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Abrupt Holocene ice loss due to thinning and 
ungrounding in the Weddell Sea Embayment

Mackenzie M. Grieman    1, Christoph Nehrbass-Ahles    1,2, 
Helene M. Hoffmann1, Thomas K. Bauska    3, Amy C. F. King    3, 
Robert Mulvaney    3, Rachael H. Rhodes    1, Isobel F. Rowell    3, 
Elizabeth R. Thomas    3 & Eric W. Wolff    1 

The extent of grounded ice and buttressing by the Ronne Ice Shelf, which 
provides resistance to the outflow of ice streams, moderate West Antarctic 
Ice Sheet stability. During the Last Glacial Maximum, the ice sheet advanced 
and was grounded near the Weddell Sea continental shelf break. The timing 
of subsequent ice sheet retreat and the relative roles of ice shelf buttressing 
and grounding line changes remain unresolved. Here we use an ice core 
record from grounded ice at Skytrain Ice Rise to constrain the timing and 
speed of early Holocene ice sheet retreat. Measured δ18O and total air 
content suggest that the surface elevation of Skytrain Ice Rise decreased by 
about 450 m between 8.2 and 8.0 kyr before 1950 ce (±0.13 kyr). We attribute 
this elevation change to dynamic thinning due to flow changes induced by 
the ungrounding of ice in the area. Ice core sodium concentrations suggest 
that the ice front of this ungrounded ice shelf then retreated about 270 km 
(±30 km) from 7.7 to 7.3 kyr before 1950 ce. These centennial-scale changes 
demonstrate how quickly ice mass can be lost from the West Antarctic Ice 
Sheet due to changes in grounded ice without extensive ice shelf calving. 
Our findings both support and temporally constrain ice sheet models that 
exhibit rapid ice loss in the Weddell Sea sector in the early Holocene.

Currently, 40–70% of Antarctic Bottom Water formation occurs in 
the Weddell Sea and the nine ice streams in the Weddell Sea Embay-
ment (WSE; defined as 0° W to ~60° W) drain 22% of the Antarctic Ice 
Sheet’s grounded ice area1,2. The ice dynamics of the WSE are there-
fore an important control of sea level and thermohaline circulation3. 
The buttressing effect of the Ronne Ice Shelf, located at the edge of 
the Weddell Sea, plays a critical role in the stability of the West Ant-
arctic Ice Sheet (WAIS)3. The WAIS is prone to instability and rapid 
grounding-line retreat because the ice is grounded below sea level 
and its bed deepens poleward3–6. Such retreat could, for example, be 
initiated by sub-ice-shelf melting due to ocean warming. Grounding-line 
retreat and reduced buttressing can result from ice thinning and ice 
shelf calving. The relative effect of these two processes on modern 
WAIS retreat is still an area of active research7,8.

Understanding past ice sheet elevation change and ice shelf calv-
ing and thinning in the WSE provides insight into how ice sheet stability 
in the region may change as the ocean continues to warm9. The under-
standing that the WSE deglaciated since the Last Glacial Maximum 
(LGM; ca. 23 to 19 kyr before present (BP) (defined as 1950 ce)) is well 
established, but the timing of retreat, which could help in determining 
how quickly the ice sheet could retreat in the future, is still debated10–13. 
This uncertainty is largely due to a scarcity of geological data pertaining 
to the glaciological history of the region3,6,11,14,15.

Ice sheet simulations and data syntheses provide a variety of recon-
structions. They suggest that the ice sheet in the WSE possibly (1) did not 
retreat until later in deglaciation or possibly even until the Holocene10; 
(2) retreated and thinned rapidly for a few thousand years in the Holo-
cene4,9,13,15; and/or (3) may have even re-advanced in the late Holocene11,16.
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As moist air travels higher in elevation, cools and condenses, more of the 
18O is lost relative to 16O. This isotopic fractionation results in a change 
in δ18O in response to elevation at SIR, as measured in the ice core.

We therefore propose that the SIR δ18O increase centred at 8.1 kyr 
BP represents an abrupt elevation decrease of SIR to its present 
elevation. The δ18O transition is compared to observations and to 
isotope-enabled general circulation model results19,24,25 to investigate 
the magnitude of SIR elevation change that it could represent. Using 
relationships derived from spatial data and from isotope-enabled 
models (Methods), we estimate that the gradient of δ18O versus ice 
sheet elevation change applicable to SIR is 0.8 ± 0.2‰ per 100 m. This 
range implies that the elevation decrease at SIR in the early Holocene 
was probably between 390 m and 650 m, with the central value of the 
gradient suggesting an elevation decrease of 480 m.

