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Emergent temperature sensitivity of 
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Anders Ahlström    9, William J. Parton5, Adam F. A. Pellegrini    10, 
Derek Pierson    11, Benjamin N. Sulman    12, Qing Zhu    2 & 
Robert B. Jackson    13,14

Soil organic matter decomposition and its interactions with climate depend 
on whether the organic matter is associated with soil minerals. However, data 
limitations have hindered global-scale analyses of mineral-associated and 
particulate soil organic carbon pools and their benchmarking in Earth system 
models used to estimate carbon cycle–climate feedbacks. Here we analyse 
observationally derived global estimates of soil carbon pools to quantify 
their relative proportions and compute their climatological temperature 
sensitivities as the decline in carbon with increasing temperature. We find 
that the climatological temperature sensitivity of particulate carbon is 
on average 28% higher than that of mineral-associated carbon, and up to 
53% higher in cool climates. Moreover, the distribution of carbon between 
these underlying soil carbon pools drives the emergent climatological 
temperature sensitivity of bulk soil carbon stocks. However, global models 
vary widely in their predictions of soil carbon pool distributions. We show 
that the global proportion of model pools that are conceptually similar 
to mineral-protected carbon ranges from 16 to 85% across Earth system 
models from the Coupled Model Intercomparison Project Phase 6 and offline 
land models, with implications for bulk soil carbon ages and ecosystem 
responsiveness. To improve projections of carbon cycle–climate feedbacks, 
it is imperative to assess underlying soil carbon pools to accurately predict 
the distribution and vulnerability of soil carbon.

Soil carbon–climate feedbacks represent a major uncertainty in the 
response of the terrestrial biosphere to climate change1. This uncer-
tainty stems, in part, from poorly constrained relationships between 
the temperature sensitivities of the decomposition and stabilization 
processes of soil organic carbon (C), which are key parameters in soil 
biogeochemical models2,3. Whereas many empirical and modelling 

studies have explored the effects of temperature on bulk soil C stocks 
and turnover rates at ecosystem to global scales4–7, they largely ignore 
heterogeneity in soil organic matter. This is a key oversight given that 
underlying soil organic matter fractions or ‘pools’ (for example, par-
ticulate or mineral-associated organic matter) can exhibit different 
responses to warming in laboratory- and field-based manipulations8–11. 
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and particulate soil C (derived from an observational synthesis of 
soil fractions33) to quantify the distribution of soil organic C between 
these two pools and their respective climatological temperature sen-
sitivities at the global scale. We then evaluate the distributions and 
temperature sensitivities of protected (mineral-associated-like) and 
unprotected (particulate-like) soil C stocks across an ensemble of 
12 global models—namely, nine Earth system models (ESMs) from 
the Coupled Model Intercomparison Project Phase 6 (CMIP6)34 and 
three offline land models23, including two microbially explicit soil C 
models (Supplementary Tables 1–3). Although there are important 
considerations regarding the interpretability of modelled pools and 
measured fractions (see ‘Model pool interpretability’ in the Methods), 
pool-specific benchmarks offer a critical opportunity to refine model 
formulations and reduce uncertainties. We argue that resolving the 
distribution and temperature sensitivities of underlying soil C pools is 
imperative for developing a predictive understanding of the emergent 
temperature dependence of bulk soil C decomposition and constrain-
ing global biogeochemical models.

Climatological temperature sensitivity of soil 
carbon pools
Soil organic C stocks are known to broadly decrease with increasing 
temperature across climate gradients4,30,35. However, the magnitude 
of this climatological temperature sensitivity can vary across soils29. 
Indeed, this relationship appears to be modulated by clay and silt con-
tent, where fine-textured soils (that is, soils containing higher amounts 
of clay and silt minerals) have a lower climatological temperature 
sensitivity compared with coarse-textured sandy soils (inferred from 
the relative strengths of relationships in Fig. 1a). These contrasting 
temperature sensitivities can be attributed in part to the mineralogi-
cal capacity of each soil29,36, but more specifically to its effect on the 
distribution of soil C among mineral-associated and particulate C pools. 
Since mineral-associated C often has a lower temperature sensitivity 
than particulate C2,9,14,37, the proportion of C that is mineral-associated 
can play a dominant role in driving the emergent bulk soil temperature 
sensitivity (see conceptual schematic in Supplementary Fig. 1).

Globally, our results indicate that the proportion of soil C that is 
mineral-associated (hereafter termed ‘protected’ for consistency with 
model pools22,23) increases with increasing mean temperature (Fig. 1b; a 
trend that is not captured in most global models (Supplementary Figs. 2  
and 3)). Furthermore, fine-textured soils have greater proportions 
of protected C than do coarse-textured soils across all temperatures. 
We therefore expect fine-textured soils to exhibit a lower climato-
logical temperature sensitivity compared with coarse-textured sandy 

Understanding and quantifying the temperature sensitivity of these 
underlying pools at the global scale is thus critical for accurately pre-
dicting emergent feedbacks and soil organic C vulnerabilities to a 
changing climate.

Warmer soil temperatures accelerate the rate of organic matter 
decomposition, often leading to losses in bulk soil C stocks3,5,8,12. How-
ever, the potential decomposability of organic matter in a given soil 
can depend on its association with minerals11,13,14. Mineral-associated 
organic matter consists of small plant- or microbial-derived monomers 
and biopolymers that are chemically or physically bound to clay- and 
silt-sized minerals, whereas particulate organic matter is largely com-
prised of coarser, partially decomposed fragments of plant material15,16. 
Mineral associations can limit access of microbial constituents and 
their enzymes to organic matter, and as a result, mineral-associated C is 
often older than particulate C16–18. In soil biogeochemical models, these 
pools can be represented explicitly19–22 or implicitly22–24 (see ‘Model pool 
interpretability’ in the Methods), with implications for their transient 
dynamics and long-term response to novel conditions. For consist-
ency across the data and models, we refer to mineral-associated C 
(and slowest-cycling pools) as ‘protected’ and particulate C (and all 
other model pools) as ‘unprotected’, while acknowledging that the bio-
availability and persistence of each pool is more complex in practice25. 
Importantly, much uncertainty remains in the responses of protected 
and unprotected soil C to warming across broad spatial scales9, hinder-
ing model benchmarking efforts.

Evaluating the transient dynamics of soil biogeochemical models 
to warming remains a challenge, in part because observations of soil C 
at multi-decadal to centennial timescales are limited26,27. Laboratory 
incubations and field studies demonstrate that decomposition rates 
increase, and C stocks often decrease, with warming5,8,11. However, at 
multi-decadal timescales, acclimatory responses in microbial activity 
may limit the effect of warming on decomposition rates26,28. Further-
more, many experiments focus on the response of bulk soil C stocks, 
and neither measure nor report the relative responses of underlying soil 
C fractions. Given these data limitations, an alternative approach is to 
benchmark global models using spatial gradients4,29,30—although this 
approach is insufficient for constraining transient dynamics (that is, 
space-for-time assumptions)31,32, climate gradients do reflect long-term 
climatological temperature sensitivities that should, in principle, be 
captured by soil C models.

