 ppm by the year 210046. 
We consider the ensemble median and one-sigma credible intervals 
(based on the 17th to 83rd percentiles) of the integrated contributions 
from ice sheets, glaciers, land water storage and ocean dynamics47,48. 
The outputs are provided at tide gauge locations and as maps with a 
1-degree spatial resolution with ten-year temporal sampling.

GIA vertical land motion. We incorporate a recent GIA trend and 
formal uncertainty estimate by ref. 44, which was derived from Bayes-
ian inferences of the probability distributions of model parameters 
describing the rheological structure of the Earth and ice history. The 
solution was constrained by 11,451 relative sea-level change records 
and 459 GNSS-based trends. The model is based on solving the classical 
loading equations for a compressible Maxwell solid Earth and surface 
loading due to ice sheet mass changes during the last 122 kyr (ref. 44) 
used spherical harmonic truncated at degree 89 (1° spatial resolution) 
in the centre of mass frame and included feedbacks from Earth rotation 
and the resolution of the sea-level equation. To generate a likelihood 
probability distribution of the model parameters, they generated an 
ensemble of 127,000 forward models (with different parameters) and 
estimated the probability of how likely a given model was to explain 
the observational constraints. The VLM estimates correspond to the 
expectation and standard deviation of these probability distributions. 
These GIA fields are combined with contemporary sea-level changes 
and also with sea-level projections.

Vertical land motion caused by contemporary mass redistribution. 
Mass changes in glaciers and ice sheets or land water storage changes 
cause elastic responses of the Earth, generating partially nonlinear 
VLM (for example, refs. 6,66). We use a gridded annual estimate (from 
1900 to 2018) of the effect of contemporary surface mass redistribu-
tion (CMR) on VLM as provided by ref. 22. From 2003 to 2018, the 
estimate is based on a combination of GRACE (Gravity Recovery and 
Climate Experiment67) and GRACE-FO (Gravity Recovery and Climate 
Experiment Follow-On68). Before 2003, the solution relies on process 
model estimates of the mass changes of glaciers, ice sheets and ter-
restrial water storage. We compare the CMR estimates with the VLM 
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reconstruction from 1995 to 2020 (Extended Data Fig. 2) and apply 
the CMR correction to century-long tide gauge records (corrected for 
the VLM reconstruction and GIA) as shown in Extended Data Fig. 3e.

Reconstruction of time- and space-variable vertical land 
motion
To understand the impact of VLM on contemporary and projected 
relative SL change, we resolve VLM continuously in space and time. 
We apply a three-step procedure to derive the spatially and temporally 
varying VLM reconstruction. First, the input data (GNSS, SATTG) is 
preprocessed, meaning that the time series are adjusted/corrected for 
offsets, single point outliers and the annual cycle in a semi-automated 
manner. Second, we perform a dimensionality reduction of the 
spatio-temporal variability of the data by estimating long-term linear 
trends and common modes of variability using a Bayesian principal 
component analysis (BPCA69). Finally, we spatially interpolate the 
approximated linear trends and Empirical Orthogonal Functions (EOFs) 
and their associated uncertainties using an adaptive Bayesian trans-
dimensional regression approach21. The continuous 3D (in space and 
time) VLM reconstruction is obtained from sum of the re-combined 
principal components (PCs) and interpolated EOF pattern and the 
secular trend estimates. Accordingly, as the uncertainty maps of the 
trend and EOF pattern are individually derived, we apply an uncer-
tainty propagation of the different components to derive the space/
time-dependent uncertainties. Extended Data Fig. 1 illustrates the 
corresponding processing chain of the data. Details of each step are 
provided in the following.

