Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recent pronounced warming on the Mongolian Plateau boosted by internal climate variability

Abstract

Exceptionally strong summertime warming occurred over the Mongolian Plateau between 1986 and 2004, at a rate that was three times the average terrestrial warming in the Northern Hemisphere. The physical processes responsible for this extreme warming remain unclear. Here we show that the synchronous phase shift of the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation contributed to this extreme Mongolian Plateau warming, which cannot be fully explained by the increasing anthropogenic CO2 alone. Pacemaker model experiments show that the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation excited an atmospheric wave train, resulting in an upper-level anticyclonic circulation over the Mongolian Plateau. This anticyclonic circulation increased surface warming by enhancing downward solar radiation, and the surface warming was further boosted by positive land–atmosphere feedbacks. Our results highlight the important role of internal climate variability in driving rapid regional climate change over the Mongolian Plateau.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface air temperature of Mongolian Plateau.
Fig. 2: External forcing is insufficient to explain the observed abrupt and exceptionally strong warming over the MP.
Fig. 3: Effect of internal variability on the abrupt and exceptionally strong warming over the MP.
Fig. 4: Simulated results from the MPI-PI control simulation.
Fig. 5: Simulated results from the IPSL-CM6A-LR pacemaker and AMIP simulations.

Similar content being viewed by others

Data availability

The ERA5 data are from https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset. The NCEP–NCAR reanalysis data are from https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html. The BEST data are from http://berkeleyearth.org/data/. The GISTEMP v.4 data are from http://data.giss.nasa.gov/gistemp/. The CRUTEM5 data are from https://crudata.uea.ac.uk/cru/data/temperature/#sciref. The NOAAGlobalTemp v.5 data are from https://psl.noaa.gov/data/gridded/data.noaaglobaltemp.html. The ERSST v.5 data are from https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. The HadCRUT5 data are from https://www.metoffice.gov.uk/hadobs/hadcrut5/. MPI-GE is available from https://www.cesm.ucar.edu/projects/community-projects/MMLEA/. CESM2-LE is available from https://www.cesm.ucar.edu/community-projects/lens2. The pacemaker and AMIP experiment data are available at https://esgf-node.llnl.gov/search/cmip6/. The CMIP6 data are available from the Earth System Grid Federation archive at https://esgf-node.llnl.gov/.

Code availability

The data in this study were analysed with NCAR Command Language (NCL; http://www.ncl.ucar.edu/). The codes associated with this study are available on request from the corresponding authors.

References

  1. Zhang, P. et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 370, 1095–1099 (2020).

    PubMed  ADS  Google Scholar 

  2. Piao, J., Chen, W., Chen, S. & Gong, H. Role of the internal atmospheric variability on the warming trends over Northeast Asia during 1970–2005. Theor. Appl. Climatol. 149, 1317–1328 (2022).

    ADS  Google Scholar 

  3. Batima, P., Natsagdorj, L., Gombluudev, P. & Erdenetsetseg, B. Observed Climate Change in Mongolia (AIACC, 2005).

  4. Hilker, T., Natsagdorj, E., Waring, R. H., Lyapustin, A. & Wang, Y. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Change Biol. 20, 418–428 (2014).

    ADS  Google Scholar 

  5. Nandintsetseg, B. et al. Risk and vulnerability of Mongolian grasslands under climate change. Environ. Res. Lett. 16, 034035 (2021).

    ADS  Google Scholar 

  6. Shao, Y. & Dong, C. H. A review on East Asian dust storm climate, modelling and monitoring. Glob. Planet. Change 52, 1–22 (2006).

    ADS  Google Scholar 

  7. Yin, Z., Wan, Y., Zhang, Y. & Wang, H. Why super sandstorm 2021 in North China? Natl Sci. Rev. 9, nwab165 (2022).

    PubMed  Google Scholar 

  8. Yang, Y. Q. et al. Sand/dust storm processes in Northeast Asia and associated large-scale circulations. Atmos. Chem. Phys. 8, 25–33 (2008).

    CAS  ADS  Google Scholar 

  9. Chen, W. & Lu, R. A decadal shift of summer surface air temperature over Northeast Asia around the mid-1990s. Adv. Atmos. Sci. 31, 735–742 (2014).

    Google Scholar 

  10. Zhu, C. W., Wang, B., Qian, W. H. & Zhang, B. Recent weakening of northern East Asian summer monsoon: a possible response to global warming. Geophys. Res. Lett. 39, L09701 (2012).