The drop in elevation indicated by the δ18O record is supported by 
the SIR TAC data. Before the shift in water isotopes (from 9.5 to 8.5 kyr 
BP), TAC is relatively stable at 118.4 ± 1.4 ml kg−1 (±1σ). Following a com-
plex oscillation, TAC stabilizes at levels of 125.0 ± 2.4 ml kg−1 from 6.6 
to 5.0 kyr BP. The overall increase of 6.6 ml kg−1 equates to an elevation 
drop of 430 ± 110 m when the uncertainties in the temperature and pore 
volume at bubble closure are taken into account (Methods). This falls 
within the range, but at the lower end, of the isotope-based estimate.

The large swings in TAC from 8.0 to 7.0 kyr BP preclude an inde-
pendent constraint on the timing of the elevation drop. In this section of 
the ice core, the signal is altered by large and poorly understood effects 
from the dynamical adjustment of the firn to rapid increases in both 
temperature and accumulation, and perhaps shear caused by changes 
in ice flow. Most ice core records of TAC come from sites that have not 
experienced large and sudden changes in elevation and thus the TAC 
signal is dominated by these other effects26,27, including those induced 
by orbital variations28. SIR is unique in that we have clear evidence of 
a rapid change in elevation that is directly supported by TAC. Further 
work may disentangle the firn response from the elevation effect, but, 
for now, we stress that the TAC data between 8.0 and 7.0 kyr BP cannot 
be interpreted as changes in elevation.

The SIR sodium record
SIR ice core sodium concentrations more than double from 26 to 
59 μg kg−1 over a 600-year interval between 7.7 and 7.1 kyr BP. The 

The timing of ice sheet change in the Holocene is not well resolved 
and was potentially not spatially uniform across the WSE4,14,15. In this 
Article, this ice sheet change is investigated using an ice core drilled at 
Skytrain Ice Rise (SIR). An ice rise is an area of grounded ice consisting of 
a separate flow centre within an ice shelf17,18. SIR is located north of the 
Ellsworth Mountains at the southern edge of the Ronne Ice Shelf (Fig. 1).  
In this study, the magnitude of rapid thinning at SIR and subsequent 
Ronne Ice Shelf retreat in the western part of the WSE is estimated. 
The timing of these events is constrained to periods of about 200 and 
400 years in the early Holocene, respectively. These periods were 
identified using stable water isotope (δ18O), seasalt and total air content 
(TAC) records from the ice core drilled at SIR. This ice-core-derived his-
tory is compared with previously published Parallel Ice Sheet Model 
(PISM) predictions of the last deglaciation to demonstrate that the SIR 
data can quantitatively constrain ice sheet models12.

SIR δ18O and TAC records
The SIR ice core δ18O record shows a major shift from −35.3‰ to −31.5‰ 
from 8.17 to 7.99 ka BP (Fig. 2). The rise of 3.9 ± 0.1‰ occurs in a span 
of 176 ± 43 years, diverging from an otherwise stable δ18O record, with 
only slight variability around the mean throughout the Holocene. After 
this increase, δ18O remained elevated to present.

The strong present-day linear relationship between local tem-
perature and surface snow δ18O is widely used to interpret temporal 
ice core δ18O variability as changes in temperature19. However, a similar 
abrupt shift is not present in global temperature reconstructions of 
the Holocene or in the WAIS Divide ice core δ18O record20–22. Global 
temperature reconstructions show an early Holocene optimum and 
cooling throughout the Holocene21,22. In West Antarctica, summer 
temperatures increased from the early Holocene to 4.1 kyr BP and then 
cooled to present20. Winter WAIS Divide ice core δ18O does drop briefly 
at about 8 kyr BP20, but it does not exhibit the dramatic increase that is 
then retained for the rest of the Holocene in the SIR ice core δ18O record.