Pre-processing vertical land motion data. Several pre-processing 
steps have to be applied before physically meaningful modes of vari-
ability can be derived from the combined GNSS and SATTG data. To 
reconstruct smoothly varying elevation changes, we remove dis-
continuities from the data. In particular, GNSS data can be affected 
by discontinuities due to instrumental issues70. Discontinuities are, 
however, less frequent and harder to detect in SATTG time series, 
due to the higher noise amplitudes in the data. To support the iden-
tification of discontinuities, we apply DiscoTimeS (discontinuities in 
time series14) as an unsupervised discontinuity detector. DiscoTimeS 
identifies discontinuities and trend changes and the annual cycle and 
noise properties. The simultaneous estimation of discontinuities and 
trend changes is particularly important in regions where decadal rate 
variations are evident. DiscoTimeS is applied to weekly downsampled 
GNSS time series and monthly SATTG data.

We manually revise the unsupervised time series fits and reject 
estimated discontinuities in the case of misfitting or oversegmentation 
of the data. We also reject stations after visual screening of the time 
series (as is common practice; for example, refs. 2,71) and apply an 
outlier analysis based on the regional variability of trends. Any remain-
ing outliers, for example, caused by local effects, such as settling of the 
installation platform or building, are further reduced with the spatial 
interpolation of neighbouring data. Problematic stations that are 
located on ice, for instance, are excluded according to the selection by 
ref. 20. The Data Appendix provides a complete list of station IDs used.

The time series are subsequently corrected for discontinuities and 
the annual cycle. Remaining single point outliers (in the time series) 
are rejected by removing values which exceed a running mean standard 
deviation outlier test. For this purpose, we first compute the median 
of the 12-month running standard deviation (σ12m), which provides 
a measure of variability that is not influenced by potential remain-
ing outliers in the data. Next, we reject values whose difference with 
respect to the 12-month running mean is three times larger than σ12m. 
Finally, because we focus on interannual to decadal VLM variations, 
we compute annual averages to obtain a homogeneous sampling. We 
obtain 11,670 time series (10,957 GNSS and 713 SATTG time series) with 
at least five years of valid data (Fig. 2). To align the station-dependent 

absolute height differences, we compute height changes with respect 
to the value in 2014.

Bayesian principal component analysis. The principle of our 
approach is to capture common modes of spatio-temporal variability 
of VLM on interannual to decadal timescales, together with underlying 
long-term trends. The main drivers of interannual/decadal variability 
are tectonic activity, surface mass loading changes (for example, from 
terrestrial water storage changes) or local effects such as groundwa-
ter depletion. Previous studies5,6 demonstrated that these processes 
exhibit spatially coherent variations in the order of several 100 km. 
Thus, to disentangle and describe these modes, we utilize a principal 
component analysis (PCA).

PCA analysis was previously applied to GNSS data to identify a 
Common Mode Error to reduce its associated effect on networks of 
GNSS data40,70,71. To overcome the problem of missing values in time 
series, previous studies employed probabilistic PCA (PPCA), which 
allows approximating the principal components for discontinuous 
data71. Here we utilize PPCA, more precisely Bayesian PCA (BPCA), as it 
has the advantage of estimating a full posterior probability distribution 
of the parameters69, in contrast to maximum likelihood estimation71.

We estimate heights U(x,t) at every station location x and time t 
as described by the following process model:

U(x, t) = N (gxt +
n
∑
k=1

Wk,xpk,t, ϵ2x) (1)

Here x = (x1, x2,… , xs) T denotes a set of s stations (GNSS or TG  
stations), whereby s varies across the considered regions, as explained 
below. Vector t contains 26 years from 1995 to 2020. pk,t are latent  
variables, or principal components, which are mapped onto the  
observations by the transformation matrix Wk,x. Wk,x  represents the 
spatial pattern of the common modes of variability (that is, the EOF 
pattern), whereas the principal components pk,t modulate the evolution 
of these pattern over time. The vector g accounts for constant linear 
trends in the time series. The technique-dependent variance ϵx2 is esti-
mated individually for the two different techniques (GNSS and SATTG), 
considering that noise amplitudes differ by one order of magnitude.