Here we assess the climatological temperature sensitivity of bulk 
soil C stocks, and the role of mineral-associated and particulate soil 
C pools in driving this emergent property in data and models. We 
first leverage a globally gridded data product of mineral-associated 
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Fig. 1 | Global distribution of observationally derived soil C stocks as a 
function of climatological temperature and clay and silt minerals. a,b, Total 
soil C stocks (a) and the proportion of total soil C that is protected (mineral-
associated) (b) as a function of the mean annual temperature (MAT) globally. 

Each gridcell is coloured by the percentage of clay and silt minerals, and best-fit 
trends are depicted for fine- and coarse-textured soils; here, fine-textured soils 
were classified as those with >70% clay + silt content and coarse-textured soils 
with <20% clay + silt content.
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soils where higher unprotected C stocks drive a higher temperature 
sensitivity. The climatological temperature sensitivity of bulk soil C 
emerges from the underlying pool distributions and their respective 
temperature dependencies.

To assess the climatological temperature sensitivity of each soil 
C pool, we calculated the proportional decline in C stocks for every 
10 °C increase in mean temperature while controlling for potential 
confounding factors that include primary productivity, precipitation, 
and clay and silt content (Methods). Our approach builds upon previous 
studies29 and provides a benchmarking metric analogous to a climato-
logical Q10 (that is, the increase in process rates for each 10 °C increase in 
temperature) but for C stocks instead of respiration or turnover rates4,6. 
We find that, at the global scale, unprotected C stocks have a 28% (95% 
confidence interval (CI): 26, 30%) greater climatological temperature 
sensitivity than protected C stocks (Fig. 2). This pattern is especially 
pronounced in cool regions (<15 °C) where unprotected C is 53% (46, 
60%) more temperature sensitive than protected C, compared with 
warm regions (≥15 °C) where the relative difference is only 15% (11, 20%). 
Both soil C pools show weak climatological temperature sensitivities in 
warm regions (Fig. 2c). This latter result suggests that decomposition 
in cool regions is more temperature-limited, and that warm regions do 
not experience as stark a decline in soil C for a given increase in mean 
temperature. This difference is supported by gradient studies in tropi-
cal soils38,39, and is consistent with incubation studies showing that 
warm-adapted microbial communities typically show lower temperature 
sensitivities (namely, Q10) and higher microbial growth efficiencies40. 
Furthermore, warm regions contain higher proportions of protected C 
(Fig. 1b), such that the emergent bulk soil C temperature sensitivity more 
closely mirrors that of the protected C pool. Therefore, the proportion 
of protected C—in addition to its climatological temperature sensitiv-
ity—may serve as an important benchmark for evaluating global models.

Global patterns in soil carbon pools across data 
and models
Soil C models vary in their underlying assumptions, mathematical 
representations and parameterizations. However, several studies have 
proposed that the slowest-cycling (‘passive’) pool of soil C in many 
ESMs corresponds broadly to mineral-associated (protected) C15,22–24. 
This reflects a common conceptualization of donor-pool sources, 

mineralogical controls, turnover times and stoichiometry of protected 
C that are used to approximate the formation and characteristics of 
mineral-associated organic matter (see ‘Model pool interpretability’ 
in the Methods). We thus adopt this convention here, while recogniz-
ing that there are still inherent uncertainties in the interpretability 
of modelled pools and operationally defined fractions. We posit that 
benchmarks based on relative pool distributions, in tandem with radio-
carbon ages41,42, will be critical for refining future model parameteriza-
tions and constraining transient dynamics.

Global soil C models are typically benchmarked on the basis of bulk 
soil C metrics43,44. However, even models that predict similar bulk soil C 
stocks can vary widely in their underlying pool distributions (Supple-
mentary Fig. 4). Whereas bulk soil C stocks in non-permafrost mineral 
soils vary 2.5-fold across the CMIP6 ESMs and offline land models in this 
study, protected soil C stocks vary nearly sevenfold. As a result, the pro-
portion of protected C ranges from 16 to 85% across the global models 
(Fig. 3 and Supplementary Table 4). This large spread in model predic-
tions presents a critical opportunity to apply data-driven constraints 
and reduce uncertainty. We find that about half of the analysed ESMs 
underestimate the proportion of protected C in soils globally compared 
with the observationally derived data product, and consequently, 
contain too much C in faster-cycling, unprotected C pools. This result 
is especially true in non-permafrost mineral soils, where several of the 
global models underestimate the proportion of protected C in both 
cool and warm regions (Supplementary Fig. 5 and Supplementary Table 
5). In particular, six models (CESM2, CNRM-ESM2-1, E3SM-1-1-ECA, 
IPSL-CM6A-LR, NorESM2 and the microbially explicit model CORPSE) 
roughly capture the proportion of protected C, whereas the other six 
models (ACCESS-ESM1-5, BCC-CSM2-MR, MIROC-ES2L, MRI-ESM2-0, 
CASA-CNP and the microbially explicit model MIMICS) considerably 
underestimate this proportion (Fig. 3d). However, we note that all 
of the models in this study are amenable to matching pool-specific 
constraints in future work—indeed, both first-order and microbially 
explicit formulations with refined parameterizations have been able 
to better match observations in past studies42,45–47. Nevertheless, our 
results generally suggest that soil C is skewed towards faster-cycling 
C pools in several global models, consistent with radiocarbon-based 
benchmarking studies that have shown that current ESMs underesti-
mate the mean age of soil C across latitudes41,42.
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Fig. 2 | Global distribution of observationally derived protected and 
unprotected soil C stocks as a function of climatological temperature.  
a,b, Protected (mineral-associated) (a) and unprotected (particulate) (b) soil 
C stocks as a function of MAT in regions above 0 °C globally. Linear regressions 
are shown for cool (<15 °C) and warm (≥15 °C) regions (solid lines) and across 
all temperatures above 0 °C (dashed lines). c, Climatological temperature 
sensitivity calculated as the proportional decline of each soil C pool for a 10 °C 
increase in MAT (analogous to a climatological Q10, but for C stocks) while 