Given the inconsistency between the δ18O signal at SIR and those at 
all other Antarctic sites, it is unlikely that the SIR abrupt shift is reflec-
tive of wider regional climatic change. We hypothesize that the SIR δ18O 
signal is controlled by local elevation change due to the surface lapse 
rate effect, which is the inverse relationship between temperature and 
ice sheet elevation that also affects ice core δ18O (refs. 19,20,23,24).  
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Fig. 1 | Map of SIR ice core drilling site (79° 44.46′ S, 78° 32.69′ W). a,b, Regional 
map48 based on USGS Antarctic Overview map (a) and local map of the SIR 
developed using the Quantarctica mapping environment detailed in Matsuoka  
et al. (2021)49 (b). a, The red shading shows the locations9,15,42–44 of the cosmogenic 

exposure ages referred to in the text that are closest to SIR. b, The elevation 
shading is from the CryoSat-2 and RAMP2 elevation models, and the contour lines 
are at 500-m intervals from CryoSat-2 (ref. 49). The star shows the location of the 
drill site (b).
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main increase occurs over a 340 ± 80 year period centred at 7.5 kyr BP  
(Fig. 2). Ice core sodium is derived from seasalt aerosol sourced from 
the open ocean and the sea ice surface29–31 and is often interpreted 
as a proxy for sea ice extent32–36 and/or atmospheric circulation  
variability33. Other ions that are also sourced primarily from seasalt 
(chloride and magnesium) show the same feature at SIR in the early 
Holocene, mirroring the rapid increase in sodium.

The abrupt SIR sodium concentration increase is not observed in 
other Antarctic ice core sodium records, which exhibit a slight increase 
in sodium throughout the Holocene, especially between 10 and 8 kyr 
BP, attributed to circum-Antarctic wintertime sea ice expansion35. 
Given its abruptness, magnitude and absence in other Holocene ice 
core records, this sodium rise must be symptomatic of something more 
dramatic than a distant, gradual change in sea ice extent.

We note that the increase in sodium concentrations begins about 
300 years after the δ18O increase has ended (Fig. 2). With such a large 
delay, a common hydrological cause37 can be ruled out. Furthermore, 
this lag suggests that the sodium decrease does not result from the 
site’s elevation decline. This is supported by comparisons of chem-
istry in shallow ice cores from Berkner Island and the ice shelf to its 
west, which show no change in seasalt concentration across a 900-m 
gradient in elevation38.

There is a direct relationship between sodium concentration and 
distance from the coast (that is, proximity to seasalt sources)39. The 
distance from SIR to the coast would change if the ice sheet or, more 
specifically, the Ronne Ice Shelf retreated. The magnitude of the pos-
sible retreat of the Ronne Ice Shelf in the early Holocene is estimated 
by comparison to a study40, in which major ions were measured in snow 
samples from a spatial transect stretching from the edge of the Ronne 
Ice Shelf towards the grounding line (Fig. 3). Because both chloride and 
sodium at this site are dominated by seasalt, we can convert chloride 
data from the transect40 to equivalent sodium concentrations using 

their ratio in seawater. The relationship between sodium concentra-
tion and distance is fit to an exponential function used to estimate the 
magnitude of ice shelf retreat (Methods). This analysis suggests that 
SIR was about 1,000 km from the edge of the Ronne Ice Shelf in the 
early Holocene. It then retreated about 270 ± 30 km between 7.7 and 
7.3 kyr BP to 700 km, which is near its current position about 680 km 
from the ice edge.

Constraints on ice sheet retreat
Ice sheet model simulations estimate a period of WAIS retreat in the WSE 
between 13 and 5 kyr BP3,10,12. Several local palaeo-elevation studies show 
coincident WSE ice sheet thinning. Depending on the study location 
and proxy used, this period lasted between 3,000 and 8,000 years at 
varying time intervals3,4,9,11,15,41. Exposure age studies suggest that this 
thinning ranged from 200 to 800 m depending on the WSE site. These 
sites include the Ellsworth Mountains15, the Pensacola Mountains42–44, 
the southern Antarctic Peninsula45 and the Lassiter Coast9.

SIR is located between the Rutford and Institute Ice Streams, and 
is bordered by the Ellsworth Mountains to the south. The ice streams 
exceeded elevations of 1,300 m during the LGM4. Geomorphological 
and cosmogenic nuclide data from the Ellsworth Mountains suggest 
that ice thickness 100 km inland (west) of SIR decreased by ~400 m from 
ca. 6.5 to 3.5 kyr BP, similar in magnitude to the thinning shown in the 
SIR δ18O record, but slightly later (although with large chronological 
uncertainty)15. It was proposed that this period of thinning may have 
been due to grounding-line retreat into the Hercules Inlet that changed 
the direction of regional ice flow from southeastward towards the Insti-
tute Ice Stream to its present direction northward towards Horseshoe 
Glacier, directly south of SIR15.