For each parameter, we define prior distributions. We assign 
Gaussian distributions to gx and Wk,x and a half-normal distribution for 
the estimated variance ϵx:

P(g) = N(μg,σ2g) (2)

P(W ) = N(μW,σ2W) (3)

P(ϵ) = halfN(σ2ϵ ) (4)

The principal components are modelled as Gaussian Random 
Walks to simulate smoothly varying behaviour of the VLM. In doing 
so, the principal components represent auto-correlated time series. 
With this constraint, we avoid that spurious high-frequency signals 
are absorbed by the PCs. Note that discontinuities are removed from 
the data before applying the BPCA, which otherwise would lead to an 
overestimation of the variance of the principal components. In our 
case, the principal component pk at time step t is obtained by adding 
the random normally distributed innovation hk at time step t − 1, as 
summarized by the following formula:

pk,t = pk,t−1 + hk,t,P (hk) = N (μhk ,σ2hk
) (5)

Different prior assumptions are assigned to the unknown  
parameters Φb. We initialize the point-wise trends μg with linear trend 
estimates derived with ordinary least squares analysis and set σg2 to  
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10 mm yr−1. μW is set to zero, and σW
2 is set to 15 cm. σ2hk

 is set to 0.001  

for the first component (k = 1) and σ2hk
=

σ2hk−1

2
 for every subsequent 

component, such that the prescribed amplitudes of the Gaussian  

Random Walks decay with increasing number of components. Finally, 
we assign σϵ2 to 40 cm.

We perform the BPCA for several continental subregions. These 
include North America (s = 5,414), Europe (s = 3,242), Oceania (Australia,  
New Zealand and Southeast Asia, s = 980), Japan (s = 1,212), Africa 
(s = 272), South/Central Asia (s = 153) and South America (s = 550). We 
applied this regional separation to maximize the explained temporal 
VLM variability depending on the given regional processes. Distinct 
differences between the modes of variability are particularly caused 
by tectonic activity. We determine the maximum number of used PCs 
n by repeatedly simulating different numbers of PCs. If the weighted 
explained variance EV of the data Uobs by the model Umodel does not 
improve significantly (that is, when the improvement is below 1–2%) 
by adding new PCs, we stop the iteration. The explained variance 
is computed by taking into account weights w associated with the 
regional distribution of the data (that is, the station density d) and the 
technique-dependent estimated variance parameter (equation (6)). 
This avoids an over-representation of variability in regions with high 
station coverage or very noisy SATTG data.

EV = 1 − ∑Var(Uobs − Umodel)w
∑Var(Uobs)w

,w = 1
ϵd

(6)

We use the state-of-the-art No-U-Turn (NUTS) sampler to generate 
inferences about the desired target distribution72. To test whether the 
chains have converged, we consider here the potential scale reduction 
factor R̂ and the relative effective sample size ESS per iteration n. R̂ is 
a widely used diagnostic that provides a measure of the standard devia-
tion across chains, versus the within-chain variability. If R̂ does not 
converge to one, it indicates that the chains are unlikely to have con-
verged to the equilibrium distribution73,74. ESS is a measure of the 
number independent samples within the chain, which is influenced by 
the auto-correlation of the samples. The averaged (in time or space) 
model diagnostic R̂ is close to one for the parameters W, p and g, indi-
cating good mixing of the chains. ESS/n is greater than 0.1, which 
ensures that there are enough independent samples in the Markov 
chains and that the Monte Carlo error is sufficiently small75. NUTS 
provides additional useful convergence diagnostics which can indicate 
that the sampling from the posterior distribution is biased (divergent 
transitions) or inefficient (tree depth). There are no divergent transi-
tions in the individual chains (for the different regions), and the maxi-
mum tree depth used (15) was not saturated.

Bayesian transdimensional regression and re-combination. The 
BPCA method yields a reconstruction of the evolution of VLM in time 
at every point-wise station. To obtain continuous estimates of VLM 
in space, we interpolate the estimated trend and EOF pattern using a 
Bayesian transdimensional approach20,76,77 as developed by ref. 21. A 
major advantage of this Bayesian framework is that an explicit regu-
larization of the model parameters, in particular the definition of the 
spatial resolution, is not required and it is performed automatically 
by the algorithm78. This is advantageous compared with interpola-
tion methods, which rely on a fixed number of model parameters or 
user-defined interpolation length scales.