accounting for potential confounding variables (see ‘Data analysis’ in the 
Methods). Points depict the proportional decline of each soil C pool (derived 
from the regression slopes; n = 32,528 gridcells for non-permafrost mineral 
soils above 0 °C globally, with n = 13,410 in cool regions and n = 19,118 in warm 
regions), and error bars denote the 95% CIs (Supplementary Table 6). Higher 
values (>1) indicate greater decreases in C with increasing climatological 
temperature.
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At higher latitudes, the two microbially explicit models depict a 
lower proportion of protected C (Supplementary Fig. 4), consistent 
with recent studies3,14,15,45. The observationally derived data product 
also supports this latitudinal trend (Fig. 3b). By contrast, several CMIP6 
models show a larger proportion of protected C at higher latitudes 
(particularly above 0 °C; Supplementary Fig. 3), which suggests that 
the interpretability of the protected pool as mineral-associated may 
break down in these regions within certain CMIP6 models. For instance, 
in models with vertically resolved soil biogeochemistry (CESM2, E3SM-
1-1-ECA and NorESM2) these larger proportions of protected C may be 
caused by the relative timescales of decomposition and vertical mixing 
processes. This is because high-latitude active-layer C is transported 
to permafrost layers via a slow constant diffusion rate representing 
cryoturbation48,49, which consequently transports a greater fraction 
of slower-cycling C relative to fast-cycling C pools. Whereas soil C is 
indeed old in these high latitudes41, its decomposition is limited more 
by low temperatures that reduce the availability of liquid water than by 
association with minerals4,50. Given that temperature and hydrology can 
change at decadal timescales, representing long-lived organic matter at 
high latitudes as an inherently slow-cycling pool (as opposed to unpro-
tected, particulate forms that can be more sensitive to disturbance9,11,13) 
has important implications for the responsiveness of vast permafrost 
soil C pools to projected climate change (Supplementary Figs. 6–8).

Temperature sensitivity of soil carbon in global 
models
The climatological temperature sensitivity of bulk soil C is an emergent 
property that ultimately depends on the distribution of C within under-
lying pools and their respective temperature sensitivities. Whereas 

some models may appear to capture the observationally derived clima-
tological temperature sensitivity of bulk soil C stocks, this agreement 
does not always occur for the right reasons and may break down when 
considering the contribution of underlying protected and unprotected 
soil C pools. For example, six of the CMIP6 ESMs (ACCESS-ESM1-5, 
CESM2, CNRM-ESM2-1, E3SM-1-1-ECA, IPSL-CM6A-LR and NorESM2) 
and two microbially explicit models (MIMICS and CORPSE) roughly 
capture the temperature sensitivity of bulk soil C stocks (Fig. 4 and 
Supplementary Table 6). However, these same models show divergent 
distributions and climatological temperature sensitivities of underly-
ing protected and unprotected soil C pools (Fig. 4). Only a few models 
roughly capture the climatological temperature sensitivity of protected 
C (CESM2, CNRM-ESM2-1, IPSL-CM6A-LR, NorESM2 and CORPSE) and 
even fewer of unprotected C (ACCESS-ESM1-5, MIMICS and CORPSE).

The observationally derived data product broadly suggests that 
protected C has a lower climatological temperature sensitivity than 
unprotected C (Fig. 2). The models generally agree with this trend, 
although the difference in climatological temperature sensitivities 
of pools is less pronounced in the CMIP6 models than in the microbi-
ally explicit models (Fig. 4). This difference may arise because many 
first-order soil models impose the same temperature-dependence 
parameters across all pools49,51, and consequently the emergent cli-
matological temperature sensitivities are often similar between pools. 
There are a few notable exceptions among the CMIP6 models, in which 
unprotected C appears less temperature sensitive than protected C 
(namely, MRI-ESM2-0 and to a lesser degree E3SM-1-1-ECA (Fig. 4), as 
well as CESM2, CNRM-ESM2-1, MIROC-ES2L and NorESM in cool regions 
(Supplementary Fig. 9)). This could arise due to temperature-sensitivity 
parameterizations based on a presumed greater molecular complexity 
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Fig. 3 | Proportion of soil C in protected pools globally across data 
and models. a–c, The percentage of total soil C that is protected in the 
observationally derived data product and in the multi-model mean of the 
ensemble of CMIP6 ESMs and offline land models, shown globally (a,c) and as 
latitudinal means (b; solid lines). Shaded uncertainty ranges in b correspond to 
90% prediction intervals for the data product33, and 5th and 95th quantiles of the 
multi-model ensemble across each latitudinal band. d, The global percentage of 
total soil C that is protected across the individual ESMs and offline land models. 

Protected C was estimated as the mineral-associated fraction for the data 
product, physicochemically protected pools in MIMICS and CORPSE, and the 
slowest-cycling passive pool in the CMIP6 ESMs and CASA-CNP (see ‘Model pool 
interpretability’ in the Methods). Global means are given for non-permafrost 
mineral soils, excluding tundra, deserts and peatlands (n = 39,620 gridcells for 
0.5° resolution), and the data product uncertainty range corresponds to the 90% 
prediction interval33 (summarized in Supplementary Table 5).
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of protected C in select models2,10. Ultimately, the distinct climatologi-
cal temperature sensitivities of underlying soil C pools observed in the 
data product and process-based models can have important implica-
tions for transient projections, especially with regard to C ages and 
ecosystem responsiveness, and constitute an important benchmark 
for evaluating model performance.

Since protected C makes up the majority of bulk soil C globally in 
the data product (Fig. 3d), it also dominates the climatological tem-
perature sensitivity of bulk soil C stocks (Fig. 4). However, many models 
do not capture this pattern. In fact, unprotected C dominates the bulk 
soil C stocks and climatological temperature sensitivity in a few models 
(BCC-CSM2-MR, MRI-ESM2-0, CASA-CNP and MIMICS), whereas most 
other ESMs have similar proportions and temperature sensitivities of 
underlying C pools. Only a couple of global models have high enough 
proportions of protected C to drive bulk climatological temperature 
sensitivities that are dominated by the protected C pool (for example, 
E3SM-1-1-ECA and CORPSE), as observed in the data product (Fig. 4 and 
Supplementary Fig. 9).

Furthermore, climatological temperature sensitivities of bulk soil 
C stocks and turnover can vary across climates, where temperature 
dependencies are typically higher in cooler climates than in warmer 
climates4,29,52. However, the temperature sensitivities of underlying 
soil C pools within these climate regimes have not been explored in 
global-scale models or observations. We find that both protected and 
unprotected C pools show greater climatological temperature sensitiv-
ities in cool than warm climates, but interestingly, this contrast across 
climates is more pronounced for unprotected C than for protected C, 
and especially in the observationally derived data product compared 
with the global models (Figs. 2 and 5 and Supplementary Figs. 9–11).

Overall, our analysis shows that global models tend to overesti-
mate the climatological temperature sensitivity of protected C stocks in 

both cool and warm climates, and of both C pools in warm climates (Fig. 
5). This is especially true of MIROC-ES2L, CASA-CNP and MRI-ESM2-0, 
which overestimate the climatological sensitivity of protected C by 
more than a factor of two. However, the global models tend to under-
estimate the climatological temperature sensitivity of unprotected 
C in cool climates (Fig. 5). The inability of most ESMs to match these 
regional patterns suggests that the transient response to warming may 
also be biased, particularly in cool climates. Protected (slower-cycling) 
C in ESMs may be overly sensitive to warming in cool regions, whereas 
unprotected (faster-cycling) C may not be sensitive enough to warm-
ing, with implications on soil C dynamics and age distributions under 
future scenarios.