Geological reconstructions4 suggesting fast but asynchronous 
thinning of the Institute and Rutford Ice Streams have been interpreted 
using a set of PISM simulations. A later version of the PISM model has 
also been used to investigate post-glacial retreat of the Antarctic Ice 
Sheet, including that in the WSE10,12. These predictions support an 
extensive early Holocene retreat of WAIS.

In this study, we used the PISM reference scenario (2205_LGM) 
from this later model version to extract surface elevation change at 
SIR at centennial-scale resolution to further understand this retreat 
at SIR12. We also estimated the distance from the ice core site to the 
grounding line and ice shelf edge along a transect that runs roughly 
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perpendicular to the modern ice shelf edge (azimuth 65° from SIR). 
This simulation shows a rapid decrease (>2 m per year) in elevation 
at SIR of ~1,000 m starting around 12.5 kyr BP, followed by a gradual 
increase (~0.1 m per year) in elevation due to isostatic rebound (Fig. 4). 
In this simulation, preceding the drop in elevation, the grounding line 
first pulls back gradually (~0.3 km per year) over about 1,000 years. It 
then retreats rapidly (>1 km per year) to near its present-day position. 
This rapid retreat is coincident with the large drop in elevation. Once 
ice sheet thinning leads to the formation of a floating ice shelf, the ice 
shelf edge retreats in conjunction with the grounding line. The mod-
elled minimum extent of the ice shelf edge is ~500 km from SIR. The ice 
shelf then re-advances to a position that is farther from SIR than the 
actual modern-day configuration. This bias continues to the present 
day in the model run.

The SIR isotope-derived estimate of the rate of elevation change 
and the model prediction show remarkable agreement (Fig. 4). The 
model and observations both show that SIR dropped by over 2 m per 

year in an event lasting just a few centuries. This is a direct confirma-
tion of rapid ice sheet retreat. These results strongly support an inher-
ently unstable WAIS in the WSE during the LGM that becomes rapidly 
ungrounded.

However, the overall magnitude of the drop simulated by PISM is 
larger than the ice core estimate. The simulated absolute timing of the 
drop also varies widely depending on various parameter choices, reso-
lution and imposed bed topography. For example, a similar sequence 
of events is simulated in an updated and re-tuned version of PISM, but 
the timing of the elevation drop occurs around 6 kyr BP (not shown)10. 
Additionally, the simulated early ice shelf retreat and subsequent 
re-advance are not supported by the SIR sodium data. These discrep-
ancies demonstrate how the SIR ice core data can be used to tune ice 
sheet models to improve the accuracy of simulated rapidity, timing 
and magnitude of ice sheet elevation change (and secondarily ice shelf 
extent) during the Holocene.

The SIR ice core δ18O and sodium records have the accuracy and 
resolution to reveal centennial-scale ice dynamical change in the WSE 
in the Holocene. Given the ice mass loss reported in the millennial-scale 
studies and PISM modelling, and the centennial-scale delay between 
the SIR ice core δ18O and sodium records, we propose the following 
sequence of events between 8.2 and 7.3 kyr BP: (1) while the Antarctic 
Ice Sheet may have become ungrounded farther north at an earlier date, 
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ungrounding north of SIR occurred at ca. 8.2 kyr BP. The instability that 
resulted as grounded ice became floating ice shelf allowed SIR ice to 
flow faster and possibly in a different direction, leading to thinning over 
a short period of time of only 176 ± 43 years between 8.2 and 8.0 kyr BP. 
After this shift, SIR remained near its current elevation throughout the 
rest of the Holocene. (2) Within a few hundred years of this elevation 
change, the Ronne Ice Shelf edge then retreated between 7.7 and 7.3 kyr 
BP to near its current position. This retreat was far from SIR and appar-
ently did not further affect SIR elevation (Fig. 5).