As in ref. 21, we apply a Delaunay linear interpolation to recover 
smooth surfaces of the parameters (Wk,x and gx). We use the posterior 
averages of the estimated parameters and standard deviations σb,x of 
the individual spatial parameters (Wk,x and gx) of the BPCA as input 
parameters of the Bayesian regression. The Bayesian regression esti-
mates the parameter values and statistical uncertainties, while dynami-
cally adapting the complexity, that is, the spatial resolution of the grid 

or the number of mobile nodes, which depends on the spatial distribu-
tion (density of the data). The posterior probability distributions of 
the unknown parameters (trend and EOF surfaces) are approximated 
using a hybrid of Markov chain Monte Carlo and Hamilton Monte Carlo 
techniques21,79,80. Thus, the interpolated parameters (and their uncer-
tainties) are directly estimated from the model ensemble (and spread), 
which consists of many different grid realizations. The Gaussian prob-
ability function of the unknown spatially interpolated parameters Φ 
given the point-wise input data, that is, the posterior means of the 
parameters ̄ΦΦΦb and their uncertainties σb,x is:

P(ΦΦΦ|ΦΦΦb) =
1

∑x√2πλσb,x
exp{−∑

x

( f(Φ)x −Φb,x)
2

2σb,x2
} (7)

Here, f(Φ) is the forward model, that is, the Delaunay parame-
terization with a linear interpolant21 and σb,x is the estimated error 
derived in the BPCA analysis. λ is a hierarchical error scaling factor, 
which accounts for under or overestimation of the parameter errors, 
to account for small theoretical errors not sufficiently captured by 
σb,x (refs. 77 or 21).

We run 56 independent Markov chains. We start from randomized 
initial conditions, drawn from the prior distribution of the parameters. 
We use a uniform prior of VLM rates between ±15 mm yr−1. Every chain 
is run for 1,000,000 iterations where only the last 500,000 iterations 
are retained and averaged. At every iteration of the Markov chain, the 
model state is perturbed, which involves the variation of the number 
and distribution of the grid nodes. Thus, every Markov chain consists 
of a large ensemble of model states, which form the basis to compute 
the full posterior distribution. From this distribution, parameter uncer-
tainties are derived. On the basis of the obtained interpolated 0.25° 
2D maps, we retain regularly spaced coastal profiles of 0.25° resolu-
tion. We calculate the uncertainty propagation by incorporating the 
estimated errors of the interpolated trend and EOF pattern and the 
time-dependent errors of the PCs.

Extended Data Fig. 3 gives an overview of the different inter-
mediate results obtained after the BPCA and the 2D interpolation  
in the region of Japan prone to seismic activity. Illustrated are  
the estimated PCs (Extended Data Fig. 3), together with the point- 
wise and interpolated EOFs and trends and their uncertainties 
(Extended Data Fig. 3). The spatial uncertainty estimates are a func-
tion of the station density, the spatial scatter of the data and their  
formal uncertainties. As an example, lower station density particu-
larly contributes to increased uncertainties of the EOF pattern in the 
Tohoku region.

Validation. The point-wise BPCA VLM estimates capture most of the 
variance with regional values ranging from 87.1% to 98.5% of the obser-
vational database (GNSS and SATTG time series), as shown in Extended 
Data Table 1.