Implications and future perspectives
We propose that the distributions and climatological temperature sen-
sitivities of underlying soil C pools are ecosystem properties that global 
models should be expected to reproduce. Our results highlight that 
even ESMs that predict similar bulk soil C stocks and climatological tem-
perature sensitivities can vary widely in their predictions of underlying 
soil C pools, with implications for C ages and ecosystem responsiveness 
under changing conditions. In particular, owing to an overestimation of 
C in unprotected (faster-cycling) pools, several CMIP6 ESMs may be too 
responsive to C inputs and may overestimate the effects of increased 
primary production on potential soil C sequestration (for example, with 
large increases in unprotected C; Supplementary Fig. 6); a finding that 
agrees with independent radiocarbon-based studies41,42. This implies 
that model estimates of the amount of C sequestration that may result 
from climate change and CO2 fertilization of terrestrial ecosystems 
may be too strong. Furthermore, most ESMs tend to underestimate 
the climatological temperature sensitivity of unprotected C in cool 
climates, potentially leading to an underestimation of C losses from 
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for potential confounding variables (see ‘Data analysis’ in the Methods). Results 
are shown for the data product and an ensemble of ESMs and offline land models 
across gridcells with MAT > 0 °C globally; 95% CIs are given in Supplementary 
Table 6. Higher values (>1) indicate greater decreases in C with increasing 
climatological temperature, lower values (<1) indicate increases in C and values 
equal to 1 (grey dashed line) indicate thermal independence.
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these unprotected pools with warming, an underestimation of the 
global carbon cycle–climate feedback and compounding projections of 
higher productivity-driven C accumulation in these regions. Whereas 
this bias may be partially offset in ESMs that overestimate the clima-
tological temperature sensitivity of protected C across climates, the 
effect of this latter overestimate on projections of carbon cycle–cli-
mate feedbacks is probably weaker because these pools are intrinsi-
cally slow-cycling in first-order soil models and consequently change 
very little on timescales relevant to climate policy (Supplementary  
Figs. 6–8). Divergent pool-specific responses can ultimately lead to 
differences in soil C composition and functioning. It is therefore impera-
tive that models benchmark not only bulk climatological sensitivities 
but also those of underlying soil C pools, to confidently project soil C 
dynamics into the future.

The CMIP protocol requests but does not require the reporting 
of soil C pool distributions53, and, thus, this information is currently 
available only for a subset of CMIP6 ESMs. Our results show that, with 
recent advances in global estimates of protected and unprotected soil 
C stocks33, redefining and benchmarking these underlying soil C pools 
can serve as an important constraint for ESMs. We therefore urge that 
all global models report the distribution of soil C among underlying 
pools in CMIP Phase 7 and beyond, so that future studies may lever-
age this benchmark for model evaluation across climate gradients. 
Although further study of transient responses is also imperative for 
constraining dynamic models31,54, the static relationships presented 
here serve as important benchmarks of long-term temperature effects 
on the formation and decomposition of soil C pools.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41561-024-01384-7.

References
1.	 Friedlingstein, P. et al. Uncertainties in CMIP5 climate  

projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 
(2014).

2.	 Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil 
carbon decomposition and feedbacks to climate change. Nature 
440, 165–173 (2006).

3.	 García-Palacios, P. et al. Evidence for large microbial-mediated 
losses of soil carbon under anthropogenic warming. Nat. Rev. 
Earth Environ. 2, 507–517 (2021).

4.	 Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher 
climatological temperature sensitivity of soil carbon in cold than 
warm climates. Nat. Clim. Chang. 7, 817–822 (2017).

5.	 Crowther, T. et al. Quantifying global soil C losses in response to 
warming. Nature 104, 104–108 (2016).

6.	 Todd-Brown, K., Zheng, B. & Crowther, T. W. Field-warmed soil 
carbon changes imply high 21st-century modeling uncertainty. 
Biogeosciences 15, 3659–3671 (2018).

7.	 Van Gestel, N. et al. Predicting soil carbon loss with warming. 
Nature 554, E4–E5 (2018).

8.	 Hicks Pries, C. E., Castanha, C., Porras, R. & Torn, M. S. The 
whole-soil carbon flux in response to warming. Science 355, 
1420–1423 (2017).

9.	 Rocci, K. S., Lavallee, J. M., Stewart, C. E. & Cotrufo, M. F. Soil 
organic carbon response to global environmental change 
depends on its distribution between mineral-associated and 
particulate organic matter: a meta-analysis. Sci. Total Environ. 
793, 148569 (2021).

10.	 Conant, R. T. et al. Temperature and soil organic matter 
decomposition rates – synthesis of current knowledge and a way 
forward. Glob. Chang. Biol. 17, 3392–3404 (2011).

11.	 Soong, J. L. et al. Five years of whole-soil warming led to loss 
of subsoil carbon stocks and increased CO2 efflux. Sci. Adv. 7, 
eabd1243 (2021).

ACC

BCC

CES

CNR

E3S

IPS

MIR

MRI Nor

CAS

MIMCOR

ACC
BCC

CES

CNR

E3S IPS MIR

MRI

Nor

CAS

MIM COR

Protected C

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Cool climates Warm climates

Pr
op

or
tio

na
l d

ec
lin

e 
in

 C
 (1

0 
°C

)

Pr
op

or
tio

na
l d

ec
lin

e 
in

 C
 (1

0 
°C

)

ACC

BCC

CES

CNR

E3S IPS

MIR

MRI Nor

CAS

MIM

COR

ACCBCC

CES

CNR

E3S

IPS

MIR

MRI

NorCAS

MIM

COR

Unprotected C

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Cool climates Warm climates

a b

Data product

Multi-model mean
Model output

ACC = ACCESS-ESM1-5
BCC = BCC-CSM2-MR
CES = CESM2
CNR = CNRM-ESM2-1

E3S = E3SM-1-1-ECA
IPS = IPSL-CM6A-LR
MIR = MIROC-ES2L
MRI = MRI-ESM2-0

Nor = NorESM2
CAS = CASA-CNP
MIM = MIMICS
COR = CORPSE

Fig. 5 | Climatological temperature sensitivity of protected and unprotected 
soil C across temperature regimes. a,b, The proportional decline in protected 
(a) and unprotected (b) soil C stocks for a 10 °C increase in MAT, controlling 
for potential confounding variables. Proportional declines are shown for cool 
climates (0 °C < MAT < 15 °C; blue circles) and warm climates (MAT ≥ 15 °C; red 
circles). Results are shown for the data product (black triangles), the multi-
model ensemble mean (asterisks) and each ESM and offline land model (solid 

circles; labelled with abbreviations); 95% CIs are given in Supplementary Table 6. 
Kernel density estimates are shown for each panel, illustrating the distribution 
of climatological temperature sensitivities across the model ensemble for each 
pool and temperature regime. Higher values (>1) indicate greater decreases in C 
with increasing climatological temperature, lower values (<1) indicate increases 
in C and values equal to 1 (grey dashed line) indicate thermal independence.

http://www.nature.com/naturegeoscience
https://doi.org/10.1038/s41561-024-01384-7


Nature Geoscience | Volume 17 | March 2024 | 205–212 211

Article https://doi.org/10.1038/s41561-024-01384-7

12.	 Nottingham, A. T., Meir, P., Velasquez, E. & Turner, B. L. Soil carbon 
loss by experimental warming in a tropical forest. Nature 584, 
234–237 (2020).