Broader implications for past and future retreat
This study shows that SIR can become unstable without extensive 
simultaneous ice shelf calving. Instability could instead have been 
driven by ice sheet thinning and ungrounding. This possibility is well 
aligned with Gudmundsson et al. (2019)8, which demonstrated, using a 
process-based model, that ice shelf thinning drives modern grounded 
ice mass loss. The subsequent ice shelf calving exhibited in the record 
also demonstrates that calving does not necessarily result in ice sheet 
instability in the WSE, at least as far inland as SIR. This idea of passive ice 
shelf calving was proposed in Furst et al. (2016)7. The retreat of the ice 
shelf edge was, however, coincident with abrupt thinning close to the 
ice shelf margin, at least at the Lassiter Coast9. This ice shelf weakening 
related to nearby rapid thinning on land is proposed in cosmogenic 
nuclide studies46,47.

Our result places a strong constraint on the timing of ice sheet 
retreat in the WSE. In the future this constraint could be supplemented 
by similar studies at other ice rises in the Ronne and Ross Ice Shelf 
regions, so as to place precise timings on other aspects of post-glacial 
WAIS retreat. Our results are also a direct demonstration of the speed 
at which ice mass can be lost when the grounding line of a marine-based 
ice sheet retreats. Our results suggest that the elevation at SIR reduced 
by an average of more than 2 m per year for two centuries.
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Methods
Site characteristics and sample preparation
The ice core analysed in this study was drilled over a 3-month period 
from 2018 to 2019 on SIR (79° 44.46′ S, 78° 32.69′ W). At the time of 
drilling, the surface elevation of the site was 784 m above sea level and 
the ice was grounded 133 m above sea level. The site is directly south of 
the Ronne Ice Shelf and about 50 km north of the Ellsworth Mountains. 
It has a mean annual surface temperature of −26 °C. The ice core was 
drilled to the bedrock (651 m) using the British Antarctic Survey (BAS) 
intermediate depth drill and cut into 80-cm sections18,50.

Ice core analysis
The chemical components presented in this study were primarily 
measured using the BAS continuous flow analysis (CFA) system. A 
3.2-cm × 3.2-cm inner cross-section of each 80-cm cylindrical ice core 
segment was used for CFA. This system is described in detail in Grie-
man et al. (2022)48.

Stable water isotope analysis. Stable water isotopes (H2
18O and HDO, 

defined relative to Vienna Standard Mean Ocean Water and Vienna 
Standard Light Antarctic Precipitation (VSMOW-VSLAP) as δ18O and δD, 
respectively) were measured continuously using a Picarro L2130-i cav-
ity ring down spectrometer (CRDS; Supplementary Fig. 1). Melt water 
was directed via peristaltic pump from the continuous melter to the 
CRDS, where the sample was vapourized. The water vapour pressure 
of the sample inside the CRDS measurement cell was controlled using 
a manual needle valve attached to the outlet of the CRDS connected 
to a membrane vacuum pump. Using this valve, the water vapour pres-
sure was maintained near 20,000 ppm (water vapour/ambient air) 
throughout the campaign. Samples of known isotopic composition 
from an ice core drilled at Berkner Island and modern ultrapure water 
samples previously analysed using isotope-ratio mass spectrometry 
were used for calibration.

Ice core δ18O and δD levels measured using CFA were compared 
with those measured in discrete samples (Supplementary Fig. 2). A 
Picarro L2130-i CRDS was used to measure δ18O and δD in discrete 
samples cut along the ice core from the discrete isotope strips 1 and 2 
(ref. 48) as well as in 95 snow pit samples. The snow pit was sampled at 
3 cm resolution along the topmost 2.85 m from the surface. A total of 
2.2 μl of each sample was injected to maintain a water concentration 
of 18,000 ppm. Seven injections were made of each sample. To avoid 
carry-over, the data from the first three injections were discarded.

Seasalt analysis. Sodium and calcium were measured continuously 
using an Agilent 7700x inductively coupled plasma mass spectrom-
eter. This analysis was validated using simultaneous Dionex ICS-3000 
fast ion chromatography measurements (Supplementary Fig. 3). Cal-
cium was also measured using a continuous fluorometry technique. 
These methods are compared and described in detail in Grieman et al. 
(2022)48. The inductively coupled plasma mass spectrometer meas-
urements are presented in this study. The 43Ca isotope was used for 
calcium. Calcium was used in this study to determine the seasalt com-
ponent of total sodium.