We compare coastal linear trend estimates of the interpolated 
VLM reconstruction with GIA estimates44 and VLM inferences from the 
SL reconstruction19, which were applied in the AR6 IPCC report1. The 
different VLM estimates are compared with GNSS trends60 at 775 tide 
gauges in Extended Data Fig. 4. Note that these GNSS trends were 
computed with MIDAS60, which accounts for discontinuities but 
assumes a constant linear trend over the period of observation. There-
fore, these trends can potentially be influenced by nonlinear VLM, 
which are not represented by the GIA model, for instance. We computed 
the significance ratio of the trend differences with respect to the com-
bined uncertainties SR = ΔVLM (model − GNSS)/√σ2model + σ2GNSS . A 
significance ratio of SR < 1 indicates that the trend differences  
are within the estimated limits of uncertainties and thus they are not 
significant. This ratio is a useful statistic to evaluate the accuracy of 
both the estimated trends and uncertainties. Extended Data Fig. 4g 
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displays the distributions of SR for the different datasets. The standard 
deviations of SR are 1.2, 2.1 and 2.2 for the VLM reconstruction of this 
study, for ref. 19, and for ref. 44. Here a higher SR points to either higher 
trend differences or underestimated uncertainties in refs. 19,44. The 
standard deviations of the trend differences ΔVLMmodel-GNSS (irrespective 
of the uncertainties) are 1.9, 2.5 and 2.5 mm yr−1 for the VLM reconstruc-
tion19,44. Therefore, the VLM reconstruction based on BPCA and Bayes-
ian transdimensional regression computed in this study provides more 
realistic estimates of both VLM trends and uncertainties. Because a 
portion of the validation data is included in the VLM reconstruction, 
this comparison validates the statistical approach of the VLM  
reconstruction rather than the underlying database, which contains 
much more and higher quality VLM data than the other VLM datasets. 
Hence, with this analysis we aim to emphasize the discrepancies 
between contemporary VLM changes and previously applied estimates, 
which do not include any GNSS data and which do not account for 
nonlinear effects.

Regional differences between the VLM reconstruction and refs. 13,19  
are shown in Fig. 4a,b. Here the VLM estimate of ref. 13 was derived 
from the difference of the provided absolute and relative SL trends 
and thus complies with the VLM fingerprint of GIA12. Note, that the 
absolute sea-level data in ref. 13 contain the deformational compo-
nent of CMR. Extended Data Fig. 4d shows differences between the 
estimated long-term trend uncertainties of the VLM reconstruction 
and those provided by ref. 19. In addition, we provide a comparison of 
regional averages of VLM and uncertainty estimates in Fig. 4e,f. These 
arithmetic averages are computed based on the values on the coastal 
grid points for following regions: Baltic Sea (13–31.4° N, 52.7–66° E, 
s = 577), western South America (50–18.8° S, 87–68.8° W, s = 309), South 
Africa (37.5–27.2° S, 15.5–33.8° E, s = 104), western Europe (38–50° N, 
15–0° E, s = 152), eastern Japan (24.5–40.2° N, 140.2148.6° E, s = 40), 
US East Coast (31.6–41.4° N, 82.3–68.2° W, s = 141), New South Wales 
(38.3–28.2° S, 149.8–154.4° E, s = 47). Here, s is the number of data points 
provided in the VLM reconstruction. Further validation experiments 
of our approach can be found in the supplementary file.

Comparison with century-long tide gauge time series. To exemplify 
how nonlinear and non-GIA VLM impacts the calculation of past SL 
change, we show the results in three different tide gauge time series in 
Extended Data Fig. 5. First, Extended Data Fig. 5a addresses the effect 
of nonlinear VLM (blue line) on relative SL change measured by the 
tide gauge (dark green line) subjected to tectonic activity. Here the 
combined effect of inferred VLM and relative SL change shows high 
agreement with the absolute SL observations from altimetry. To extra-
polate VLM back in time, we use the estimated linear trend component 
(and associated uncertainties) from the BPCA analysis. The adjusted 
absolute SL (1965–1995) estimate of the tide gauge (Extended Data 
Fig. 5a) is consistent with independent absolute SL change estimates 
from a recent sea-level reconstruction13. This corroborates that for the 
considered tide gauge, the separation of the time-varying present-day 
VLM and a secular background trend provides valuable information 
on past SL changes.

