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Caldera-forming eruptions of silicic volcanic systems are among the most 
devastating events on Earth. By contrast, post-collapse volcanic activity 
initiating new caldera cycles is generally considered less hazardous. 
Formed after Santorini’s latest caldera-forming eruption of ~1600 bce, 
the Kameni Volcano in the southern Aegean Sea enables the eruptive 
evolution of a recharging multi-cyclic caldera to be reconstructed. Kameni’s 
eruptive record has been documented by onshore products and historical 
descriptions of mainly effusive eruptions dating back to 197 bce. Here we 
combine high-resolution seismic reflection data with cored lithologies 
from International Ocean Discovery Program Expedition 398 at four sites to 
determine the submarine architecture and volcanic history of intra-caldera 
deposits from Kameni. Our shore-crossing analysis reveals the deposits 
of a submarine explosive eruption that produced up to 3.1 km3 of pumice 
and ash, which we relate to a historical eruption in 726 ce. The estimated 
volcanic explosivity index of magnitude 5 exceeds previously considered 
worst-case eruptive scenarios for Santorini. Our finding that the Santorini 
caldera is capable of producing large explosive eruptions at an early stage 
in the caldera cycle implies an elevated hazard potential for the eastern 
Mediterranean region, and potentially for other recharging silicic calderas.

Large silicic volcanic systems have the potential to create catastrophic 
caldera-forming eruptions, capable of impacting human societies 
on a global scale1. Many silicic caldera systems are thought to follow  
recurrent evolutionary paths2,3. Caldera cycles typically comprise  

(1) rejuvenation and recharge by new magmas after caldera collapse 
associated with small and frequent eruptions, and (2) a build-up stage 
with few relatively small eruptions of differentiated magmas culmi-
nating in (3) a climactic eruption associated with large-scale magma 
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Seismostratigraphy and correlation to core data
The high-resolution seismic profile shown in Fig. 3c crosses the  
Santorini caldera and all four drill sites. Following previous studies, we 
subdivide the caldera infill into three seismic units, numbered S1–S3 
from the top to the incoherent acoustic basement13,20,21 (Fig. 3c and 
Extended Data Figs. 1–3). Unit S1 represents the shallowest infill in both 
basins and is characterized by incoherent low-amplitude reflections 
and a flat upper surface (Fig. 3c). The top of unit S2 marks an uncon-
formity with undulating topography. The internal reflections of unit 
S2 are subparallel and have higher amplitudes than those of unit S1 
(Fig. 3c). The boundary between units S2 and S3 is marked by a distinct 
high-amplitude reflection, which is conformable in the southern basin 
but unconformable in the northern basin (Fig. 3d,e). Towards Kameni 
Volcano, this boundary coincides with a high-amplitude reflection 
marking the top of an incoherent seismic subunit that pinches out 
distally from the edifice and is associated with acoustic blanking below 
(Fig. 3d,e). Unit S3 has a roughly constant thickness in the southern 
basin, whereas it thickens strongly towards Kameni Volcano in the 
northern basin and displays divergent internal reflections (Fig. 3e). 
Unit S3 fills the topographic low of the underlying acoustic basement, 
displaying clear onlap structures (Fig. 3d,e). Acoustic blanking beneath 
Kameni Volcano prevents determining the extent of unit S3 below the 
centre of the caldera (Fig. 3d,e).

Using shipboard P-wave velocity and density measurements of 
the recovered cores, we correlate the recovered material to seismic 
reflections integrating the cored lithologic units with the seismic 
units. At all four sites, we correlate seismic unit S1 with lithologic unit 
L1 (Fig. 3d,e) and seismic unit S2 with lithologic unit L2 (Fig. 3d,e). 
Lithologic unit L3 represents a thin (~5 m) interval that underlies the 
high-amplitude reflection separating seismic units S2 and S3 (Fig. 3d,e). 
Towards Kameni Volcano, this high-amplitude reflection marks the top 
of the incoherent subunit whose base is marked by the dashed red lines 
in Fig. 3d,e. Lithologic units L3–L5 can be correlated with seismic unit 
S3. Low recovery in lithologic units L4 and L5 limits the precision of 
core–seismic integration, precluding correlation to internal reflectivity 
within unit S3 (Fig. 3d).

Distribution and volume of intra-caldera deposits
Using our extensive dataset of reflection seismic data, we trace the 
seismic units throughout the caldera to map out their bases and 
thicknesses on the scale of seismic resolution (∼5 m) (Fig. 4a–f). 
Velocity measurements of the cores enable the two-way time intervals 
to be converted to thicknesses in metres, and thus provide the bulk 
and DRE volumes of each seismic unit (Supplementary Tables 1 and 
2). As we cannot trace seismic units underneath Kameni Volcano, 
we provide minimum volumes that include only the area shown in  
Fig. 4a–f, whereas the maximum volumes for seismic units S2 and 
S3 are calculated from interpolation through the Kameni edifice 
(Fig. 4f and Supplementary Fig. 3). The base of unit S1 is significantly 
deeper in the northern basin than in the southern basin (Fig. 4a), a 
manifestation of the pronounced topographic step between the 
two basins (see Fig. 3c). Unit S1 has a bulk volume of 0.30 ± 0.04 km3 
(0.09 ± 0.01 km3 DRE) and is slightly thicker in the northern basin 
(Fig. 4d). Unit S2 thickens significantly towards Kameni Volcano 
(Fig. 4e), being the thickest between Nea and Palea Kameni (~200 m). 
Unit S2 has a bulk volume of 2.0 ± 0.7 km3, translating to a DRE vol-
ume of 0.53 ± 0.18 km3 (Fig. 4e). The base of unit S3 forms a deep 
(~280 mbsf) subcircular depression in the northern basin (Fig. 4c), 
filled by the deposits of unit S3 (Fig. 4f), which have a bulk volume 
of 2.65 ± 0.75 km3 (1.30 ± 0.37 km3 DRE).

Origin of the acoustic basement
The incoherent acoustic basement underlying seismic units S1–S3 
was not penetrated during IODP Expedition 398. No deposits from  
the Minoan eruption were recovered in any of the intra-caldera cores 

withdrawal and caldera collapse2,3. Despite their much smaller magni-
tudes, eruptions during stages 1 and 2 at calderas, as seen, for example, 
at Campi Flegrei4, Taupo5, Rabaul6 or Nisyros7, can present a major 
hazard to populations and infrastructure. Therefore, understanding 
the timing for the magmatic system beneath a caldera to reactivate 
and produce new explosive activity after an initial caldera-forming 
event is crucial. However, since the products from eruptions early in 
a caldera cycle are commonly buried deep within intra-caldera fill, our 
knowledge about them is underdeveloped, and the time needed for the 
system to build up to hazardous explosive events is poorly understood.

Considered to be a typical example of a multi-cyclic caldera, San-
torini is part of the South Aegean Volcanic Arc in the eastern Mediterra-
nean (Fig. 1a). Santorini’s caldera cycles are characterized by extended 
periods of effusive to mildly explosive intra-caldera volcanism between 
caldera-forming events8–10. Activity at Santorini first began ~650 ka, 
and since half a million years ago there have been numerous Plinian 
eruptions, five of which are believed to have generated calderas8,11. 
The latest caldera-forming eruption of Santorini occurred ~1600 bce, 
discharging a dense-rock equivalent (DRE) of silicic magma and rock 
fragments of 34.5 ± 6.8 km3, which possibly contributed to the demise 
of the Minoan civilization12,13. Post-collapse volcanism resumed with the 
build-up of the intra-caldera Kameni Volcano, marking the beginning 
of a new caldera cycle10,14.

Kameni Volcano is a largely submarine edifice in the centre of 
the caldera (Fig. 1b–d) with two summits forming the islands of Palea 
Kameni and Nea Kameni15,16 (Fig. 1c). It separates the caldera into a 
northern and a southern basin, which have maximum depths of 385 m 
and 290 m, respectively16 (Fig. 1b,d). Historical descriptions provide 
a record of multiple eruptions of Kameni Volcano that date back 
to 197 bce and continued until 1950 ce8,15,17. Since then, the volcano 
has been dormant except for a phase of seismo-volcanic unrest in 
2011–2012 ce18. Previous seismic reflection studies of the caldera infill 
identified three stratigraphic units, interpreted as composed either 
of (1) Minoan and pre-Minoan ignimbrites19, (2) mixed Minoan and 
post-Minoan deposits20 or (3) entirely post-Minoan deposits13,21.

International Ocean Discovery Program (IODP) Expedition 398 
drilled into the marine basins of the Santorini caldera22 (Fig. 1b,c). Four 
coring sites reveal the eruption history of Kameni Volcano. Here, we 
integrate recovered lithologies with high-resolution seismic data to 
map the distribution and volume of individual units. We relate these 
units to lava flows from Kameni Volcano to reconstruct its evolution, 
identifying an unexpectedly large explosive eruption in historical times.

Lithologies of intra-caldera deposits
IODP Expedition 398 cored two sites in each of Santorini caldera’s 
southern (U1594, U1595) and northern (U1596, U1597) basins (Fig. 1b). 
Challenging drilling conditions prevented penetration of the acous-
tic basement and recovery rates decreased with depth (Fig. 2). The 
retrieved material was unlithified sediment, dominated by volcani-
clastic material with minor amounts of tuffaceous mud. Five lithologic 
units (L1–L5) were identified, with the lowermost units L3–L5 solely 
obtained at Site U1595 (Fig. 2). At all sites, unit L1 extends from the 
seafloor down to ~20 metres below seafloor (mbsf), comprising mainly 
well-sorted, partly decimetre-thick ash with one additional metre-thick 
lapilli-ash interval (Figs. 2 and 3a). The transition between units L1 and 
L2 is marked by the occurrence of moderate to highly vesicular pumice 
lapilli (Fig. 3a). Unit L2 (~20–55 mbsf) consists of volcanic material that 
grades upwards from pumice lapilli to lapilli-ash (Fig. 2), with pumice 
lapilli up to 5 cm in diameter (Fig. 3a). At Site U1595, unit L3 comprises 
numerous intervals of intercalated ash and tuffaceous mud, extending 
to ~60 mbsf (Figs. 2 and 3a). Unit L4 extends to ~100 mbsf and consists 
of heterogeneous volcanic lithologies, including lithic gravels and 
sands, with lithic blocks (Figs. 2 and 3a). Unit L5, extending to at least 
~126 mbsf, contains pumice lapilli, red volcanic ash and lithics; the 
bottom of this unit was not recovered (Figs. 2 and 3a).
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(Figs. 2 and 3a). Internal reflections of unit S3 lie subparallel to the 
acoustic basement and show no indications of significant internal 
faulting (Fig. 3d,e), which would be expected if unit S3 was deposited 
before or during caldera collapse13 (Fig. 3e). The seismic profile shown in  
Fig. 3c strikes parallel to the caldera wall in the southern basin (Fig. 3c). 
The locations of distinct ridges of the acoustic basement in the seismic 
data (Fig. 3c) correspond to the edges of morphologically fresh land-
slide scars in the caldera walls of the southern basin (Fig. 3f), formed 
by rotational landslides during or soon after the Minoan eruption23.  
In the northern basin, the acoustic basement forms a deep sub-
circular depression (Figs. 3e and 4c) that overlies a cylindrical low- 
velocity P-wave anomaly, which was identified in a previous seismic 

tomography experiment24 (Fig. 4d–f). In both basins, internal reflec-
tions of unit S3 onlap the acoustic basement (Fig. 3d,e), implying that 
seismic unit S3 post-dates the Minoan collapse.

Ages of intra-caldera deposits
Historical documents provide descriptions of 9 effusive to mildly 
explosive eruptions of Kameni Volcano since 197 bce15–17 (Fig. 5a). 
The distribution and ages of lava flows of Nea Kameni are well docu-
mented15,16. The ages of Palea Kameni lavas are inferred from historical 
descriptions17 and, following previous authors15,16, we accept these ages 
for this study. To relate these eruptions to the recovered lithologies 
and seismic units, we explore the offshore continuation of onshore 
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level10. Outlines of the offshore continuation of lava flows are marked by dashed 
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Fig. 1.
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lava flows16 (Fig. 1d). Figure 5b shows a three-dimensional (3D) view of 
two seismic profiles combined with an inset showing the topographic 
grid. This figure highlights how the subaerial parts of the 46–47 ce 
(orange), 726 ce (magenta), 1707–1711 ce (light blue) and >1711 ce  
(dark blue) lava flows extend into the offshore domain16 and how they 
relate stratigraphically to the intra-caldera pyroclastic units (Fig. 5b). 
Each of these lava flows correlates with laterally confined subunits  
in the seismic profiles, characterized by a high-amplitude top  
reflection and a chaotic internal seismic character that is typical of 
submarine lava flows25 (Fig. 5b). Unit S2 lies between the lava flows of 
the 726 ce and 46–47 ce eruptions (Fig. 5b–d and Extended Data Figs. 1 
and 2), which implies that unit S1 post-dates 726 ce. Unit S2 has an age 
between 47 and 726 ce, and unit S3 pre-dates 47 ce (Fig. 5a).

Origin of intra-caldera deposits
Between the Minoan caldera collapse and the 46–47 ce eruption of 
Palea Kameni (Fig. 5a,b), only one eruption (197 bce) is mentioned in 
historical accounts, which formed an island that was submerged via 
subsequent erosion17. Our seismic data indicate the presence of buried 
lava flows at the boundary between seismic units S2 and S3 in both 
basins, which may correlate with the 197 bce eruption (Figs. 3c and 
5b–d and Supplementary Fig. 3c). Lithologic unit L3 lies directly at 
the boundary of seismic units S2 and S3, where the buried lava flow 
pinches out (Fig. 3c–e). It comprises several intervals of intercalated 
ash and tuffaceous mud (Figs. 2 and 3a), which may correspond to 
ancient eruptions of Kameni Volcano. Below, large parts of unit S3 
consist mostly of lithic sands and gravels (lithologic unit L4) that may 
have been deposited through either collapses of the unstable caldera 
walls, stream flow in the newly formed caldera or flooding when the 
northern rim of the caldera was breached21 (Fig. 5c). Lithologic unit L5 
contains volcanic material and may represent an early phase of Kameni 
Volcano, potentially older than 197 bce.

Seismic unit S2 consists entirely of pumice and ash (Fig. 3a), and 
the absence of intercalated muds implies that it formed during an 
uninterrupted eruption (Figs. 2 and 3). Historical accounts mention 
that, during the summer of 726 ce, the sea within the Santorini caldera 

began to boil until dense smoke rose and was accompanied by pyro-
clastic eruptions17. Subsequently, large pumice blocks were ejected in 
such quantity that they covered the sea over an immense area, reach-
ing the coasts of Macedonia and Asia Minor more than 400 km away17. 
These events may have prompted Emperor Leo III of Constantinople to 
impose iconoclasm, causing severe conflicts in Byzantine society26,27. 
Despite the apparent abundance of floating pumice, no substantial 
deposits from this eruption have been found previously, except for 
a thin pumice layer (<1 m) overlying the lavas of 46–47 ce on Palea 
Kameni28,29. Our study indicates that an additional 2.0 ± 0.7 km3 of these 
deposits lie buried inside the caldera, effectively reconciling historical 
accounts with scientific evidence. The caldera-filling nature of these 
deposits suggests emplacement by gravity flows accompanied by the 
fallout of water-saturated pumice through the water column30. Despite 
a significant intra-caldera thickness, the 726 ce tephra has never been 
recognized on Santorini, suggesting that the eruption was mostly 
confined to the submarine realm.

Previous studies have suggested that the vent of the 726 ce  
eruption was between Nea Kameni and Palea Kameni29, which agrees 
with our mapping of unit S2 (Figs. 4b,e and 5b). A distal ash layer of 
Kameni origin (0.4 km3 DRE), with an estimated age between 200  
and 950 ce, has been identified in marine sediments up to 41 km  
east of Santorini7,31. Similar glass compositions indicate a correlation  
of the distal ash with unit L2 and the onshore Kameni composi-
tional field of the 726 ce eruption (Extended Data Fig. 4). This ash  
probably represents the late stage of the eruption when the vent 
became subaerial, which has been suggested in historical descrip-
tions17 and agrees with the seismic interpretation (Fig. 5b–d), where the  
offshore continuation of the 726 ce lava flow lies on top of unit S2.  
Adding the distal ash to our estimated intra-caldera volume of unit S2 
indicates a bulk volume of up to 3.1 km3 and a DRE volume of ~1 km3  
for this eruption, implying an eruption magnitude of volcanic explo-
sivity index (VEI) 5, of the same order of the 2022 Hunga Tonga–Hunga 
Ha‘apai eruption32. Unknown quantities of pumice transported  
in rafts and deposited across the Aegean seafloor further increase  
this volume33.
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The most recent phase of the evolution of the Santorini caldera 
is characterized by the eruptions of Nea Kameni, which took place 
after 726 ce (Fig. 5a). These mainly effusive eruptions shaped the 
present-day morphology of Nea Kameni and occurred between 1570 
and 1950 ce28. The 0.3 km3 volcaniclastic deposits of unit S1 probably 
correspond to these eruptions (Figs. 2 and 3a), whereas the occurrence 
of a metre-thick lapilli interval and a decimetre-thick ash interval 
within unit L1 shows that some of these eruptions were also explosive 
(Fig. 2).

Implications for hazard assessment
Our study reveals the nature of the marine deposits of an island arc 
caldera and how they relate to a recharging intra-caldera volcano. Our 
results demonstrate that Kameni Volcano has been capable of produc-
ing a major VEI 5 explosive eruption in the recent past. This changes 
the prevailing view that Kameni Volcano has been in a predominately 
effusive state since the Minoan eruption14 and implies that the Santorini 
volcanic system has been capable of producing highly explosive erup-
tions in its current early stage in the caldera cycle.

Northern basin

Northern breach
Southern basin

0.1

0.2

0.3

0.4

0.5TW
T 

(s
)

0.6

0.7

0.8

0.9

Seismic
polarity

–

+

Western breach

3.01.50

Distance (km)

VE = 12×

Minoan ignimbrites
(ref. 13)

Thera Pyroclastics
(<360 ka)

SW
NNW

Basement ridges

Kameni 
lava flows

U
15

96

U
15

97

U
15

94

U
15

95

Unit S1

Unit S2

Unit S3

Thera
pyroclastics
(ref. 45)

Kameni lava
flows

Key for b

Available
seismic line

Drill site
Course change

Key for c

Unit L1 Unit L3Unit L2 Unit L4 Unit L5
U1595A-2H-2A U1596A-4H-5A U1595A-7H-6A U1595B-10H-4A U1595B-14H-2A

5

10

15

20

25

a

c

d e

Le
ng

th
 (c

m
)

b

0.5

0.6

0.7

0.8

0.6

0.7

0.4

0.5

TW
T 

(s
)

Southern basin Northern basin

Acoustic
blanking

VE = 10×

Distance (km)

0 1 2 0
VE = 10×

Distance (km)

1 2

U
15

95

U
15

94

U
15

97

U
15

96

40

80

120

40

L1

L2

L4

L5

L1

L2 40 40

L1
L2

L1
L2

Divergent
reflections

Kameni
lava

flows

Incoherent
acoustic basement

Incoherent
acoustic basement

Incoherent subunit:
buried lava flow

Incoherent subunit: 
buried lava flow

L3

Kameni
lava

flows

4,
03

0
4,

04
0

350 360

U1597

U1594
U1595

U1596

NK
PK

355 365

4,
02

5

Easting (km)

N
or

th
in

g 
(k

m
)

Fig. 3c
ZYXWV

V
W

X

Y
Z

4,
03

5

Fig. 3 | Core–seismic integration of the intra-caldera sites. a, Representative 
photos of the five lithologic units L1–L5. b, Overview map with all available 
seismic profiles in the caldera (grey) and the location of the seismic profile 
shown in c. The labelled black markers (V–Z) indicate course changes of the 
seismic profile. c, Seismic profile crossing the Santorini caldera from the 
western breach across the southern and northern basins towards the northern 
breach13,45. Labelled black lines (V–Z) mark the course changes of the seismic 
profile. For location, see b. TWT, two-way travel time; VE, vertical exaggeration. 

d,e, Enlargement of the seismic image in c of the southern basin (d) and northern 
basin (e) with subseafloor depths of the lithologic units L1–L5. Black arrowheads 
indicate onlap terminations against the acoustic basement. Numbers on the 
core graphics represent the depth in metres below seafloor. Brown dashed lines 
indicate the outline of the acoustic basement; red dashed lines indicate the 
approximate base of interpreted lava flows. Uninterpreted versions of c–e are 
included in Supplementary Fig. 2. Additional seismic profiles across the caldera 
are provided as Extended Data Figs. 1–3.
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Although historical records described the extent of the 726 ce 
eruption17, traces of this event were limited to a thin pumice layer on 
Palea Kameni29. Previous volcanic hazard assessments considered 
the 726 ce eruption as a worst-case eruptive scenario for Santorini34,35 
but assumed a significantly smaller eruption magnitude (VEI 3–4) 
than our study shows34,35. Pumice from the 726 ce eruption may have 
travelled across the Aegean Sea reaching the coasts of Asia Minor17,26. 
A similar eruptive event today would have severe consequences not 
only for the inhabitants of Santorini and its neighbouring islands but 
also for the broader eastern Mediterranean6. Eruption phenomena 
may include tsunamis generated by submarine explosions, extensive 
pumice rafts and large airborne ash plumes with significant impacts 
on coastal communities, aviation, maritime transportation and sub-
marine cables36.

In addition to explosive eruptions, sector collapses are another 
major hazard for marine volcanoes, as demonstrated by the cata-
strophic collapses of Mount Mayuyama in 1792 ce37, Ritter Island in 
1888 ce38 and Anak Krakatau in 2018 ce39. Similar to Anak Krakatau,  
Kameni Volcano developed on a topographic step in a flooded 
caldera40. This step corresponds to the Kameni Line, a northeast–
southwest-directed active volcano–tectonic lineament24. To the north-
west, Kameni Volcano lies on the edge of a subcircular depression 
that lies at ~280 mbsf (Figs. 3c and 4c) and coincides with the focus 
of 2011–2012 ground deformation18,24. Our study indicates that sig-
nificant parts of the submarine cone of Kameni Volcano consist of the 
unconsolidated pumice and ash deposits from the 726 ce eruption 
(Fig. 5b–d). The lava flows of Nea Kameni were emplaced on top of the 
up-to-20° steep slopes of these deposits21 (Fig. 5b), making the volcano 

a b c

d e f

Base unit S1 Base unit S2 Base unit S3

Thickness unit S1 Thickness unit S2 Thickness unit S3

NK
PK

TWT (ms)
800700600500400300

TWT (ms)
800700600500400300

TWT (ms)
800700600500400300

TWT (ms)
00 10050 150 200 250

00 200
Thickness (m)

10050 150

TWT (ms)
00 10050 150 200 250

00 200
Thickness (m)

10050 150

TWT (ms)
00 10050 150 200 250

00 200
Thickness (m)

10050 150

1,635 ± 7 m s−1P-wave velocity:
0.30 ± 0.04 km3Bulk volume: 
0.09 ± 0.01 km3DRE volume: 

1,854 ± 10 m s−1P-wave velocity:
2.0 ± 0.7 km3Bulk volume: 
0.53 ± 0.18 km3DRE volume: 

1,810 ± 29 m s−1P-wave velocity:
2.65 ± 0.75 km3Bulk volume: 
1.30 ± 0.37 km3DRE volume: 

350 360355 365

Easting (km)
350 360355 365

Easting (km)

4,
03

0
4,

04
0

4,
02

5

N
or

th
in

g 
(k

m
) 4,

03
5

350 360355 365

Easting (km)

4,
03

0
4,

04
0

4,
02

5

N
or

th
in

g 
(k

m
) 4,

03
5
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prone to flank instability. Volcanic slope failure occurred during the 
1650 ce eruption of Kolumbo Volcano 7 km northeast of Santorini 
(Fig. 1b), contributing to tsunamis on the neighbouring islands41,42. A 
comparable flank collapse of Kameni Volcano should be considered a 
potential hazard scenario for the region.

Our findings stress the need for the monitoring of shoreline  
crossing and early warning strategies for Santorini, with more than 
15,000 residents and more than 2,000,000 tourist visitors each year42. 
Santorini is one of the best-studied marine volcanoes in the world8, 

yet the presence of vast amounts of pumice within the caldera from 
a historical Kameni eruption has remained unrecognized until now. 
This highlights the incompleteness of onshore eruption archives for 
explosive submarine eruptions. Our study raises the question as to 
whether other recharging silicic calderas have also been unexpectedly 
explosive, which has important implications for hazard assessments. 
Understanding the past and present behaviour of active calderas is 
key to forecasting their future behaviour and is crucial for assessing 
regional and global eruption risk43,44.
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Methods
Deep-sea drilling
The IODP Expedition 398 took place from December 2022 to Febru-
ary 2023 onboard the scientific drilling vessel RV JOIDES Resolution. 
It drilled a total of 12 sites in and around the Christiana–Santorini–
Kolumbo volcanic field22. The expedition encompassed a standard 
suite of shipboard physical property measurements carried out on 
the recovered cores46. Comprehensive core logging and description 
utilized established pyroclastic terminology, accounting for drilling 
and recovery artefacts such as sediment mixing, shear-induced uparch-
ing, brecciation, biscuiting and ash liquefaction.

To obtain the most complete recovery, multiple cores with small 
offsets of ~50 m at each site were anticipated to close recovery gaps of 
the first core. However, challenging drilling conditions prevented this 
for the intra-caldera Sites U1594 and U1597, which were only drilled 
with a single hole. Three holes were drilled at Site U1595 and two holes 
were drilled at Site U1596. To combine adjacent holes, stratigraphic 
correlation was applied, which had the goal of identifying overlap-
ping intervals in adjacent holes and splicing them together to derive 
the most complete subsurface section. Stratigraphic correlation used 
core imagery but was primarily based on the physical properties of  
the recovered cores. Shipboard physical property measurements  
were conducted on all cores obtained during the expedition (source: 
https://iodp.tamu.edu/labs/index.html). For stratigraphic correla-
tion, we analysed the physical properties measured using the whole 
round multisensor logger (WRMSL) for magnetic susceptibility and 
gamma-ray attenuation (GRA), as well as the gamma-ray track for 
Natural Gamma Radiation intensity. On this basis, we applied shifts to 
the cores when necessary to establish a composite depth scale. After-
wards, the most representative single continuous sedimentary section 
was created by splicing intervals from multiple holes.

Bathymetry and seismic data
The digital elevation model (DEM) used in this study was created by 
combining various data sources. These included satellite-derived 
Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) data, a community-sourced DEM obtained from the Euro-
pean Marine Observation and Data Network (EMODnet), data col-
lected during the GEOWARN project aboard the RV Aegaeo and data  
from the PROTEUS seismic tomography project acquired on the RV 
Marcus G. Langseth. The lateral resolution of the swath dataset is 20 m, 
which was obtained using the SeaBeam 2120 20 kHz swath system on 
the RV Aegaeo and the Simrad Kongsberg EM 122 12 kHz multibeam 
echo sounder on the RV Marcus Langseth.

The seismic data used in this study are from four cruises between 
2006 and 201947,48. Single-channel seismic data were acquired in  
2006 during the THERA project on the RV Aegaeo. As the seismic 
source, a G pulser with a volume of 10 in3 was used. The general pro-
cessing comprised simple bandpass filtering (15–500 Hz), de-spiking, 
predictive deconvolution for the suppression of a strong bubble signal, 
and spherical divergence correction. To migrate the data, we binned 
the shot points into a regular spacing of 10 m. After migration, we 
applied a top mute and white-noise removal. The vertical resolu-
tion of these data can be approximated to 8–15 m (using the λ/4- or 
λ/2-approximation, where λ is the wavelength) within the shallow sedi-
ments (velocity = 1,900 m s−1).

For cruise POS338 with the RV Poseidon, a GI pulser was used and 
operated in true GI mode with a primary (generator) volume of 45 in3 
and a secondary (injector) volume of 105 in3. Using a 600 m analogue 
streamer with 24 channels, we defined a common midpoint (CMP)  
spacing of 12.5 m. Processing of these data comprised trace editing, 
simple frequency filtering (10–500 Hz), suppression of a receiver-ghost 
signal by predictive deconvolution, surface-related multiple elimina-
tion as well as spherical divergence correction, pre-stack time migra-
tion followed by top muting and white-noise removal. These data 

have a main frequency of 60 Hz, indicating a vertical resolution of 
approximately 8–15 m.

Another dataset was collected in 2015 using a Delta Sparker and a 
100 -m-long streamer containing 24 channels. Processing comprised 
trace editing, simple frequency filtering (100–1,500 Hz), de-spiking, 
normal moveout correction using a constant velocity (1,500 m s−1) and 
CMP stacking, as well as post-stack migration (10 m CMP spacing) and 
white-noise removal. These data have a main frequency of 300 Hz, 
indicating a high vertical resolution of approximately 2.5–5 m.

During the most recent cruise POS538 in 2019, we acquired seismic 
data with a much higher lateral resolution (a CMP spacing of ~1.56 m 
(ref. 47)). As a seismic source, we used a GI pulser that was operated 
in harmonic mode with primary and secondary volumes of 45 in3. 
Seismic energy was recorded as multiple concatenated Geometrics 
GeoEel streamer segments, resulting in active streamer sections rang-
ing from 190 m to 250 m in length. Processing comprised trace editing, 
simple frequency filtering (15–1500 Hz) and multiple suppression via 
surface-related multiple elimination. This was followed by spherical 
divergence correction, time-variant frequency filtering, pre-stack time 
migration, top muting and white-noise removal. With a main frequency 
of 125 Hz, the vertical resolution can be approximated to 4–8 m.

The processing of seismic data was done using the VISTA seis-
mic processing software (Schlumberger). Seismic interpretation and 
mapping used the KingdomSuite software (S&P Global) and Petrel 
software (Schlumberger). All seismic profiles were combined and 
homogenized in a consistent interpretation project, and a regional 
seismo-stratigraphic framework was incorporated45,49–51.

Supplementary Figure 3a,b shows maps of units S1 and S2 inter-
polated through the Kameni edifice to provide maximum volumes. 
Supplementary Figure 3c shows the mapped thickness of the proposed 
lava flow between units S2 and S3. Supplementary Figure 3d shows 
all seismic profiles used for mapping the intra-caldera deposits. The 
scientific colour map batlowK used in Supplementary Fig. 3 and Fig. 4 
was used in this study to prevent visual distortion of the data and the 
exclusion of readers with colour vision deficiencies52.

Physical property measurements
All four boreholes were integrated with the seismic data to identify key 
stratigraphic marker horizons using the reservoir characterization 
software HampsonRussell (GeoSoftware). This was based on shipboard 
measurements of P-wave velocities and densities of the cores. Con-
tinuous P-wave velocities and GRA densities were measured onboard 
the RV JOIDES Resolution using the WRMSL. The sampling for WRMSL 
measurements was 2.5 cm, with an integration time of 3 s for each meas-
urement. The reliabilities of the WRMSL measurements were assessed 
by passing a single core liner filled with deionized water through the 
WRMSL after every core.

The WRMSL compressional wave velocity sensor measured the 
travel time of 500 kHz ultrasonic waves across the whole core while it 
remained in the core liner. The waves were transmitted to the core by 
plastic transducer contacts connected to linear actuators. To ensure 
coupling between the transducers and the core liner, pressure was 
applied to the actuators, and water was dripped along the outside of 
the core liners to enhance the physical connection with the actuators.

The bulk density was calculated by measuring the attenuation of 
gamma rays as they passed through the core. Ray attenuation is domi-
nated by Compton scattering and depends on the density and thickness 
of the sample. Gamma rays with an energy of 0.662 MeV are generated 
using a 137Cs source core53,54 and pass through the entire diameter of the 
core. The GRA detector recorded these gamma rays using a 75 × 75 mm 
sodium iodide detector. The spatial resolution of the GRA is <1 cm.

In addition, discrete P-wave and density measurements were con-
ducted on the working halves of the split cores. For P-waves, entire 
working halves of split cores were measured with a calliper transducer 
wetted with deionized water to ensure optimal contact. The sampling 

http://www.nature.com/naturegeoscience
https://iodp.tamu.edu/labs/index.html


Nature Geoscience

Article https://doi.org/10.1038/s41561-024-01392-7

interval was approximately 40–50 cm, depending on the lithologic vari-
ability of each core section. For the measurements, Panametrics-NDT 
Microscan delay line transducers at 500 kHz were used. A total of  
925 P-wave velocity measurements from the four intra-caldera  
sites were conducted.

Volume estimation and DRE conversion
The bulk volumes of seismic units were estimated using shipboard 
P-wave velocities measured on the recovered cores. The DRE conver-
sion factor quantifies the volume of magma erupted in comparison 
with the deposit volume, after eliminating all pore space from vesicles 
and intergranular voids. To determine this conversion factor, several 
measurements are taken from samples obtained through coring using 
the moisture and density facilities on the RV JOIDES Resolution. These 
measurements include the water content, bulk density, grain density 
and solid density.

A dual-balance system, utilizing two Mettler-Toledo XS204  
analytical balances, was used to measure wet and dry masses. One 
balance served as a reference, while the other measured the unknown 
mass, compensating for ship motion. Before weighing sample-standard 
pairs, the balances were ‘tared’ to zero based on the average of 300 
measurements, with this process repeated every 6 h. Standard weights, 
similar in value to the sample’s weight, were placed on the reference 
balance, while the sample was placed on the balance for measuring 
the unknown mass. The reported sample mass represents the average 
of 300 measurements. If the reference and sample masses differed 
by more than 2 g, the measurement was aborted and repeated after 
adjusting the weights on the reference balance. Typically, the wet 
samples range from 10 to 20 g.

Following sample collection, the wet sample mass was immedi-
ately measured. The dry sample mass and volume were determined 
after drying the samples in a convection oven at a temperature  
of 105 ± 5 °C for 24 h, followed by cooling in a desiccator for 3 h. The 
dry volume was measured using a shipboard helium-displacement 
pycnometer with a precision of ±0.04 cm3. Each volume value repre-
sents the average of three measurements. These measurements were 
utilized in the calculation of sediment properties and subsequent 
determination of the DRE conversion factor.

Calculation of the sediment bulk density, dry density, grain den-
sity, porosity and void ratio followed the conventional ODP/IODP 
approach, assuming a porewater salinity of 0.035 ml−1 and a density of 
1.024 g cm−3. The presence of isolated vesicles entirely enclosed by glass 
in pumice clasts can result in the measured grain density being lower 
than the solid density. To address this, we use the maximum recorded 
grain density as a proxy for the solid density (2,660 kg m−3). Eighty-six 
moisture and density samples of the caldera deposits were analysed 
across four sites and seven holes.

Chemical analyses
To decipher the provenance of unit L2 and compare it with other marine 
tephras we utilized geochemical glass-shard compositions of marine 
tephras of nearby marine gravity cores as well as the previously estab-
lished glass-compositional reference data for terrestrial Aegean arc 
tephras7,31 comprising data from deposits of all known eruptions that 
potentially contribute to the basins in the region of the Christiana–
Santorini–Kolumbo volcanic field.

The 63–125 μm fraction of the samples was embedded with  
epoxy resin into 12 pre-drilled holes in acrylic mounts and polished  
to facilitate measurements using a JEOL JXA-8200 wavelength- 
dispersive electron microprobe (with an accelerating voltage of 15 kV, 
a beam current of 6 nA and a 10-μm-diameter electron beam) at GEO-
MAR, Kiel for major elements (Supplementary Tables 3–5). Accuracy 
was monitored via standard measurements on Lipari obsidian and 
Smithsonian basaltic standard VGA99 (two measurements each after 
every 60 analyses). To address the effects of variable post-depositional 

hydration and minor deviations in focusing of the electron beam, all 
analyses with totals of >90 wt% were renormalized to 100%.

The trace element contents of glass shards were analysed using 
LA-ICP-MS (laser ablation inductively coupled plasma mass spectro
metry) at the Academia Sinica in Taipei, Taiwan as well as the Labora-
tory of Magmatism and Volcanism in Clermont-Ferrand, France using 
193 nm excimer lasers with beam sizes of 24–30 µm and Agilent 7500 
or 7900 ICP-MS instruments (Supplementary Table 6). As internal 
standards, 43Ca concentrations were used that have been determined 
using the electron microprobe (CaO oxide contents (in wt%)) on the 
same glass shard. The external standard was NIST 612 and secondary 
standard BCR was used as certified reference material. GLITTER (http://
www.glitter-gemoc.com) software was used to reduce the data and 
calibrate with standards to obtain trace element concentrations. The 
analytical precision was better than 10% for most trace elements with 
limits of detection of <100 ppb for most trace elements and ~10 ppb 
for rare earth elements. Both laboratories resulted in the same trace 
element concentrations and ratios within analytical uncertainty for the 
same samples. For further details, the reader is referred to refs. 7,31.

Data availability
The findings of this study are supported by openly available DEM data. 
In addition, the findings of this study are supported by openly available 
EMODnet and PROTEUS data, which can be found on the EMODnet 
bathymetry portal at https://portal.emodnet-bathymetry.eu. The host-
ing of the data is done by the CitationEMODnet Bathymetry Consortium 
(2018) and can be accessed at https://doi.org/10.12770/18ff0d48-b203-
4a65-94a9-5fd8b0ec35f6. The high-resolution seismic reflection 
profiles obtained during POS538 can be accessed at https://doi.
org/10.1594/PANGAEA.956579.
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Extended Data Fig. 1 | Seismic profile across the western flank of Kameni 
volcano and the southern caldera basin. a,b, Un-interpreted (a) and 
interpreted (b) version of a seismic profile crossing the western breach, the 
western flank of the Kameni edifice and the southern caldera basin with Sites 

U1595 and U1594. Note that Site U1595 marks the intersection of two seismic 
profiles acquired with different acquisition parameters, introducing a lateral 
change in seismic resolution. c, Map of Santorini caldera showing the location of 
the seismic profile in (a) and (b).
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Extended Data Fig. 2 | Seismic profile across the northwestern flank of Kameni volcano and the northern caldera basin. a,b, Un-interpreted (a) and interpreted 
(b) version of a seismic profile crossing the western breach, the northwestern flank of the Kameni edifice and the northern caldera basin. c, Map of Santorini caldera 
showing the location of the seismic profile in (a) and (b).
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Extended Data Fig. 3 | Seismic profile across the northern caldera basin. a,b, Un-interpreted (a) and interpreted (b) version of a seismic profile crossing the 
northern caldera basin with Site U1596. c, Map of Santorini caldera showing the location of the seismic profile in (a) and (b).

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-024-01392-7

Extended Data Fig. 4 | Chemical compositions of glasses from the 726 
Eruption. a–d, Trace element ratio plots showing the compositional field  
of glass-shards of marine ash layers (normalized to 100 wt% anhydrous  
compositions) recovered in the Anhydros basin within POS513 (core 15) 
(Kutterolf et al., 2021a,b) as well as from the pumice layer of Unit L2  

(U1595A-4H-4; U1595A-5H-3) within the caldera basin compared with glass-
compositions from onshore CSK volcanic complex, Milos, and Kolumbo tephra. 
The legend at the bottom identifies colored composition fields of the onshore/
proximal tephras. All analyses correlate with the onshore Kameni compositional 
field of the 726 CE eruption.
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