13.	 Pellegrini, A. F. A. et al. Low‐intensity frequent fires in coniferous 
forests transform soil organic matter in ways that may offset 
ecosystem carbon losses. Glob. Chang. Biol. 27, 3810–3823 (2021).

14.	 Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P. & Cotrufo, M. F.  
Different climate sensitivity of particulate and mineral-associated 
soil organic matter. Nat. Geosci. 14, 295–300 (2021).

15.	 Sokol, N. W. et al. Global distribution, formation and fate of 
mineral-associated soil organic matter under a changing climate: 
a trait-based perspective. Funct. Ecol. 36, 1411–1429 (2022).

16.	 Lavallee, J. M., Soong, J. L. & Cotrufo, M. F. Conceptualizing soil 
organic matter into particulate and mineral-associated forms to 
address global change in the 21st century. Glob. Chang. Biol. 26, 
261–273 (2020).

17.	 Kögel-Knabner, I. et al. Organo-mineral associations in temperate 
soils: integrating biology, mineralogy, and organic matter 
chemistry. J. Plant Nutr. Soil Sci. 171, 61–82 (2008).

18.	 Heckman, K. et al. Beyond bulk: density fractions explain 
heterogeneity in global soil carbon abundance and persistence. 
Glob. Chang. Biol. 28, 1178–1196 (2022).

19.	 Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K. & 
Hararuk, O. Explicitly representing soil microbial processes in 
Earth system models. Glob. Biogeochem. Cycles 29, 1782–1800 
(2015).

20.	 Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. & Pacala, 
S. W. Microbe-driven turnover offsets mineral-mediated storage 
of soil carbon under elevated CO2. Nat. Clim. Chang. 4, 1099–1102 
(2014).

21.	 Ahrens, B., Braakhekke, M. C., Guggenberger, G., Schrumpf, M. 
& Reichstein, M. Contribution of sorption, DOC transport and 
microbial interactions to the 14C age of a soil organic carbon 
profile: Insights from a calibrated process model. Soil Biol. 
Biochem. 88, 390–402 (2015).

22.	 Sulman, B. N. et al. Multiple models and experiments underscore 
large uncertainty in soil carbon dynamics. Biogeochemistry 141, 
109–123 (2018).

23.	 Wieder, W. R., Sulman, B. N., Hartman, M. D., Koven, C. D. & 
Bradford, M. A. Arctic soil governs whether climate change drives 
global losses or gains in soil carbon. Geophys. Res. Lett. 46, 
14486–14495 (2019).

24.	 Berardi, D. et al. 21st-century biogeochemical modeling: 
challenges for Century-based models and where do we go from 
here? Glob. Chang. Biol. Bioenergy 12, 774–788 (2020).

25.	 Kleber, M. et al. Dynamic interactions at the mineral–organic 
matter interface. Nat. Rev. Earth Environ. 2, 402–421 (2021).

26.	 Melillo, J. M. et al. Long-term pattern and magnitude of soil 
carbon feedback to the climate system in a warming world. 
Science 358, 101–105 (2017).

27.	 Walker, T. W. N. et al. A systemic overreaction to years versus 
decades of warming in a subarctic grassland ecosystem. Nat. 
Ecol. Evol. 4, 101–108 (2020).

28.	 Bradford, M. Thermal adaptation of decomposer communities in 
warming soils. Front. Microbiol. 4, 333 (2013).

29.	 Hartley, I. P., Hill, T. C., Chadburn, S. E. & Hugelius, G. Temperature 
effects on carbon storage are controlled by soil stabilisation 
capacities. Nat. Commun. 12, 6713 (2021).

30.	 Doetterl, S. et al. Soil carbon storage controlled by interactions 
between geochemistry and climate. Nat. Geosci. 8, 780–783 
(2015).

31.	 Abramoff, R. Z., Torn, M. S., Georgiou, K., Tang, J. & Riley, W. J. Soil 
organic matter temperature sensitivity cannot be directly inferred 
from spatial gradients. Glob. Biogeochem. Cycles 33, 761–776 
(2019).

32.	 Luo, Z. et al. Convergent modelling of past soil organic carbon 
stocks but divergent projections. Biogeosciences 12, 4373–4383 
(2015).

33.	 Georgiou, K. et al. Global stocks and capacity of 
mineral-associated soil organic carbon. Nat. Commun. 13, 3797 
(2022).

34.	 Eyring, V. et al. Overview of the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) experimental design and organization. 
Geosci. Model Dev. 9, 1937–1958 (2016).

35.	 Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil 
organic carbon and its relation to climate and vegetation. Ecol. 
Appl. 10, 423–436 (2000).

36.	 Ahrens, B. et al. Combination of energy limitation and sorption 
capacity explains 14C depth gradients. Soil Biol. Biochem. 148, 
107912 (2020).

37.	 Gentsch, N. et al. Temperature response of permafrost soil 
carbon is attenuated by mineral protection. Glob. Chang. Biol. 24, 
3401–3415 (2018).

38.	 Giardina, C. P. & Ryan, M. G. Evidence that decomposition rates 
of organic carbon inmineral soil do not vary with temperature. 
Nature 404, 858–861 (2000).

39.	 Giardina, C. P., Litton, C. M., Crow, S. E. & Asner, G. P. 
Warming-related increases in soil CO2 efflux are explained 
by increased below-ground carbon flux. Nat. Clim. Chang. 4, 
822–827 (2014).

40.	 Wang, C. et al. The temperature sensitivity of soil: microbial 
biodiversity, growth, and carbon mineralization. ISME J. 15, 
2738–2747 (2021).

41.	 Shi, Z. et al. The age distribution of global soil carbon inferred 
from radiocarbon measurements. Nat. Geosci. 13, 555–559 
(2020).

42.	 He, Y. et al. Radiocarbon constraints imply reduced carbon uptake 
by soils during the 21st century. Science 353, 1419–1424  
(2016).