Second, Extended Data Fig. 5b is a notable example of VLM con-
trolled by plate-tectonic processes and GIA81,82. The tide gauge in Seattle 
shows a subsidence of the order of 1 mm yr−1, which deviates strongly 
from the predicted uplift by the GIA model (Extended Data Fig. 5b and 
Extended Data Fig. 6). This deviation is mainly caused by the mismatch 
of the amplitude and the spatial structure of the North–South gradi-
ent of observed VLM and GIA model estimates (for example, ref. 81). 
The high agreement of the VLM-adjusted tide gauge observations 
and reconstructed sea level suggests constant VLM rates over the last 
century at this location. This is also supported by geological data, 
which indicate steady subsidence rates over the last 5,000 years83,84.

The third case displays the Freeport tide gauge located at the Gulf 
of Mexico (Extended Data Fig. 5c), which is affected by nonlinear VLM 

due to withdrawal of hydrocarbons and groundwater10,85. Whereas tide 
gauge relative SL change and observed VLM both display a constant 
pace after 1970, the relative SL change before that period indicates 
either substantially increased subsidence rates (on the order of cm per 
year) or even instantaneous vertical displacement of the tide gauge. 
Similar nonlinear rates were observed at the Galveston tide gauge9, 
which is relatively close (64 km) to Freeport. Thus, on regional to local 
scales, unobserved effects of nonlinear VLM (mainly due to tectonic 
processes and human activities) introduce large uncertainties in SL 
reconstructions and can significantly exceed the estimated Bayesian 
model 1σ uncertainty intervals (which are added to the re-estimated 
absolute SL in Extended Data Fig. 5c). This confirms the importance 
of identifying present-day VLM variability, which is paramount for 
aligning tide gauge and altimetry observations and to prevent biases 
in extrapolated observed VLM due to nonlinear effects.

Data availability
The vertical land motion reconstruction (including the different 
trend components, modes of present-day variability and point-wise 
estimates) are available at Zenodo, https://doi.org/10.5281/zenodo. 
8308347. The NGL-GNSS data are obtained from http://geodesy.unr.edu 
(ref. 61). Monthly tide gauge data from PSMSL are available at https://
www.psmsl.org/data/obtaining/ (ref. 62). Gridded altimetry data are 
available at https://resources.marine.copernicus.eu/product-detail/
SEALEVEL_GLO_PHY_L4_MY_008_047/INFORMATION. The GIA dataset 
is available at JPL/NASA (https://vesl.jpl.nasa.gov/solid-earth/gia/  
ref. 44). The contemporary mass redistribution data is available at 
Zenodo (https://doi.org/10.5281/zenodo.3862995 ref. 41).

Code availability
The codes for the VLM reconstruction are available on Github (https://
github.com/oelsmann/discotimes and https://github.com/oelsmann/
bpca). The code of the transdimensional regression is available at 
https://github.com/rhyshawkins/TransTessellate2D. We also used 
the Global Self-consistent, Hierarchical, High-resolution Geography 
Database (GSHHG)86 as third-party data to draw continental coastlines 
in Figs. 2–4, and Extended Data Figs. 2–4 and 6–9.
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Extended Data Table 1 | Explained weighted variance of estimated VLM and number of estimated PCs

Region Expl. Variance [%] Number of PCs used

North America 96.2 2

Europe 94.0 2

South America 89.6 2

Japan 98.5 3

Oceania 87.1 3

Africa 94.6 2

South/Central Asia 87.5 3
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Extended Data Fig. 1 | Overview of the data processing steps. Workflow describing the processing steps of generation of the vertical land motion (VLM) 
reconstruction dataset.
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Extended Data Fig. 2 | Vertical land motion (VLM) observations. Shown are VLM point estimates (a) and uncertainties (b, 95% CI) from a linear least squares fit.
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Extended Data Fig. 3 | Spatio-temporal vertical land motion interpolation. 
The first column (a) shows the trend coefficient (top) and the first (middle) 
and second (bottom) principal components (and 1σ uncertainties) estimated 

for Japan [year]. b shows the corresponding point-wise spatial trend and EOF 
pattern. c displays the interpolated estimates of the pattern; the associated 
uncertainties are provided by d.
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Extended Data Fig. 4 | Validation of vertical land motion estimates. A and B 
show trend differences of vertical land motion (VLM) of this study and the 
estimates of recent sea level (SL) reconstructions13,19. Note, that the estimate of13 
complies here with the glacial isostatic adjustment (GIA) fingerprint of their SL 
reconstruction, which is hence consistent with the estimate derived by ref. 12. (C) 
Absolute SL trends from altimetry over 1995–2020. D shows differences in the 
estimated uncertainties of the VLM reconstruction and those applied at tide 

gauges in the IPCC AR6 report1,19. E and F compare trend and uncertainty 
estimates from different solutions. Average contributions and 95% confidence 
intervals (representing variation within different regions) are shown.  
G shows the significance ratio of the trend differences SR = ΔVLM(model− 
GNSS)/√σ2model+ σ2GNSS of different model estimates w.r.t. to 775 GNSS 
trends and uncertainties estimated with MIDAS60. The standard deviation of SR 
are 1.2, 2.1 and 2.2 for the VLM reconstruction13,19.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Sea level (SL) changes over the last century at tide 
gauges. Time series of relative SL change (dark green line) and vertical land 
motion (VLM)-adjusted absolute SL change from tide gauges (red solid line) in 
(a) Hokadate ( Japan), (b) Seattle (USA), and (c) Freeport (USA). The present-day 
VLM estimate is shown by the blue solid line, the linear trend estimate (dashed 
line) represents the extrapolation of VLM back intime, the blue shaded area 

represents 1σ uncertainties, and the dotted line indicates the glacial isostatic 
adjustment model44 estimate at the tide gauge. The VLM uncertainties are added 
to the VLM-adjusted absolute SL change time series at tide gauges (red shadings). 
For comparison, the altimetry observations (green) and SL- reconstruction 
estimates13 (red dashed lines) over the last century are included.
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Extended Data Fig. 6 | Comparison with glacial isostatic adjustment (GIA) model estimates. (a) VLM reconstruction, (b) GIA estimate44, (c) differences of the VLM 
reconstruction and the GIA estimate.
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Extended Data Fig. 7 | Present-day vertical land motion variability.  
(a) illustrates how time-variable VLM relates to differences in vertical  
land motion (VLM) estimates across different solutions. Here, the y-axis  
shows the standard deviations of different VLM estimates (that is, the VLM 
reconstruction13,19,44, and GNSS trends) computed at 755 different coastal GNSS 

stations. The x-axis (note the logarithmic scale) sorts the data according to the 
estimated standard deviation (in time) of the present-day VLM variability of the 
reconstruction σPC⊗EOF  (that is, the variability estimated by the EOFs). Time-
variable VLM increases the probability of discrepancies between different, VLM 
estimates. (b) depicts the estimated coastal present-day VLM variability σPC⊗EOF .
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Extended Data Fig. 8 | Comparison of vertical land motion estimates along 
the US East Coast. (a) comparison of VLM (and its uncertainty) from glacial 
isostatic adjustment (GIA44, the vertical land motion (VLM) reconstruction 
(orange), contemporary mass redistribution (CMR, pink22) with 1σ uncertainties, 
and late Holocene records from the last 4000 years (green43) as a function of 

latitude along the US East Coast (as in ref. 42). The green bars denote the 2σ 
uncertainties of the Holocene rates. (b) indicates the GNSS and SATTG (altimetry 
minus tide gauge) rates used in this study as small circles, the geological rates as 
large circles43, as well as the coastal profile of the VLM reconstruction along the 
coastline.
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Extended Data Fig. 9 | Components of projected sea-level change.  
a) Histogram of projected coastal absolute sea level (ASL, SSP2-4.5 scenario1,48) 
and relative sea level (RSL) changes until 2150 [m]. The map indicates deviations 
of RSL changes from the global coastal mean RSL change. The black circles 

highlight where these differences are significant (based on the combined 1σ 
uncertainties). The dashed lines display the median values of the distributions. 
(b) Same as in (A) but for the estimated RSL and ASL change uncertainties in 2150.
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