To understand how the sources of seasalt to SIR changed through-
out the Holocene, the seasalt component of the sodium signal in the 
ice core needed to be determined. A method following35,37,51–53 was used 
to partition the sodium signal based on known crustal and marine 
ratios of calcium to sodium. The seasalt sodium (ssNa) component 
was determined using equation (1)

ssNa = Rt[Na] − [Ca]
Rt − Rm

(1)

in which [Na] and [Ca] are the total measured concentrations of sodium 
and calcium, respectively, and Rm and Rt are the mean marine and terres-
trial ratios of calcium to sodium of 0.038 and 1.78, respectively54. This 

calculation assumes that these marine and terrestrial ratios are correct 
and remained constant throughout the Holocene. Using this equation, 
the fraction of ssNa was determined to be 97% in the Holocene.

This percentage was defined as the mean of the ratios of the 
20-year bin averages of the seasalt content to the total concentrations 
of sodium. Total sodium is used to represent seasalt in this study due 
to its high seasalt fraction.

TAC analysis. TAC samples were prepared using 10-cm-long sections 
from the second CFA cut of the SIR ice core48. At least 2 mm of the outer 
surfaces of the sample were removed to create plane surfaces using a 
sledge microtome. Subsequently, the dimensions of the elongated cube 
shaped samples were carefully measured using a caliper. After weigh-
ing, the approximately 60-g samples were sealed inside glass flasks and 
measured using a discrete wet-extraction method developed at BAS. 
This method is an improved volumetric vacuum-extraction technique 
inspired by previously developed TAC analytical methods55,56. After 
evacuation of the ambient air the samples were melted by two 200 W 
infra-red lamps. As the ice was melting, the released air and generated 
water vapour were allowed to expand into a previously evacuated 
30-litre expansion chamber acting as an infinite gas reservoir. The 
stream of gas was dried using cold traps at −90 °C, removing the water 
vapour and only allowing the extracted air to expand into the chamber. 
A high-precision pressure gauge attached to the chamber and a cali-
brated temperature probe inside the expansion chamber allow for the 
calculation of TAC according to Martinerie et al. (1992)26.

The TAC data presented here were derived from 326 to 416 m below 
the surface. The uncertainty associated with the TAC measurement is 
0.4%. The raw TAC data are typically corrected for the air released from 
bubbles that have been cut open during sample preparation, which is 
commonly known as the cut-bubble effect57. This correction requires 
knowledge about the precise geometrical shape of the bubbles, which 
is difficult to estimate and changes with depth, in particular for the top-
most 100 m of the ice sheet58. The depth section investigated here lies 
well below 300 m depth, and the cut-bubble correction can be assumed 
to be constant, given that the surface to volume ratio of the prepared 
ice samples is kept constant. We refrain from applying this correction 
as it does not impact our estimation of the relative change in elevation.

The ST22 age scale
The Skytrain ice core age scale (ST22) has been developed using inter-
polation of annual layer counting of the top 184 m (last 2 ka) of the ice 
core. The age scale was refined using volcanic tie points identified 
using sulfate isotopes and a 1965 tritium peak59. The rest of the ice 
core from 184 m to 651 m was dated using the Paleochrono model60 
and CH4, δ18Oair, 10Be and ice chemistry absolute tie points61. We used 
the version of the age scale synchronized to the WD2014 ages. Years 
BP is defined as years before 1950. The age uncertainty between 9 and 
7 kyr BP is less than a century.

Some of the processes that affect TAC (for example, orbital inso-
lation influence on firn structure) occur at the top of the ice sheet28. 
The effect of these processes on TAC therefore depends on the age 
of the ice rather than the gas age. Other processes are imprinted only 
at close-off27 and therefore appear at depths corresponding to the 
gas age of the event. The effect of elevation change (that is, change of 
barometric pressure) on TAC is assumed to be instantaneous. In this 
study, we therefore present the TAC data on the gas age scale while 
acknowledging that some of the dynamic features may correspond 
to the ice age. For clarity, the TAC data on the depth scale are shown in 
Supplementary Fig. 4.

Estimating the timing of the early Holocene transitions
The timing of the changes in δ18O and Na was determined using  
Rampfit62, which provides an estimate of the start and end of a linear 
ramp, with corresponding uncertainties in age and y value. The change 
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in isotopes was estimated using both continuous and discrete isotope 
data, all averaged to 10-cm intervals. The isotope increase corresponds 
rather well to a linear ramp, and was robust against the use of different 
change windows and other parameters. The rather small uncertainties 
on the timing of the start and end of the isotope ramp arise from the 
assumption that the increase is a simple ramp between two stable  
levels. A larger uncertainty for the start of the ramp would be found 
if the ramp was allowed to start in the dip that is centred about one 
century before the best fit ramp in Fig. 2.

The Na change was estimated using 20-cm averages (reflecting the 
need for greater smoothing of the relatively noisier dataset). It occurs in 
two steps and is less suited to a ramp. We report the changes across the 
initial increase (which is akin to a ramp), while accepting that the change 
does not become fully locked in until later than the ages we provide.

Estimating the change in elevation based on water isotopes
δ18O is expected to fall with elevation, in parallel with the fall in tem-
perature characterized by a lapse rate. A few studies have attempted 
to determine the isotope–elevation slope (which we here express as a 
positive number when δ18O falls with increasing elevation).

Using an Antarctic continent-wide compilation of data25, spatial 
slopes ranging between 0.7‰ and 0.91‰ per 100 m were derived19. 
Using an isotope-enabled model19, the spatial slope for a region sur-
rounding Fletcher Promontory (which includes SIR) was determined 
to be a little higher than the continent-wide range at 0.95‰ per 100 m. 
The gradient for the change in elevation between various simulations 
of the LGM and the present day was 0.74 ± 0.18‰ per 100 m in the same 
region. Using a different model and idealized changes in elevation 
around the Antarctic24, a similar range of values was found at high eleva-
tion. Higher values of the slope at low elevation might be an artefact 
of the experimental protocol, where low-elevation sites experienced 
small changes in altitude but were subject to influences from much 
larger elevation changes inland.

Taking into account the observations and the modelled slopes 
derived in the region around SIR19, we propose that a slope of 0.8 ± 0.2‰ 
per 100 m encompasses most of the reliable evidence, and is suitable 
for assessing possible elevation changes implied by our isotopic data. 
We express elevations based on the isotope data using the central 
value of 0.8‰ per 100 m, and with ranges based on the uncertainty of 
0.2‰ per 100 m.

Calculating the change in elevation based on TAC
To calculate a TAC-based elevation history, we employed a Monte 
Carlo (MC) simulation (n = 5,000) that provides an estimate for the 
combined uncertainty of the relative elevation drop based on the TAC 
analytical error (0.4%), a range of isotope-to-temperature relationships 
(0.8 ± 0.2‰ per degree Celsius) and a range of pore volume at bubble 
closure (Vc)-to-temperature relationships (0.45 ± 0.30 ml kg−1 K−1)26,63.

Atmospheric pressure at the time of bubble closure (Pc in mbar) is 
reconstructed from TAC, the temperature at bubble closure, and the 
volume at bubble closure (equation (2))

Pc = (TAC/Vc)(Tc/Ts)Ps (2)

where Vc is the assumed volume per ice mass at bubble closure (ml kg−1), 
Tc is the temperature at bubble closure (K) and PS and Ts normalize the 
data to standard temperature and pressure (1,013.25 mbar and 273.15 K, 
respectively). The unit of TAC is ml kg−1. The resultant pressure at clo-
sure (Pc) histories are transformed into elevation using a generalized 
pressure–elevation equation derived for Antarctica63,64 (equation (3))

Elevation (m) = −7,588 ln(Pc/989.1). (3)

The modern Vc and temperature are fixed at 127 ml kg−1 and −26 °C 
(247.15 K), respectively. Thus, the changes in elevation and the 

associated uncertainty are all relative to modern values and the uncer-
tainty increases as the data depart from the modern values. We note 
that to first order the change in elevation is proportional to ln (Pc1/Pc2), 
where 1 and 2 denote times before and after the change in elevation. 
This means that changes in any of the constants in equation (2), or a 
constant scaling of TAC values due to the cut bubble correction, do 
not significantly alter the change in elevation.

The temperature at the time when the bubbles close off controls 
the TAC following the ideal gas law. The temperature of the air at 
the moment of bubble close-off is set by the temperature of the sur-
rounding ice, with a given amount of air taking up larger volumes at 
warmer temperatures. A rapid warming thus drives a decrease in TAC. 
All else being equal, this would lead to an inferred drop in barometric 
pressure and therefore an increase in surface elevation. However, 
because it takes several hundred years for the base of the firn to equil-
ibrate with the surface temperature, the temperature at bubble clo-
sure is a smoothed and lagged response to the surface temperature  
forcing.