    ADS  Google Scholar 

  11. Zeng, D., Yuan, X. & Roundy, J. K. Effect of teleconnected land–atmosphere coupling on Northeast China persistent drought in spring–summer of 2017. J. Clim. 32, 7403–7420 (2019).

    ADS  Google Scholar 

  12. Hong, H., Sun, J. & Wang, H. Interdecadal variation in the frequency of extreme hot events in Northeast China and the possible mechanism. Atmos. Res. 244, 105065 (2020).

    Google Scholar 

  13. Zhu, Y., Wang, H., Zhou, W. & Ma, J. Recent changes in the summer precipitation pattern in East China and the background circulation. Clim. Dyn. 36, 1463–1473 (2011).

    Google Scholar 

  14. Hessl, A. E. et al. Past and future drought in Mongolia. Sci. Adv. 4, e1701832 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  15. Hua, W., Dai, A. & Chen, H. Little influence of Asian anthropogenic aerosols on summer temperature in central East Asia since 1960. Geophys. Res. Lett. 49, e2022GL097946 (2022).

    ADS  Google Scholar 

  16. Dong, B. et al. Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: drivers and physical processes. Adv. Atmos. Sci. 33, 1005–1023 (2016).

    Google Scholar 

  17. Erdenebat, E. & Sato, T. Recent increase in heat wave frequency around Mongolia: role of atmospheric forcing and possible influence of soil moisture deficit. Atmos. Sci. Lett. 17, 135–140 (2016).

    ADS  Google Scholar 

  18. Wang, L. et al. Super droughts over East Asia since 1960 under the impacts of global warming and decadal variability. Int. J. Climatol. 42, 4508–4521 (2021).

    Google Scholar 

  19. Piao, J. et al. An abrupt rainfall decrease over the Asian inland plateau region around 1999 and the possible underlying mechanism. Adv. Atmos. Sci. 34, 456–468 (2017).

    Google Scholar 

  20. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  21. Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).

    ADS  Google Scholar 

  22. Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    CAS  PubMed  ADS  Google Scholar 

  23. Dong, B. & Dai, A. G. The influence of the Interdecadal Pacific Oscillation on temperature and precipitation over the globe. Clim. Dyn. 45, 2667–2681 (2015).

    Google Scholar 

  24. Knight, J. R., Folland, C. K. & Scaife, A. A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 33, L17706 (2006).

    ADS  Google Scholar 

  25. Johnson, N. C., Xie, S. P., Kosaka, Y. & Li, X. Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun. 9, 1724 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  26. Ding, Z. M., Zhai, P. M. & Wu, R. G. Recent change in summer rainfall over the Tibetan Plateau: roles of anthropogenic forcing and internal variability. Clim. Dyn. 61, 1887–1902 (2023).

    Google Scholar 

  27. Wang, Y. F. & Huang, P. Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation. Nat. Commun. 13, 2437 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

    ADS  Google Scholar 

  29. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Y. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).

    Google Scholar 

  30. Suarez-Gutierrez, L., Milinski, S. & Maher, N. Exploiting large ensembles for a better yet simpler climate model evaluation. Clim. Dyn. 57, 2557–2580 (2021).

    Google Scholar 

  31. Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Change 2, 775–779 (2012).

    ADS  Google Scholar 

  32. Chen, S. F., Wu, R. G. & Chen, W. Projections of climate changes over mid-high latitudes of Eurasia during boreal spring: uncertainty due to internal variability. Clim. Dyn. 53, 6309–6327 (2019).

    Google Scholar 

  33. Xu, P. Q., Wang, L., Liu, Y. Y., Chen, W. & Huang, P. The record-breaking heat wave of June 2019 in Central Europe. Atmos. Sci. Lett. 21, e964 (2020).

    ADS  Google Scholar 

  34. Ito, H., Johnson, N. C. & Xie, S. P. Subseasonal and interannual temperature variability in relation to extreme temperature occurrence over East Asia. J. Clim. 26, 9026–9042 (2013).

    ADS  Google Scholar 

  35. Seo, Y. W. & Ha, K. J. Changes in land–atmosphere coupling increase compound drought and heatwaves over northern East Asia. NPJ Clim. Atmos. Sci. 5, 100 (2022).

    ADS  Google Scholar 

  36. Zhang, Z., Sun, X. & Yang, X.-Q. Understanding the interdecadal variability of East Asian summer monsoon precipitation: joint influence of three oceanic signals. J. Clim. 31, 5485–5506 (2018).

    ADS  Google Scholar 

  37. Kushnir, Y. et al. Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J. Clim. 15, 2233–2256 (2002).

    ADS  Google Scholar 

  38. An, X., Sheng, L. & Li, J. Synergistic effect of SST anomalies in the North Pacific and North Atlantic on summer surface air temperature over the Mongolian Plateau. Clim. Dyn. 56, 1449–1465 (2021).