43.	 Todd-Brown, K. E. O. et al. Causes of variation in soil carbon 
simulations from CMIP5 Earth system models and comparison 
with observations. Biogeosciences 10, 1717–1736 (2013).

44.	 Ito, A. et al. Soil carbon sequestration simulated in CMIP6-LUMIP 
models: implications for climatic mitigation. Environ. Res. Lett. 15, 
124061 (2019).

45.	 Abramoff, R. Z. et al. Improved global-scale predictions of soil 
carbon stocks with Millennial Version 2. Soil Biol. Biochem. 164, 
108466 (2022).

46.	 Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P. & Fuhrer, 
J. Measured soil organic matter fractions can be related to pools 
in the RothC model. Eur. J. Soil Sci. 58, 658–667 (2007).

47.	 Pierson, D. et al. Optimizing process-based models to predict 
current and future soil organic carbon stocks at high-resolution. 
Sci. Rep. 12, 10824 (2022).

48.	 Koven, C. et al. On the formation of high-latitude soil carbon 
stocks: effects of cryoturbation and insulation by organic 
matter in a land surface model. Geophys. Res. Lett. https://doi.
org/10.1029/2009GL040150 (2009).

49.	 Koven, C. D. et al. The effect of vertically resolved soil 
biogeochemistry and alternate soil C and N models on C 
dynamics of CLM4. Biogeosciences 10, 7109–7131 (2013).

50.	 Plaza, C. et al. Direct observation of permafrost degradation and 
rapid soil carbon loss in tundra. Nat. Geosci. 12, 627–631  
(2019).

51.	 Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Analysis 
of factors controlling soil organic matter levels in Great Plains 
grasslands. Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).

52.	 Haaf, D., Six, J. & Doetterl, S. Global patterns of geo-ecological 
controls on the response of soil respiration to warming. Nat. Clim. 
Chang. 11, 623–627 (2021).

http://www.nature.com/naturegeoscience
https://doi.org/10.1029/2009GL040150
https://doi.org/10.1029/2009GL040150


Nature Geoscience | Volume 17 | March 2024 | 205–212 212

Article https://doi.org/10.1038/s41561-024-01384-7

53.	 Jones, C. D. et al. C4MIP – the Coupled Climate–Carbon Cycle 
Model Intercomparison Project: experimental protocol for CMIP6. 
Geosci. Model Dev. 9, 2853–2880 (2016).

54.	 Bouskill, N. J., Riley, W. J., Zhu, Q., Mekonnen, Z. A. & Grant, R. F. 
Alaskan carbon-climate feedbacks will be weaker than  
inferred from short-term experiments. Nat. Commun. 11,  
5798 (2020).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 

adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

1Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA. 2Climate and Ecosystem Sciences Division, 
Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 3Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, 
Boulder, CO, USA. 4Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA. 5Natural Resource Ecology Laboratory, Colorado 
State University, Fort Collins, CO, USA. 6Department of Life and Environmental Sciences, University of California Merced, Merced, CA, USA. 7Ronin 
Institute, Montclair, NJ, USA. 8Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. 9Department of Physical Geography 
and Ecosystem Science, Lund University, Lund, Sweden. 10Department of Plant Sciences, University of Cambridge, Cambridge, UK. 11Rocky Mountain 
Research Station, United States Forest Service, Boise, ID, USA. 12Climate Change Science Institute and Environmental Sciences Division, Oak Ridge 
National Laboratory, Oak Ridge, TN, USA. 13Department of Earth System Science, Stanford University, Stanford, CA, USA. 14Woods Institute for the 
Environment and Precourt Institute for Energy, Stanford University, Stanford, CA, USA.  e-mail: georgiou1@llnl.gov

http://www.nature.com/naturegeoscience
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:georgiou1@llnl.gov


Nature Geoscience

Article https://doi.org/10.1038/s41561-024-01384-7

Methods
Data sources and processing
The overarching goal of this study was to use observed spatial gradients 
in soil C stocks—particularly in underlying unprotected (particulate) 
and protected (mineral-associated) C pools—and their relation-
ships with temperature, to develop benchmarks for ESMs. Although 
such benchmarks derived from spatial gradients are insufficient 
for constraining transient responses or making projections (that is, 
space-for-time assumptions)31, they do reflect steady-state differ-
ences and long-term climatological temperature sensitivities of soil 
C pools. These observed differences across spatial climate gradients 
should, in principle, be predicted by dynamical soil C models, and, 
thus, these benchmarks serve as important tests4,29. However, meet-
ing this constraint is not sufficient for ensuring the ability of models 
to produce accurate projections under global change, and so we urge 
experimental work that quantifies the transient responses of soil C 
pools across diverse climates and biomes8,9,11.

Observationally derived climate and edaphic datasets for all global 
analyses were used at 0.5 × 0.5° resolution. MAT was estimated from 
the CRU dataset (version 3.10)55 and mean annual precipitation from 
the GPCC dataset56, both as 30 year annual averages. Land cover was 
obtained from the MODIS MCD12C1 product57, and productivity was 
estimated from the MODIS net primary productivity product58. Fol-
lowing Shi et al.41, soil organic C stocks to 1 m depth were estimated as 
the mean of Harmonized World Soil Database59 and SoilGrids60 maps 
to reflect a best estimate and uncertainty across data products. Cor-
responding mineral-associated C stocks and 90% prediction intervals 
were estimated in Georgiou et al.33,61 using a machine-learning (random 
forest) algorithm, and multiple cross-validation approaches were used 
to provide rigorous assessments of predictability62,63. We also note that 
our conclusions were robust to the selected fractionation method 
(namely, size and density; Supplementary Fig. 5 and Supplementary 
Table 5) and reflect a global best estimate and uncertainty given exist-
ing observations. However, we encourage further measurements in 
cooler climates and sandy soils, where the relative contribution of fine 
particulate organic matter may be more substantial3,15. In the present 
study, we focused our analyses on non-permafrost mineral soils with 
MAT > 0 °C given data limitations at higher latitudes33,63. To exclude 
soils whose decomposition is limited by water saturation or aridity, 
we also removed gridcells that contain a coverage of more than 50% 
peat, defined as the Histosol soil order or Histel suborder, and those 
that are hyperarid (with an aridity index of <0.05) or receive less than 
100 mm yr−1 of precipitation. These gridcells were masked in white in 
all maps (Fig. 3) and were excluded from subsequent analyses.

Global land model output
Model output was sourced from CMIP6 ESMs34 and three offline bio-
geochemical testbed models23 for present-day (‘historical’) and future 
projections (‘ssp585’, or RCP8.5). Only CMIP6 models that reported soil 
C pool distributions were used in this study. Model details are listed 
in Supplementary Tables 1–3. Carbon stocks and climate covariates 
from each model were taken over the historical period as ten year 
annual averages for C stocks and 30 year annual averages for cli-
mate (spanning 2005–2015 and 1985–2015, respectively) to match 
the observation-based quantities. Specifically, MAT (‘tas’ for CMIP6 
models), mean annual precipitation (‘pr’) and net primary productivity 
(‘npp’) were used from each model. Since the models do not provide 
depth-resolved C stocks, we used total soil C stocks (‘cSoil’ for CMIP6 
models) in our analyses. Although the depth of soil C in CMIP6 models 
is not clearly defined, previous studies have compared with 0–1 m 
integrated soil C stocks4,43,44. We believe that this represents the best 
benchmark on current models and follow this depth correspondence 
in comparison with the data, but note that any errors in the corre-
spondence with depth could be reduced with future models that are 
depth-resolved and/or explicitly define a depth interval4,49.

For the offline models of the biogeochemical testbed (that is, 
CASA-CNP, MIMICS and CORPSE), mineral-associated (protected) C 
was estimated by the explicit physicochemically protected pools for 
MIMICS and CORPSE, and the slowest-cycling (passive) pool for the 
first-order CASA-CNP model (see Wieder et al.23 for details on physico-
chemical protection within the three biogeochemical testbed models). 
Analogously, for the first-order CMIP6 models, the slowest-cycling 
C pool (‘cSoilSlow’) was used to represent mineral-protected C (see 
‘Model pool interpretability’ in the Methods). We note that the CMIP6 
model output repository uses the terminology cSoil for total soil 
C stocks and ‘cSoilFast’, ‘cSoilMedium’ and cSoilSlow for the three 
soil C pools that correspond to the ‘active’, ‘slow’, and passive pools, 
respectively.

Of the ten CMIP6 ESMs that reported soil C pool distributions, 
only one model constituted a conceptualization that did not align 
with mineral protection; namely, in TaiESM1, the soil C dynamics 
were parameterized as a decomposition cascade based on a synthesis 
of microcosm studies using radio-labelled substrates64–66. We thus 
excluded TaiESM1 from our analyses, and note that the model can 
be redefined and parameterized for comparison with pool-specific 
benchmarks in future work. We also emphasize that not all first-order 
soil C models were formulated as a decomposition cascade based on 
recalcitrance. Rather, several first-order soil C models implicitly repre-
sent key processes by rerouting flows and imposing particular controls 
(for example, lignin, soil texture and climate) on the formation of select 
pools22,24 (see ‘Model pool interpretability’ in the Methods; Supplemen-
tary Fig. 12). To the best of our knowledge, the nine remaining CMIP6 
ESMs (namely, ACCESS-ESM1-5, BCC-CSM2-MR, CESM2, CNRM-ESM2-1, 
E3SM-1-1-ECA, MIROC-ES2L, MRI-ESM2-0, IPSL-CM6A-LR, NorESM2) 
constitute formulations broadly based on the Century model51 and its 
derivatives, for which the slowest-cycling (passive) pool is conceptually 
aligned with physicochemical protection. Although parameteriza-
tions in implemented soil models may have diverged from published 
values, protected C appears to be defined consistently across the nine 
remaining CMIP6 ESMs (Supplementary Table 3). To facilitate future 
benchmarking studies and reduce potential uncertainties, we highly 
encourage more detailed documentation on parameterizations imple-
mented in soil models within CMIP ESMs.

The protected C pool in each model was then compared with the 
total soil C for each gridcell globally to calculate the proportion of 
protected C (Supplementary Fig. 4). The global mean (with 90% CIs) 
was calculated for each model and in each indicated temperature 
regime (Fig. 3 and Supplementary Fig. 5). We then calculated the 
spatially explicit multi-model mean across the ensemble of soil C  
models (Fig. 3c), as well as the latitudinal means of the observation-
ally derived data product and multi-model ensemble (Fig. 3b). We 
also quantified changes in soil C pools for each model under an 
RCP8.5 (or ssp585) scenario by comparing projections from the end 
of the twenty-first century (2090–2100) with the present day (2005–
2015). Results are shown as absolute and relative changes in soil C  
stocks globally (Supplementary Figs. 6 and 7 and Supplementary 
Table 4) and across time and latitude (as Hovmöller diagrams;  
Supplementary Fig. 8).

Model pool interpretability
The comparison of protected C across different model formulations, 
following the above pool nomenclature, has been proposed in several 
past studies with first-order models15,22,23. We recognize that there are 
still inherent mismatches between operationally defined, measurable 
pools of soil organic C fractions and the modelled states that are simu-
lated by different soil biogeochemical models24,67–69. Although progress 
is being made to help bridge this divide22,45,70,71, the global-scale models 
that are the focus of this work make assumptions that are broadly 
consistent with characteristics of mineral-associated and particulate 
soil C fractions22–24 (Supplementary Fig. 12).
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Indeed, in non-permafrost mineral soils, the formation and com-
position of the passive pool in select first-order models (for example, 
in the Century model of Parton et al.51) was formulated to resemble the 
mineral-associated fraction, and mirrors the mathematical representa-
tions of physicochemically protected C in several microbially explicit 
models, including MIMICS and CORPSE22,23. Namely, the protected 
(passive in the first-order models) pool is formed primarily from the 
microbial (active) pool, where this transfer coefficient is modulated 
by soil clay and silt content, such that proportionally more C is stored 
within the protected pool in fine-textured soils22–24,51,72. More decom-
posable (metabolic) litter enters only the microbial (active) pool, 
whereas structural litter (controlled by lignin content) primarily enters 
the particulate (slow) pool23,51. A small amount of the protected pool 
forms from direct sorption of the particulate pool23,73. Consequently, 
the C:N ratio of the protected (passive) pool often resembles that of the 
microbial (active) pool (that is, typically ~11–12 for the protected pool 
in the Century model73), which is consistent with the stoichiometry of 
mineral-associated organic matter16,74,75. By contrast, the C:N ratio of the 
slow pool is more closely aligned with the stoichiometry of particulate 
organic matter (that is, ~12–20 in the Century model73).

Finally, losses from the protected pool are represented as a 
first-order process in most soil C models22,36,45, including the ones 
presented here, with typical intrinsic turnover times ranging between 
75 and 1,000 years, which are broadly consistent with radiocarbon 
estimates8,16,18 (see Supplementary Table 3 and Supplementary Fig. 13). 
Whereas there is heterogeneity within all underlying soil fractions in 
practice, it is well accepted that mineral-associated organic C is gener-
ally slower-cycling (decades to millennia) than particulate organic C 
(days to decades)16–18. Indeed, the intrinsic turnover times for protected 
(passive) C ranged from 200 to 450 years in all analysed CMIP6 ESMs, 
except for MIROC-ES2L and MRI-ESM2-0 for which the turnover times 
were 1,000 years (Supplementary Table 3). By contrast, intrinsic turno-
ver times of the particulate (slow) pool ranged from 5 to 10 years in all 
analysed CMIP6 ESMs, except for MIROC-ES2L for which the turnover 
time was 25 years. These intrinsic turnover times are baseline (mini-
mum) pool-specific values, such that environmental modifiers (based 
on temperature and moisture) further increase the turnover time in 
most gridcells; for example, by a factor of ~2.5 in temperate forests 
up to a factor of ~10 in Arctic regions for the Century model73. These 
environmental controls are important when comparing pool-specific 
turnover times with global radiocarbon data (Supplementary Fig. 14), 
and future work could estimate the distribution of C ages for each 
modelled pool across gridcells globally. Leveraging Δ14C measurements 
from the International Soil Radiocarbon Database18,76, and following 
Shi et al.41 to convert between turnover time and Δ14C, we show that 
the protected (passive) pool turnover time within many first-order 
models is broadly aligned with mean C ages of the mineral-associated 
fraction (Supplementary Table 3 and Supplementary Figs. 13 and 14). 
However, future model versions may further improve the correspond-
ence by reducing the intrinsic turnover time of protected C, especially 
in MIROC-ES2L and MRI-ESM2-0, and strengthening its environmental 
controls to better match the global distribution of Δ14C measurements 
(Supplementary Fig. 14).

By contrast, the turnover time of protected C is fixed at 75 years in 
CORPSE and ranges from 15 to 80 years in MIMICS based on a depend-
ence on soil texture23. We note that the turnover times of MIMICS and 
CORPSE appear to be biased low compared with radiocarbon data 
of soil fractions (Supplementary Figs. 13 and 14), which may explain 
their strong responses under future conditions (Supplementary  
Figs. 6–8) and suggests that bulk soil C ages may also be too young in 
these models. In fact, subsequent versions of MIMICS that have yet to be 
integrated into the global biogeochemical testbed have implemented 
much longer turnover times of protected C—for instance, ranging from 
180 to 1,000 years (that is, increased by a factor of 12.5) in MIMICS-CN77, 
and in the C-only MIMICS independently fitted to site-level data at 

the Reynolds Creek Experimental Watershed47. These modifications 
in subsequent versions of MIMICS have also resulted in much higher 
proportions of protected C (namely, 50–80%) that are better aligned 
with observational constraints. Thus, we emphasize that all models, 
including microbially explicit and first-order formulations, have the 
opportunity to be falsified or refined in future iterations, but this does 
not preclude the ability to benchmark them here.

The range of conceptual representations and parameterizations of 
physicochemical protection across ecosystem to global-scale models 
(for example, see the schematic in Sulman et al.22) presents an urgent 
need to develop and apply observationally derived constraints. We 
posit that both the microbially explicit and first-order soil C models in 
this study (Supplementary Tables 1–3) constitute conceptualizations 
that are compatible with benchmarking protected soil C to refine future 
model parameterizations. Although we recognize that there are still 
inherent uncertainties in the interpretability of modelled pools and 
operationally defined fractions, we believe that this study represents 
a valuable benchmark on model pools globally. Observational synthe-
ses show that mineral-associated C is typically an old (Supplementary  
Fig. 13 and Supplementary Table 3) and large (Fig. 3 and Supplementary 
Fig. 5) component of total soil C. Thus, the slowest-cycling passive 
pool in first-order models—which broadly aligns with radiocarbon 
measurements of mineral-associated C (Supplementary Figs. 13 and 
14)—should similarly represent a large fraction of the total soil C pool 
in mineral soils. Such a correspondence would also improve model 
performance metrics based on bulk soil C ages41,42. Since pool-specific 
turnover times appear to be broadly aligned with observations, future 
studies may seek to refine other parameters that strongly affect the 
proportion of protected C—for example, increasing the fraction of 
the active pool that flows to the passive pool (Supplementary Figs. 12 
and 15) and its mineralogical controls78. Such parameters may also be 
informed by observational estimates of the relative flows of plant- or 
microbial-derived C to mineral-associated C15,79. Ultimately, we con-
tend that benchmarking soil C pool distributions concurrently with 
radiocarbon ages in future work will present a powerful constraint on 
soil C dynamics across global models.

Data analysis
We investigated the relationship between soil C stocks (within unpro-
tected and protected C pools) and MAT across the global data product 
and models. Soil C stocks for each pool were log-transformed and 
a linear regression was used to reflect a hypothesized exponential 
relationship with temperature (as in Hartley et al.29). To ensure that 
the observed global patterns were not driven by confounding envi-
ronmental variables, we used a multiple linear regression to control 
for net primary productivity, mean annual precipitation and clay and 
silt content in our analyses. In all cases, the climate and productivity 
covariates were sourced from their respective model output or data 
product. Clay and silt content was obtained from the Harmonized 
World Soil Database59 as it was not reported for most CMIP6 models. 
The climatological temperature sensitivity was then calculated from 
the slope of the log-linear temperature relationship and, following 
Hartley et al.29, summarized as the proportional decline in C stocks for 
every 10 °C (analogous to a climatological Q10, but for C stocks) with 
corresponding parametric 95% CIs (Supplementary Table 6).

This calculation was then repeated for protected and unprotected 
soil C pools in the data and models, across all mean temperatures 
above 0 °C (Fig. 4) and across two underlying temperature regimes, 
namely cool (<15 °C) and warm (≥15 °C) (Fig. 5 and Supplementary 
Fig. 9). Soils with mean temperatures below 0 °C were not considered 
in our analyses due to distinct controls on soil C decomposition (for 
example, permafrost dynamics29,48) and consequent implications on 
the interpretability of protected pools in first-order models in these 
regions (Supplementary Fig. 3), as well as higher uncertainties in the 
data product within this temperature regime33. Furthermore, the same 
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analyses were performed on an observational synthesis33 (Supplemen-
tary Figs. 10 and 11). The general agreement between the observations 
and data product provides further evidence for the robustness of 
the reported temperature sensitivity trends between protected and 
unprotected soil C across climate regimes (Fig. 2c). Differences in clima-
tological temperature sensitivity between protected and unprotected 
soil C pools, and across the data and models, were deemed statistically 
significant when the 95% CIs did not overlap (Supplementary Table 6).

Data availability
All data used in this manuscript are fully open-access and available at 
the references provided. The CMIP6 model output is available from 
the Earth System Grid Federation at https://esgf-node.llnl.gov/search/
cmip6/, the Biogeochemical Testbed model output is available on the 
Climate Data Gateway at https://doi.org/10.5065/d6nc600w and the 
observationally derived dataset is available on Zenodo at https://doi.
org/10.5281/zenodo.6539765.

Code availability
All code relating to this study is available from the corresponding author 
on GitHub at https://github.com/katerina-georgiou/global-soilCpools 
and is archived on Zenodo at https://doi.org/10.5281/zenodo.10515706.
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