We modelled the temperature at bubble closure using the Com-
munity Firn Model65 forced by a surface temperature history from the 
high-resolution isotope data (interpolated to 1 year) and constant 
accumulation. Thermal conductivity is based on Calonne et al. (2019)66, 
and the densification is based on a dynamic version of the Herron–
Langway model. The surface temperature is derived by scaling the 
isotope variability to a single sensitivity of 1.00‰ K−1 and pinned to 
the modern using an observed temperature of −26 °C. This single, 
smoothed temperature history at bubble closure is varied in MC simula-
tions to mimic a greater range of isotopic-to-temperature calibrations 
between 0.6‰ and 1.0‰ K−1.

Additionally, the relationship between volume per mass unit of ice 
(Vc) and temperature at bubble closure is varied. Modern observations 
from Antarctica and Greenland over a wide range of temperatures and 
accumulation rates suggest that Vc increases with increasing tem-
perature. The exact slope of the relationship is not well known and 
most probably varies depending on the overall climatology of the site. 
Overall, slopes can range from between 0.450 ml kg−1 K−1 for ‘warm’ 
sites (~−20 °C and −35 °C), which applies to SIR during the Holocene, 
to 1.030 ml kg−1 K−1 for cold sites if Vostok data are excluded26. Various 
compilations exist for a broader range of climate conditions with 
slopes of 0.760 ml kg−1 K−1 (ref. 26) and 0.695 ml kg−1 K−1 (ref. 67). It is 
currently not known whether this relationship holds or even applies 
back in time. We choose to set the mean to the ‘warm’ site calibration 
(0.45 ml kg−1 K−1) but include a range of uncertainty (±0.30 ml kg−1 K−1) 
that encompasses all known sites and even the possibility that Vc does 
not change significantly with temperature.

To calculate the relative elevation drop we first binned the pre-
dicted elevation histories into pre- and post-rise periods from 9.5 to 8.5 
and 6.6 to 5.0 kyr BP, respectively. For each bin, the mean and standard 
deviation are calculated for all scenarios in terms of absolute elevation 
(Supplementary Table 1). This describes the uncertainty from both the 
sample-to-sample variability within a bin and the uncertainty imparted 
from the random and systematic errors introduced in MC simulation.

We then take the difference between the pre- and post-rise means 
within a given scenario to calculate a relative change in elevation. The 
range in the relative difference assumes we have adequately sampled 
the mean elevation before and after the increase and thus only encom-
pass the errors in the MC simulation.

Estimating distances from the ice edge using sodium
Minikin et al. (1994)40 presented data showing the way that Na concen-
tration falls with distance from the ice shelf edge on the Ronne Ice Shelf. 
Using their data, we plotted ln[Na] versus distance from the ice edge 
(Fig. 3). This gives a very strong correlation with R2 = 0.91. The uncer-
tainty in the derived slope is 10%. We know very precisely the 
present-day Na concentration (65 ppb for 2–25 m, just over a century) 
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and the distance from the ice edge of the drill site today (680 km). This 
point lies very close to the extrapolated best fit line (Fig. 3). By taking 
the ratio of the Na concentration before and after the increase in [Na], 
we can estimate the change in distance, x, from the ice edge, following 
equation (4),

ln(Na2/Na1) = b(x2 − x1), (4)

where b is the derived slope (−0.00293), and the uncertainty is esti-
mated from the uncertainty in the mean Na concentration before and 
after the increase, combined with the uncertainty of the slope. This 
calculation allowed us to derive the value of 270 ± 30 m for the change 
in distance from the ice edge in the early Holocene.

Data availability
Ice core data are available at https://doi.org/10.1594/PANGAEA.966266, 
https://doi.org/10.1594/PANGAEA.966226 and https://doi.org/10.1594/
PANGAEA.966296. PISM model data are available at https://doi.
org/10.5880/PIK.2018.008 ref. 68.

Code availability
Rampfit use was adapted from Mudelsee et al. (2000)62. The code 
used to calculate elevation data from TAC data is available via Zenodo 
(https://zenodo.org/records/10178665).
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