    Google Scholar 

  39. Sun, X. et al. Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer. Nat. Commun. 13, 1288 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Ghosh, R., Muller, W. A., Baehr, J. & Bader, J. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating. Clim. Dyn. 48, 3547–3563 (2017).

    Google Scholar 

  41. Van Oldenborgh, G. J. et al. Attributing and projecting heatwaves is hard: we can do better. Earths Future 10, e2021EF002271 (2022).

    ADS  Google Scholar 

  42. Feng, X. et al. Comprehensive representation of tropical–extratropical teleconnections obstructed by tropical Pacific convection biases in CMIP6. J. Clim. 36, 7041–7059 (2023).

    ADS  Google Scholar 

  43. Garfinkel, C. I. et al. The winter North Pacific teleconnection in response to ENSO and the MJO in operational subseasonal forecasting models is too weak. J. Clim. 35, 8013–8030 (2022).

    Google Scholar 

  44. Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).

    CAS  PubMed  ADS  Google Scholar 

  45. Matthews, T. K. R., Wilby, R. L. & Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl Acad. Sci. USA 114, 3861–3866 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Lesk, C., Coffel, E., D’Amato, A. W., Dodds, K. & Horton, R. Threats to North American forests from southern pine beetle with warming winters. Nat. Clim. Change 7, 713–717 (2017).

    ADS  Google Scholar 

  47. Zander, K. K., Botzen, W. J. W., Oppermann, E., Kjellstrom, T. & Garnett, S. T. Heat stress causes substantial labour productivity loss in Australia. Nat. Clim. Change 5, 647–651 (2015).

    ADS  Google Scholar 

  48. Kriegler, E., Hall, J. W., Held, H., Dawson, R. & Schellnhuber, H. J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106, 5041–5046 (2009).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Meehl, G. A. et al. Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nat. Geosci. 14, 36–42 (2020).

    ADS  Google Scholar 

  51. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    ADS  Google Scholar 

  52. Osborn, T. J. et al. Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 data set. J. Geophys. Res. Atmos. 126, e2019JD032352 (2021).

    ADS  Google Scholar 

  53. Rohde, R. A. & Hausfather, Z. The Berkeley Earth Land/Ocean temperature record. Earth Syst. Sci. Data 12, 3469–3479 (2020).

    ADS  Google Scholar 

  54. Lenssen, N. J. L. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124, 6307–6326 (2019).

    ADS  Google Scholar 

  55. Huang, B. et al. Uncertainty estimates for sea surface temperature and land surface air temperature in NOAAGlobalTemp version 5. J. Clim. 33, 1351–1379 (2020).

    ADS  Google Scholar 

  56. Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    ADS  Google Scholar 

  57. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    ADS  Google Scholar 

  58. Dong, L., Leung, L. R., Song, F. & Lu, J. Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation. Nat. Commun. 12, 6484 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Dong, Z. Z. et al. Heatwaves in Southeast Asia and their changes in a warmer world. Earths Future 9, e2021EF001992 (2021).

    ADS  Google Scholar 

  60. Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Maher, N. et al. The Max Planck institute grand ensemble: enabling the exploration of climate system variability. J. Adv. Model. Earth Syst. 11, 2050–2069 (2019).

    ADS  Google Scholar 

  62. Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).

    ADS  Google Scholar 

  63. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    ADS  Google Scholar 

  64. Boucher, O. et al. Presentation and evaluation of the IPSL‐CM6A‐LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).

    ADS  Google Scholar 

  65. Boer, G. J. et al. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev. 9, 3751–3777 (2016).

    ADS  Google Scholar 

  66. Kosaka, Y. & Xie, S. P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported jointly by the National Natural Science Foundation of China (42230605 and 41721004).

Author information

Authors and Affiliations

Authors

Contributions

W.C. and Q.C. conceived and designed the study; Q.C., S.C. and W.C. performed the analyses; Q.C., W.C. and S.C. wrote the draft paper; S-P.X., J.P. and T.M. helped improve the paper. X.L. helped download and process the model data. All authors discussed the results and contributed to writing the paper.

Corresponding authors

Correspondence to Wen Chen or Shangfeng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Nathaniel Johnson, Nathan Lenssen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tom Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Q., Chen, W., Chen, S. et al. Recent pronounced warming on the Mongolian Plateau boosted by internal climate variability. Nat. Geosci. 17, 181–188 (2024). https://doi.org/10.1038/s41561-024-01377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01377-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing