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Modelling dataset bias in machine-learned 
theories of economic decision-making

Tobias Thomas    1,2  , Dominik Straub    1, Fabian Tatai    1, Megan Shene1, 
Tümer Tosik    1, Kristian Kersting2,3 & Constantin A. Rothkopf1,2

Normative and descriptive models have long vied to explain and predict 
human risky choices, such as those between goods or gambles. A recent 
study reported the discovery of a new, more accurate model of human 
decision-making by training neural networks on a new online large-scale 
dataset, choices13k. Here we systematically analyse the relationships 
between several models and datasets using machine-learning methods and 
find evidence for dataset bias. Because participants’ choices in stochastically 
dominated gambles were consistently skewed towards equipreference 
in the choices13k dataset, we hypothesized that this reflected increased 
decision noise. Indeed, a probabilistic generative model adding structured 
decision noise to a neural network trained on data from a laboratory study 
transferred best, that is, outperformed all models apart from those trained 
on choices13k. We conclude that a careful combination of theory and 
data analysis is still required to understand the complex interactions of 
machine-learning models and data of human risky choices.

Human choices between goods or gambles have long been known not 
to maximize expected gains1,2. Therefore, predicting and explaining 
how and why humans make decisions has been a major goal in psychol-
ogy, economics, cognitive science and neuroscience3–6. While norma-
tive models aim to explain why people should make certain decisions, 
descriptive models have tried to capture how people actually decide. 
In this vein, classic economic theory has devised axiomatic approaches 
to decision-making7,8 with the goal of explaining human choices by 
starting from first principles and deriving mathematically how one 
should decide. On the other hand, the widespread observation that 
humans regularly violate these axioms and accordingly systematically 
deviate from the predictions of these normative models has led to the 
development of descriptive decision-making models9 and the inclu-
sion of cognitive factors into models within behavioural economics10. 
Such descriptive models do not necessarily explain why people adopt 
particular policies, but they can aid in predicting them.

Over the past decade, advances in machine learning, particularly 
data-driven methods involving neural networks (NNs), have led to 
remarkable advances in the natural sciences, for example in physics11, 

engineering12 and biology13. This trend has also extended to develop-
ing NN models of human decision-making and training them on newly 
collected datasets14–17. The promise of these efforts is not only to obtain 
more accurate descriptive models of human decisions, but to explain 
human decisions and advance the theory of human decision-making. 
Although Peterson et al.17 caution that ‘Human ingenuity will also be 
required for potentially translating this descriptive theory into norma-
tive and process models’, their paper has spurred excitement about 
the potential automation of theory development. As recently put in 
a commentary: ‘Instead of relying on the intuitions and (potentially 
limited) intellect of human researchers, the task of theory generation 
can be outsourced to powerful machine-learning algorithms’18.

However, theory, models and data are related in intricate ways19–23. 
While work in epistemology and philosophy of science has contended 
that theory is a prerequisite to any data collection24,25, analysing data 
that have been collected requires taking into account fundamental 
computational properties relating models and data. Specifically, when 
training NNs to model human decision-making, it is important to (1) 
obtain representative data of choice behaviour for training and testing 
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interactions between models and datasets. To this end, we system-
atically trained several machine-learning models on choice datasets 
from three different studies, CPC1514, choice prediction competition 
2018 (CPC18)35 and choices13k17, and analysed the resulting models’ 
differences in predictions; see Fig. 1 for a schematic. First, we find clear 
signatures for dataset bias by applying transfer testing. To investigate 
the possible source of this dataset bias, we asked which features of 
gambles are predictive of the difference in predictions between mod-
els trained either on CPC15 or choices13k. Using linear models and a 
popular technique in explainable artificial intelligence (XAI), feature 
importance weights36, shows that features derived from the psychology 
and behavioural economics literature allow for capturing the devia-
tions better than base features of gambles. Particularly three features, 
which all relate to the degree to which one gamble is expected to yield 
a higher payoff than an alternative, were predictive of the difference in 
the predictions of NN models trained separately on the two datasets. 
Because these three features consistently predicted less extreme pro-
portions of choices for the NN trained on choices13k compared with 
the NN trained on CPC15, and because previous research suggests that 
behavioural data obtained on AMT is more variable compared with 
laboratory settings37, we hypothesized that the source of the difference 
between datasets is decision noise. Indeed, a hybrid model involving 
a generative Bayesian network modelling a proportion of subjects as 
guessing and the remaining subjects generating choices according to 
the NN trained on CPC15, with added decision noise in log-odds space, 
accounts for more than half of the discrepancy between datasets and 
transferred best from CPC15 to choices13k. Taken together, this clari-
fies that size of datasets alone is not a sufficient warrant for devising 
general theories of human decision-making and that the context of data 
collection may be included in the modelling, as it has a notable impact 
on decisions. Finally, combining machine learning, data analysis and 
theory-driven reasoning are currently still helpful in predicting and 
understanding human choices in economic decision-making tasks 
and may guide in devising future research questions.

Results
Choice data
First, we systematically investigated the interplay between decision 
datasets and machine-learning models. These analyses included check-
ing for potential dataset bias and overfitting or idiosyncratic generaliza-
tion. Accordingly, we reasoned that if a model trained on choices13k, 
the largest dataset so far, captures human decision-making well, its 
predictions should consequently generalize to other datasets collected 
previously, particularly because these previously collected datasets 
are smaller. Similarly, if different models trained on the same dataset 
generalize comparatively well, overfitting and idiosyncratic generaliza-
tion should be considered less likely. Therefore, we trained previously 
employed machine-learning models on the CPC15 and choices13k train-
ing datasets and quantified their performance on the training and test 
data of the respective other dataset (Table 1). This is a common way to 
quantify how well the models generalize from one dataset to the other 
and is known as transfer testing in machine learning38. Additionally we 
tested all models on the train and test sets of the data from CPC18 (ref. 35)  
with compatible format. Note that the training set of CPC18 contains 
all of CPC15, not only including gambles, but also behavioural data.

Choice models and training
We used a total of five different models, including three classical 
machine-learning methods that performed among the best in the 
CPC challenges: the psychological model Best Estimation And Sam-
pling Tools (BEAST)14, random forest39 and support vector machine 
(SVM)15. Additionally, we trained two different NN architectures, spe-
cifically the NN presented in Bourgin et al.16 and the most expressive, 
context-dependent NN presented in Peterson et al.17. Expressiveness 
here relates to the complexity of functions the model can potentially 

models and to (2) select models that balance interpretability with 
expressiveness. Complicating matters, additionally, it is necessary to 
(3) investigate how the datasets and models interact. As an example, 
although a more complex model should on average always fit a dataset 
better than a less complex model, a small dataset generated from a 
complex model may be explained better by a simpler, less expressive 
model, even if it is not the model that generated the data, while a larger 
dataset generated from a complex model may be better explained by 
the complex model that actually generated the data.

First, it could be that the training set is too small for the model 
at hand, because the more flexible a model, the more it becomes fun-
damentally important to avoid, for example, overfitting and bias–
variance trade-offs26. Overfitting occurs when the machine-learning 
model captures the regularities of data it has been trained on arbitrarily 
closely, but its predictions’ accuracy does not transfer well to unseen 
test data, that is, it fits the noise. Indeed, NN models might be heavily 
over-parameterized, although such heavily over-parametrized NNs 
may sometimes exhibit good generalization to unseen test data. This 
phenomenon is known as double descent and is far from being fully 
understood, with some initial theoretical work relating it to the dataset 
as well as the model at hand27–29. However, such possible interactions 
between datasets and models need to be tested empirically. A second 
case relates to NNs that have been optimized using training and test-
ing sets, but nevertheless show idiosyncratic generalization to new 
situations. Common examples in vision include changes to images 
that are invisible to the human eye but result in their misclassifica-
tion30. A third case relates to the trained NN showing high predictive 
performance on a dataset but for the wrong reasons, for example, by 
picking up on spurious correlations in the training data31–33. Finally, 
another case arises when the trained model does not transfer between 
datasets simply because two datasets have different properties, such 
as their data distributions. This so-called dataset bias, which includes 
the prominent selection bias, is pervasive in modern machine learning 
and has been described repeatedly, including in NNs trained on object 
recognition tasks34.

In two notable studies aimed at deriving new theoretical insights 
from using NNs to predict human choices between gambles, Bourgin 
et al.16 and Peterson et al.17 addressed the above points by (1) collecting a 
new dataset whose size exceeds by far all previous collections of human 
decisions under risk. The authors obtained this impressive dataset, 
called choices13k, which contains human choices on over 13,000 dif-
ferent choice problems, through Amazon Mechanical Turk (AMT). This 
is a considerable achievement, given that the size of previous datasets, 
for example, the choice prediction competition 2015 (CPC15) dataset 
collected for a choice modelling competition contains choices by 
446 participants in laboratory experiments at the Hebrew University 
of Jerusalem (HUJI) and the Technion for 150 different choice prob-
lems14. Peterson et al.17 addressed point (2) by using cross-validation 
in training the models and by employing a succession of NN models of 
increasing expressiveness, implementing various constraints. These 
constraints were carefully selected to help the interpretability of the 
NNs’ behaviour in psychological terms. Progressively lifting these 
constraints allowed NNs to incorporate ‘contextual effects’ ranging 
from violations of independence and transitivity axioms to complex 
interactions of transformations of probabilities, outcomes and infor-
mation across gambles. Peterson et al.17 developed this methodology 
of machine-learned theories to find interpretable differentiable models 
of human decisions instead of hard to interpret, complex NN functions. 
However, perhaps not surprisingly, Peterson et al. reported that the 
most flexible, ‘fully unconstrained’ NN with the capacity to express 
arbitrary mappings of probability weightings and utility weightings 
with contextual effects best-fitted human decisions on the new dataset, 
choices13k.

In this Article, we take a step back and investigate the relationship 
between datasets, models and theory by first investigating possible 
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represent and learn. For example, increasing the number of neurons or 
hidden layers allows a NN to learn more complex functions. To inves-
tigate the influence of pre-training, we trained both NN architectures 
in three different ways: first by pre-training on the synth15 dataset 

and then fine-tuning on CPC15, second by pre-training on the synth15 
dataset and then fine-tuning on choices13k, and third by training on 
choices13k without any pre-training. Pre-training refers to the process 
of training a model on another dataset or task before the actual training 
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Fig. 1 | Schematic of analyses of the relationship between datasets and 
models. a, Because all pairs of gambles considered in this study can be 
parameterized in one common way, the decision problems’ features can be used 
to compute a two-dimensional embedding (uniform manifold approximation 
and projection), representing the problem space. Each dot corresponds to 
a decision problem consisting of two gambles and the colours indicate the 
dataset of origin. b, Pairs of gambles from this problem space, together with the 
proportion of choices, constitute the datasets: the CPC15 dataset with human 
decisions from a laboratory study, the choices13k dataset with human decisions 
from a large-scale online experiment and a much larger synthetic dataset 
(synth15) generated by predictions from the psychological model BEAST. d, We 
trained six different NNs on the basis of two architectures; NNBourgin(NN-B)), based 
on Bourgin et al.16 and NNPeterson(NN-P), based on Peterson et al.17. c, The target 
of training was the proportion of trials in which gamble B was chosen, averaged 

over all human participants and 5 trials (P(B)) from either CPC15 or choices13k. 
However, because of the small size of the CPC15 dataset, we first pre-trained on 
synth15 and then fine-tuned on CPC15. To test for dataset bias, we also pre-trained 
some NNs on synth15 and then fine-tuned on choices13k. We can now investigate 
the relationship between models and datasets by comparing predictions of NNs 
on decision problems. Because all pairs of gambles reside in the same problem 
space but the overlap in decision problems across datasets is small, we compute 
the difference in predictions between any two models on problems sampled from 
the problem space. e, Subsequently, we investigated the source of the differences 
in predictions between different combinations of models and datasets. First, 
we use linear regressions (top), relating individual or sets of features of the 
gambles to the difference in model predictions. Second, we use SHAP36, an XAI 
method, which returns linear additive feature importance values for each gamble 
(bottom).

Table 1 | Transfer testing between models trained on CPC15 and choices13k

Testing on: (MSE × 100)

CPC15 choices13k CPC18

Training set Model Train Test Train Test Train Test

CPC15 BEAST 1.34 0.98 2.47 2.53 1.01 0.76

Random forest† 0.32 1.10 1.88 1.76 0.82 1.62

SVM† 0.45 1.65 2.39 2.24 1.07 2.47

NNBourgin,Prior (NNCPC15) 0.28 0.53 2.69 2.77 0.50 0.64

NNBourgin,Prior + decision noise 1.24 1.43 1.49 1.53 1.44 1.48

choices13k Random forest† 1.75 1.44 0.58 1.03 1.54 1.70

SVM † 2.56 1.97 0.73 1.00 1.72 1.97

NNBourgin,Prior 1.92 1.38 0.90 1.00 1.73 1.56

NNBourgin (NNchoices13k) 2.66 1.94 1.25 1.30 2.50 2.38

NNPeterson,Prior 2.13 1.83 1.27 1.34 1.96 1.95

NNPeterson 2.80 2.01 1.31 1.33 2.26 2.24

Generalization of different machine-learning models trained on CPC15 or choices13k and tested on CPC15, choices13k and CPC18 in terms of the MSE × 100. Models trained on the much larger 
AMT dataset (choices13k) perform generally worse on the laboratory datasets (CPC15 and CPC18) and vice versa, giving a first indication of dataset bias. CPC18 was reduced to the subset of 
gambles that match the format of CPC15 and choices13k. The dagger (†) marks models that additionally use naive and psychological features as input, as opposed to only the basic features 
describing gambles. Note that the hybrid model adding structured decision noise to the NN trained on CPC15 transfers best to choices13k. The model with decision noise used the posterior 
mean of inferred parameters. Details for the decision noise are given in the ‘Theory-driven modelling of the cause of dataset bias’ section in Methods.
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process on the dataset of interest. Fine-tuning is the process of training 
an already pre-trained model on the target dataset. The synth15 data-
set used for pre-training was originally generated by sampling a large 
number of gambles from the problem space that CPC15 also used and 
using BEAST predictions as targets16. The rationale for generating the 
synth15 dataset has been that, because of the small size of the CPC15 
dataset, training a NN on CPC15 alone quickly leads to severe overfitting. 
Thus, pre-training on synth15, which contains synthetic data from the 
psychological model BEAST emulating decisions in CPC15, alleviates 
overfitting. Pre-training with synth15 was termed using a ‘cognitive 
model prior’ in Bourgin et al.16. Accordingly, we do not report results 
of models that were exclusively trained on CPC15 as our experiments 
confirmed previous findings16,17 of overfitting on the CPC15 training 
data and thus no generalization to any other datasets, which would add 
no further insights to the current study. Additionally, we excluded the 
NN model based on Peterson et al. pre-trained on synth15 and fine-tuned 
on CPC15, because it also overfitted the training data and therefore did 
not provide any valuable insights.

Establishing dataset bias
As expected, the NN trained on CPC15 performs best on the CPC15 
training (mean squared error (MSE) × 100: 0.28) and test set (MSE × 100: 
0.53), but generalization to the larger dataset choices13k (MSE × 100 
train: 2.69, test: 2.77) is relatively poor. Performances for all models are 
given in Table 1. Similarly, among the models trained on choices13k, 
the NNs show the smallest error on the choices13k test set. The models 
that were additionally pre-trained on synth15 before being fine-tuned 
on choices13k have a slightly better generalization to CPC15 (mean 
increase in MSE × 100; train: 0.71 and test: 0.37) and CPC18 (mean 
increase in MSE × 100; train: 0.54 and test: 0.56), but perform very 
similarly on choices13k (mean increase in MSE × 100; train: 0.20 and 
test: 0.15). These results are reassuring and suggest that the NNs have 
learned to generalize well from the choices13k training set to the choic-
es13k test set, that is, overfitting is not likely. However, when testing 
for generalization from the choices13k dataset to CPC15, performance 
is not consistently better but instead even worse than the transfer by 
the random forest model. All models, regardless of their complexity, 
perform much better on their respective training and test sets than on 
any other dataset, including the SVM and random forest (difference 
between the test set of the dataset trained on and both other test sets 
in MSE × 100; mean −0.73 and standard deviation (s.d.) of 0.51). But 
the expectation is that training on substantially larger datasets should 
transfer well to smaller datasets of the same domain, that is, if those 
are drawn from the same or similar data distribution. Therefore, this 
result has the classic signature of dataset bias, leading to the conclu-
sion that human behaviour differed consistently and systematically 
between the laboratory datasets CPC15 and CPC18 and the large-scale 
online dataset choices13k.

Data-driven analysis of dataset bias
Having established that participants’ choice behaviour differed 
between the CPC15 and the choices13k datasets, the question arises 
how to better understand the reason for this difference. A first approach 
is to ask, whether particular features of the gambles are predictive of 
subjects’ different behaviour across the two datasets. Since the gam-
bles in choices13k are not a superset of those in CPC15, there is no set 
of gambles for which participants’ behaviour from both studies can be 
compared directly. But, since the above analyses suggested that the NNs 
trained individually on the two datasets to predict human behaviour 
very accurately on their respective dataset, we can compare the predic-
tions of two models trained individually on the two datasets with each 
other. For the choices13k dataset we use the NN based on Bourgin et al.16, 
which was trained only on choices13k (NNBourgin). Additionally, analyses 
for the other three NN models, trained on choices13k, are reported in 
Extended Data Figs. 1 and 2, as well as Extended Data Table 1. For the sake 

of simplicity, these two NN models will be called NNchoices13k and NNCPC15, 
and the difference in predictions on a single gamble between these 
two models will be called NNdifference. Thus, we can ask, which features 
of gambles lead to strong deviations in predicted behaviour between 
NNs. To this end, we used the choices13k dataset, since it contains many 
more gambles than the CPC15 dataset. First, to identify which group 
of features explains the most variance of the difference between both 
NNs predictions, we used linear regressions on three different sets 
of features to predict the discrepancies between the two models: (1) 
using only the descriptive features of gambles that were used to train 
the NNs, (2) additionally also using the naive features, and (3) finally 
including the psychological features15.

Naive and psychological features were introduced by Plonsky 
et al.15 with the goal of predicting human behaviour with common 
machine-learning models and handcrafted features. As the names 
suggest, these features are either naively related to parameters of the 
gambles, such as the difference in expected value (diffEV) and the dif-
ference in s.d. (diffSDs) of expected values, or employ concepts from 
the psychological literature. Such psychological features have been 
developed on the basis of experimental evidence, demonstrating that 
human behaviour is driven by these factors, such as stochastic domi-
nance and the probability for a gamble to generate a higher outcome 
(pBbet_Unbiased). This distinction thus relates to psychological theory 
and empirical research that has established that in certain situations 
peoples’ choices are not only driven by the expected value of a gamble 
but instead by how likely it is that one gamble leads to a better outcome, 
independent of how much better40. Extended Data Table 2 lists all 
features with a brief explanation, for details regarding the definitions 
and the respective background literature, as seen in Plonsky et al.15.

The respective MSE of the linear regressions as well as the R2 val-
ues are presented in Table 2. The baseline MSE, that is, predicting the 
mean difference between the two NNs, is 0.0249. The table shows that 
the basic gamble features are unable to explain much of the difference 
between the two NNs in a linear regression. By contrast, including the 
naive and the psychological features helps to explain much more of 
the variance in the difference of predicted choice data, as evidenced 
by the reduction in half of the MSE. Thus, some of the naive and the 
psychological features of individual gambles are indeed capturing 
the difference in the predictions between NNCPC15 and NNchoices13k. This 
suggests that the behaviour of subjects whose data went into the two 
datasets can at least in part be distinguished according to naive and 
psychological features of gambles.

Having established that these groups of gambles’ features capture 
the difference between the predictions of the NNs trained on CPC15 
versus choices13k, one can investigate how individual features are 
related to this difference between models. Therefore, we calculated the 
correlation between single feature values and NNdifference for all basic, 
naive and psychological features. Plots for all features are provided in 
Extended Data Fig. 3 and a summary plot with the correlation values 
for all individual features are given in Fig. 2. This evaluation shows 

Table 2 | Relationship between the difference in NN 
predictions (NNdifference) and gambles’ features

Features MSE R2

Base 0.0220 0.1186

Base + naive 0.0126 0.4932

Base + naive + psych. 0.0106 0.5760

Base + naive + psych. + HOSD 0.0103 0.5876

Linear regression between different sets of features and the difference between the NN 
fine-tuned on CPC15 and on choices13k. More than half of the remaining MSE and over 50% 
of the variance can be explained by adding naive and psychological (psych.) features. The 
regression was calculated on the choices13k dataset. HOSD stands for higher orders of 
stochastic dominance and includes second and third order.
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that the magnitude of R2 values lies between 0.001 and 0.025 for basic 
features, between 0.003 and 0.424 in magnitude for naive features, 
and between 0.001 and 0.331 for psychological features. Thus, some 
of the naive and psychological features are individually predictive of 
the difference in predictions between the two NNs, particularly the 
naive feature of the difference between expected value of the gambles 
(diffEV) and the psychological features of the probability of gamble 
B generating a higher outcome without (pBbet_Unbiased1) and with 
feedback (pBbet_UnbiasedFB), first order stochastic dominance, the 
estimator for the difference in expected values of gambles if gamble B 
is ambiguous without (diffBEV0) and with feedback (diffBEVfb). Note 
that all these features directly relate to the degree to which one gam-
ble is expected to yield a higher payoff than an alternative. However, 
many of the psychological features that are individually predictive of 
the difference in the predictions of the two NN’s decisions are highly 
correlated among each other, and thus describe related quantities. 
Due to this multicollinearity, features account for the same portion 
of variance in the difference of decisions between the two models. For 
details regarding the correlation between different feature values, see 
the feature correlation matrix in Extended Data Fig. 4.

Theory-driven identification of dataset bias
The analyses of the previous section showed that the difference 
between NNCPC15 and NNchoices13k are related to how much better one 
option is on average relative to the other. One of the most predictive 
single features for this difference with a correlation coefficient of 0.355 
was dominance, which describes whether one gamble stochastically 
dominates the other one. Gamble A stochastically dominates gamble 

B if, for any outcome X, gamble A has a higher probability than B of 
yielding at least X. An example is the gamble between option A of 
obtaining US$12, US$14 or US$96 with probabilities 0.05, 0.05 and 
0.9, respectively, and option B of obtaining US$12, US$90 or US$96 
with probabilities 0.1, 0.05, and 0.85, respectively. In this case, option 
A stochastically dominates option B, because the probabilities of win-
ning US$12 or more, US$14 or more, US$90 or more and US$96 or more 
are 1.00, 0.95, 0.9 and 0.9 for lottery A and 1.00, 0.9, 0.9 and 0.85 for 
lottery B, respectively. Human behaviour in response to gambles with 
stochastic dominance has been studied extensively in economics, psy-
chology and business, see ref. 41 for an example of a recent review, and 
therefore the predictions of the two NNs can be directly compared with 
previous behavioural data. Accordingly, we investigated how the pre-
dictions of NNCPC15 and NNchoices13k relate to the actual human choices in 
the respective dataset with regard to stochastic dominance of gambles. 
The comparison between the NN predictions and the human response 
rates are provided in Fig. 3a for the CPC15 dataset and in Fig. 3b for the 
choices13k dataset with stochastic dominance indicated by colour.

While previous analyses of the CPC15 and choices13k datasets 
investigated how the psychological feature of first-order stochastic 
dominance accounts for human choices, second- and third-order sto-
chastic dominance have been investigated in the economics literature. 
Second-order stochastic dominance (SOSD) describes the preference 
of decision-makers for less risky gambles42,43. Especially in economic 
portfolio theory, third order stochastic dominance (TOSD) is frequently 
used, to order gambles or investments where all decision-makers with 
risk averse and absolute risk decreasing utility functions agree that one 
gamble is preferred43,44. Note that lower-order stochastic dominance is 
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Fig. 2 | Relationship between single features of gambles and difference in 
NN predictions (NNdifference). a, R2 values between single feature values and 
the difference between the two NN’s predictions. The plot highlights that all 
basic features are uncorrelated with the NNdifference, while one naive and several 
psychological features have comparatively quite high correlations with the 
difference in predictions. The colour of the bar indicates the type of feature; 
orange is basic, red is naive and blue is psychological. The error bars indicate 
the 95% confidence interval, which are based on the sample size of choices13k 

(N = 14,568 gambles). b–d, Relationship between the diffEV (b), stochastic 
dominance (Dom) (c), and the probability that gamble B has a higher outcome, 
pBbet_UnbiasedFB (d) and the difference in NN predictions. These plots 
highlight the structure of some of the highly correlated individual features. The 
plot shows every gamble from the choices13k dataset as a single dot, where the x 
axis represents the respective feature and the y axis the difference between the 
two NNs’ prediction. Additionally, marginal distributions are displayed.
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a sufficient condition for higher order stochastic dominance (HOSD). 
So, if, for example, gamble A dominates B in first order, then it automati-
cally dominates it in second and third order. Accordingly, the number of 
gambles with SOSD is always larger or equal to the number of gambles 
with first order stochastic dominance within a dataset. To test whether 
also higher orders of stochastic dominance may be able to explain dif-
ferences across the two datasets, we calculated the features of SOSD 
and TOSD for all gambles. For context, in the choices13k dataset, one 
gamble dominates the other first order stochastically in 16%, second 
order in 58%, and third order in 60% of all gambles. Both of SOSD and 
TOSD have individually one of the highest correlations with differ-
ence in NN predictions, when being compared with the other features 
shown in Fig. 2a. The R2 values are 0.34 (SOSD) and 0.33 (TOSD). To 
test whether SOSD and TOSD contain new information about the NN 
prediction difference, we recalculated the linear regression between 
feature values and difference in NN predictions from Table 2, this time 
including higher orders of stochastic dominance as the last set of fea-
tures. The new numbers show that the two new features contain at least 
some additional information by slightly improving MSE and R2 values.

Based on these analyses, we can draw some conclusions regard-
ing the two datasets and stochastic dominance. First, the two datasets 
clearly differ strongly in terms of human behaviour in gambles with 
stochastic dominance. In CPC15, 95% of human responses to stochas-
tically dominated gambles fall within the interval of choosing the 
dominating gamble between 0.84 and 1.00, while in choices13k, they 
fall within the interval 0.62 and 0.97. Thus, a higher proportion of 
participants in choices13k violated stochastic dominance compared 
with the participants in CPC15. Second, the two NNs trained on the 
respective dataset pick up on these different patterns of violation of 
stochastic dominance: the NN trained on choices13k avoids predic-
tions of extreme choice proportions completely. Finally, two other 
features, which also have a high correlation with the difference in 
NN predictions are the diffEV and the probability that gamble B has 
a higher outcome value (pBbet_Unbiased). Both of these features are 
continuous values describing either how much (diffEV) or how certain 
one gamble is (pBbet_Unbiased) to yield a higher payoff. Figure 2b–d 
shows the relationship between the above discussed three features 
and the difference in NN predictions.

Taken together, the features of gambles that are able to explain 
most of the difference between the two NNs relate to how much ‘bet-
ter’ one gamble is compared with the alternative, that is, the expected 

payoff. Better here ranges from one gamble stochastically dominating 
the other, the probability that one gamble has a higher payoff than the 
other, to the difference between the respective expected values of gam-
bles. For all these three features, the difference in predictions between 
the two NNs, reflecting the choices in the respective dataset they were 
trained on, are such that NNCPC15 is much better at maximizing its return. 
Put differently, NNchoices13k tends to show less extreme proportions of 
choices, that is, it predicts choice proportions closer to guessing.

Automatic methods to (re)discover explanations
As NNs have become a prominent tool in machine learning but are 
usually obscure with respect to how the input yields an output, XAI 
methods have been developed attempting to provide explanations 
for why NN generate certain outputs. A popular class of XAI methods 
is called additive feature attribution methods, which forms locally 
linear explanations for every data point based on how important each 
input feature was. We used SHapley Additive exPlanations (SHAP36) 
to generate these feature importance values for the difference of the 
two NNs. For each data point, SHAP returns one value per each input 
feature, assigning an importance value to the feature for predicting 
that particular data point. We used SHAP to determine how much and 
in which direction each feature influenced the difference between 
both NNs. A common use case for locally linear explanation methods 
like SHAP is to interpret the feature importance in the original input 
space, for example, by visualizing them as an image. For the input fea-
tures of the gambles in the CPC15 and choices13k datasets, there is 
no such straightforward and intuitive way of interpreting the feature 
importance. For this reason, and since choices13k has more than 13,000 
gambles, our goal was to find structure in the SHAP values. Examples 
of how feature values and their respective SHAP values interact are 
shown in Fig. 4b–d and for all features in Extended Data Fig. 5. These 
plots suggest that features were typically more important in leading 
to a difference between both NNs when their respective magnitudes 
were large and that the six-base features (Ha, pHa, La, Hb, pHb and Lb) 
describing the gambles had the highest influence.

In the previous section, we have established that the difference in 
NN predictions could be partly explained using the naive and psycho-
logical features. We hypothesized that the locally linear explanations 
generated by SHAP might ‘rediscover’ the naive and psychological 
features. To this end, we tested whether these features could be linearly 
predicted by the SHAP values. The proportion of variance explained 
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structured decision noise to show how the hybrid model captures key differences 
between the choice behaviour in the two datasets. This plot shows one posterior 
predictive sample for each gamble using the model from Extended Data Fig. 7. 
Each choice problem corresponds to one point, where the human response rate 
for gamble B is the x coordinate and the model prediction is the y coordinate. 
The colours indicate whether one of the options in the gamble stochastically 
dominates the other. Additionally, marginal distributions are shown.
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by these linear regressions can be seen in Fig. 4a. Overall, basic 
gamble-describing features could be regressed using SHAP values (R2 
between 0.08 and 0.88), while less of the variance in naive and psycho-
logical features was linearly explained by the SHAP values (R2 between 
0.22 and 0.67 and between 0.14 and 0.54, respectively). This suggests 
that, while the naive and psychological features capture properties of 
gambles that are predictive of the differences in choices between the 
NN trained on CPC15 and choices13k, it is not straightforward to extract 
these automatically using the SHAP values.

Theory-driven modelling of the cause of dataset bias
Taken together, the above analyses establish that the two datasets 
CPC15 and choices13k do not only differ in their size, that is, the num-
ber of gambles they include, but also in the respective behaviour of 
the participating subjects. The identified features of gambles that 
could individually best predict the discrepancy in choice behaviour 
between datasets relate to whether one gamble dominates the respec-
tive alternative, or how different the expected values of the gambles 
are. In all cases, the choice data in choices13k was less extreme, that 
is, the proportion of choosing gamble A over gamble B was closer 
to 0.5. One possible reason for such behaviour may be that the deci-
sions by subjects recruited through AMT, and thus contributing to the 
choices13k dataset, were more variable compared with the subjects 
contributing to the CPC15 dataset, leading to extreme choice propor-
tions becoming less likely when averaging over all participants. To 
investigate whether systematic decision noise in the choices13k dataset 
could account for the discrepancies with the CPC15 dataset, we devised 
an additional model, ‘NNBourgin,Prior + decision noise’, which used the 

predictions obtained from NNCPC15 and added decision noise. If the 
hypothesis is correct, that increased decision noise in the choices13k 
dataset is at least partially responsible for the dataset bias relative to 
the CPC15 dataset; predictions of this model should better match the 
data in choices13k and improve performance.

While there is in principle a wide array of possibilities in model-
ling decision noise45,46, here we modelled variability of decisions as 
stemming from two sources: one group of participants guessing ran-
domly and the remaining participants choosing gambles with higher 
uncertainty or, put differently, according to a process corrupted by 
additional decision noise (see ‘Hybrid probabilistic generative noise 
model’ section in Methods). This model effectively constitutes a hybrid 
mixture model, in which a proportion pguess of subjects choose one 
of the two alternative gambles randomly with probability 0.5 while 
the remaining subjects choose according to the predictions of the 
NN trained on the CPC15 dataset with additional decision noise. This 
decision noise was implemented as a multiplicative factor smaller than 
1 in log-odds space. The reason for this factor is that this re-scaling of 
the log odds can be understood as decision noise, or equivalently as a 
limitation in internal computational precision of the decision45–47. How 
this multiplication transforms probabilities is concretely displayed in 
Extended Data Fig. 6. The final response rate expressed in this mixture 
model is a weighted sum of the re-scaled NNCPC15 prediction and the 
random responses by the proportion of subjects who are guessing. 
We implemented this generative model of human decisions in a hybrid 
between a NN and Bayesian network and calculated the posterior dis-
tribution over the two parameters, that is, the log-odds multiplication 
factor f and weighting factor pguess, using probabilistic programming. 
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from linear regressions between all SHAP values and single features. These linear 
regression results show that SHAP values are unable to explain the naive and 
psychological features that were especially predictive for the NNdifference, or at 
least not in a straightforward way. The colour of each bar indicates the type of 
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were calculated on the choices13k dataset. The error bars indicate the 95% 

confidence interval, which are based on the sample size of the dataset, which 
is choices13k (N = 14,568 gambles). b–d, Comparison between feature values 
of pHa (b), Lb (c) and feedback (d) with their respective SHAP values. These 
plots show the structure in the SHAP values for three concrete features, where 
larger feature values lead to a larger influence on NNdifference. Every gamble from 
choices13k is represented as one data point.
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The graphical model is illustrated in Extended Data Fig. 7. More details 
on the noise model and posterior inference, that is, the fitting of the 
decision noise, are given in Methods.

The inference of the two latent parameters resulted in both pos-
terior distributions being unimodal and symmetrical, so that we sub-
sequently used the posterior means pguess = 0.2757 and f = 0.6236 in 
further analyses. Posterior s.d. were 0.0015 for pguess and 0.0038 for 
f. The full posterior distributions can be seen in Extended Data Fig. 8. 
Using this model, we again carried out transfer testing by computing 
the MSE on all datasets. Indeed, this modification in predicting choice 
proportions leads to an increase in performance on both the choices13k 
training and testing datasets. Adding decision noise to the NN trained 
on CPC15 improves the MSE × 100 score from 2.69 to 1.49, that is, by 
more than 1 and thus closes more than half of the gap between the NNs 
trained on CPC15 and choices13k. Put differently, modelling 27.6% of 
the AMT workers in the choices13k dataset as guessing randomly and 
72.4% as deciding as the participants from the CPC15 study but with 
additional log-odds decision noise improves predictions on choices13k.

Among all models trained on CPC15, the hybrid model with deci-
sion noise performs best on choices13k. On the other hand, using this 
modification decreased the scores on the CPC15 dataset by a value of 
around 1 MSE × 100. Detailed numbers are given in Table 1. Since we 
mainly compared the predictions of the two NNs, we also checked how 
similar the NNCPC15 with decision noise got to NNchoices13k. Unsurprisingly, 
the addition of decision noise led to a decrease in difference between 
the two models. The MSE × 100 between NNCPC15 with decision noise and 
NNchoices13k equals 0.87, or an R2 value of 0.77. In comparison to the linear 
regressions from Table 2, this level of similarity is even higher than 
the linear regression using the basic, naive, psychological and HOSD 
features, despite using only two parameters, the multiplication factor 
in log-odds space and the mixing weight and optimizing for a proxy.

Discussion
Understanding and predicting human choices has long been a central 
goal in economics, psychology, cognitive science and neuroscience, 
with wide ramifications for the understanding of every-day decisions 
such as whether to invest, buy or skip goods, services and insurances. 
While normative models have striven to explain human choices from 
first principles, descriptive models have tried to capture actual human 
behaviour, which systematically deviates from the predictions of nor-
mative models. Following recent scientific successes involving collect-
ing large datasets and modelling these data with deep NN, two recent 
studies16,17 used NNs to better predict human choices on the largest 
dataset of human risky choices ever collected. Peterson et al.17 reported 
finding a NN that implemented ‘a policy that outperforms all proposals 
by human theorists’ on their dataset choices13k.

Dataset difference
In the present study, we revisited this dataset, choices13k, and com-
pared the human decision data on pairs of gambles to two previously 
collected datasets, CPC15 and CPC18. Our reasoning was that ample pre-
vious research has revealed the intricate ways in which data and models 
can interact, particularly when involving black-box models such as 
NN30–34. Therefore, we systematically investigated the transfer between 
the two datasets using several models, including the NN architecture 
used in a previous study16, which is comparable to the most flexible NN 
used by Peterson et al.17, as well as the flexible context-dependent NN 
model proposed by Peterson et al.17. This allowed investigating dataset 
bias, finding features accounting for differences in predictions between 
NNs trained on the two datasets and deriving a hybrid probabilistic 
generative model of how the difference in choice behaviour can be 
modelled and explained.

Specifically, we first established that there are systematic differ-
ences between choices13k and the previously collected laboratory 
datasets CPC15 and CPC18 by transfer testing38. The differences in the 

predictions between the NNs trained on the datasets could be captured 
better by psychological features compared with basic features describ-
ing the gambles. However, applying the additive feature attribution 
method SHAP36, a popular XAI method to quantify the importance of 
input feature dimensions towards the decision of an algorithm, did not 
result in features that could be interpreted in a straightforward way. 
Instead, we established that stochastic dominance, a concept quan-
tifying how much one gamble should be evaluated as being superior 
to an alternative, which Kahneman and Tversky described as ‘perhaps 
the most obvious principle of rational choice’48, was a good predictor 
of the difference in behaviour across the two NNs and accordingly the 
two datasets. Indeed, the fact that stochastically dominated gambles 
are particularly instructive about human choice behaviour has long 
been known41 and such gambles therefore have been treated differ-
ently, not only in the equivalent model proposed by Peterson et al.17, 
but also previously for example in the psychological model BEAST14. 
Because decision proportions for stochastically dominated gambles 
were always closer to equipreference in choices13k compared with 
CPC15, we hypothesized that decision proportions in choices13k could 
be modelled as those from CPC15 but being corrupted by additional 
decision noise. Accordingly, we devised a probabilistic generative 
hybrid model in which participants either guess randomly or choose 
a gamble as participants in the CPC15 study did, but with additional 
decision noise in log-odds space. Indeed, this model, which essentially 
deteriorates the decisions of the NN trained on CPC15 by modelling 
27.6% of subjects as randomly guessing and the remaining subjects as 
being corrupted by a decision noise factor of 0.623 in log-odds space, 
was the best performing model on the choices13k dataset among the 
models trained on CPC15. This suggests that structured randomness 
in decisions play a central role in determining the difference in human 
behaviour between the two datasets.

Closing the gap
The original study17 evaluated cross-validated performance of models, 
that is, it trained models on training data from choices13k and evaluated 
them on held out testing data to account for the complexity of different 
models and to avoid overfitting. However, this does not necessarily 
shield from dataset bias. While Peterson et al. employed a testing set, 
which was collected through Prolific instead of AMT (supplementary 
information in ref. 17), the present analyses establish fundamental dif-
ferences between the data used in training and testing between CPC15 
and choices13k. It is also worth noting that, knowing that black-box NN 
models’ behaviour is commonly difficult to interpret, Peterson et al. 
devised a hybrid heuristic model, which (1) assigns a fixed, learned 
choice probability in case the gambles show first order stochastic domi-
nance, which is the case for 16% of all gambles in choices13k. The reason 
for this choice was that Peterson et al.17 observed large discrepancies 
in predictions between trained NN and classic theory in stochastically 
dominated gambles. The model by Peterson et al.17 then (2) uses a NN, 
whose parameters are learned and which compute a weighted aver-
age of the predictions stemming from (3) two separate models, which 
each implement general power utility weighting and Kahneman and 
Tversky-like probability weightings. However, although a mixture of 
expert models combining two or more individual models always fit the 
data equally well or better as individual models49, our analyses suggest 
that the particular behaviour in gambles with first order stochastic 
dominance in choices13k is not necessarily general, as it is distinct 
from the behaviour in CPC15 in that the choice behaviour contains 
structured decision noise compared with the laboratory study. Taken 
together, our re-analysis suggests that there are important differences 
between the dataset collected under controlled laboratory conditions14 
and the large-scale dataset collected in an online experiment involving 
AMT workers17. Recent analyses of the relationship between datasets 
collected under different conditions provide a mixed picture. One 
study37 suggests that AMT workers largely exhibit similar behaviour as 
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subjects in laboratory tasks, albeit with increased variability compared 
with laboratory settings, but at the same time stresses the importance 
of adequate payment, ensuring task understanding and including atten-
tion checks. On the other hand, a recent meta-analysis of a large number 
of studies involving data collected on AMT paints a grim image of the 
validity of such datasets50. Even more puzzling, it is unclear whether 
laboratory experiments are the gold standard: attention check tasks 
have shown that subjects in laboratory experiments also often fail to fol-
low instructions51, while AMT workers scored better on a similar atten-
tion check task compared with subjects in laboratory experiments52. 
Thus, choices13k may allow for the first time large-scale comparison 
of sophisticated models for human decision-making and ultimately 
even data-driven model discovery. However, it also opens new chal-
lenging questions such as whether the results of Peterson et al.17 actu-
ally transfer to datasets obtained in laboratory experiments, how to 
explain the wide range of violations of stochastic dominance41, both in 
terms of participants53 and tasks54, which contextual variables need to 
be included into decision-making models given the slight differences 
in protocols across experiments (for example, feedback blocks were 
repeated only once in ref. 17), and whether their more theoretically 
constrained models exhibit better generalization properties than the 
unconstrained context-dependent NN.

Conclusion
Although the large-scale dataset presented by Peterson et al. is an 
impressive achievement and the carefully designed succession of 
constrained NNs offers enormous potential for uncovering new cog-
nitive and behavioural phenomena, it is difficult to interpret the study 
as applying deep NNs to a large dataset and thereby automatically 
discovering a general machine-learned theory of human risky choices 
that transfers across datasets. The present analyses clearly show that 
the choice behaviour in choices13k contains structured decision noise 
compared with the CPC15 laboratory study. And, accordingly, the policy 
outperforming all proposals by human theorists, incorporates this 
decision noise. In line with much previous research, our re-analyses 
and comparisons between datasets show non-trivial relationships 
between theory, models and data. Thus, our re-analysis adds to the 
current discussion about the scientific interpretation of NNs’ perfor-
mance exceeding other models. Specifically, the scientific contribution 
of building NN models of decision-making that reproduce specific 
choices is not that a model actually does produce these choices, as it 
should come as no surprise that the function approximation capabili-
ties of NN do succeed when trained to match performance. Discover-
ing the present relationships between data, models and theory was 
achieved by using theoretical knowledge building on a long history 
of research in psychology and economics, training and testing of dif-
ferent models including NN across different datasets, and including 
negative results in the discussion, such as the limited interpretability of  
the SHAP values.

More generally, the study by Peterson et al.17 and the current analy-
ses raise a number of important questions for future research, includ-
ing how decision-making experiments are conducted, what data are 
collected and which factors influencing people’s decisions need to 
be modelled. Because the datasets considered here only contain the 
proportion of participants choosing one option in a binary decision, 
modelling is necessarily limited. Thus, a richer dataset containing 
individuals’ decisions and the order of decisions could allow quantify-
ing individual differences or sequential effects in decisions. Similarly, 
because the behavioural context, for example whether the experi-
ment was conducted in a laboratory setting or not, seems to play an 
important role, the question arises how to select, control and quantify 
different experimental contexts. One exemplary aspect is that the 
three datasets considered here involving binary risky choices over very 
small monetary outcomes, with the choice between one certain option 
and one gamble, account for a very small subset of all risky economic 

choices people encounter in their lives. The analyses presented in this 
study therefore question whether the results of the considered models 
transfer to decisions involving more gambles55, more options56 and 
larger monetary outcomes57. Indeed, several fields including neurosci-
ence and cognitive science have recently advocated more strongly to 
study decision-making in more naturalistic and embodied contexts58–60, 
allowing for inverse modelling of richer datasets61–64. On a broader view, 
these results align with recent theoretical work arguing that theorizing 
in cognitive science is still not easily automated in an efficient way65,66. 
Similarly, a case study in neuroscience67 fuels skepticism about pos-
sible interpretations that deep learning models discover previously 
unknown theoretical insights simply by the mere fact of being deep 
NNs that minimize fitting error68,69.

Methods
Data collection
The three datasets considered in this study were collected in similar 
experimental paradigms requiring participants to select one of two 
alternative gambles. All experiments involved binary choice under 
risk, potential ambiguity and from experience tasks. Subjects were 
provided with descriptions of two monetary prospects and need to 
decide between the two.

CPC15
CPC15 was collected in three separate but methodologically identical 
experiments, using between 125 and 161 students from the Technion 
and the HUJI. In each experiment, subjects were faced with 30 gambles, 
each containing five blocks of five trials each, resulting in 750 decisions 
per participant. Subjects were paid the earnings of one randomly 
selected trial plus a show-up fee. This payoff ranged between 10 and 
144 shekels (mean of 45.2 shekels). The original paper does not state 
which board or committee approved their study protocol and whether 
subjects gave informed consent. More details, especially on the differ-
ences between the three experiments, are given in the original paper14.

CPC18
CPC18 was again collected using three separate but methodologically 
identical experiments. Each experiment used 240 subjects, half of 
which came from Technion and the other half from HUJI. All partici-
pants gave informed consent at the beginning of the experiment, and 
the experimental protocol was approved by Social and Behavioral 
Sciences Institutional Review Board at the Technion and the Ethics 
Committee for Human Studies at the Faculty of Agriculture, Food and 
Environment at HUJI. Again, subjects were paid a show-up fee and the 
earning of one randomly selected trial. This payment ranged between 
10 and 136 shekels (mean of 40 shekels). Additional details, especially 
on the difference between the three experiments, are given in the 
original paper35.

choices13k
choices13k, on the other hand, was collected on AMT and subjects gave 
informed consent. The study had institutional review board approval. 
Subjects were exclusively recruited from the United States and had 
to have 500 tasks completed with a 95% acceptance rate on the plat-
form. Additionally, participants that had over 80% of their selections 
as left/right gamble were filtered out, resulting in 14,711 participants. 
Participants faced 20 gambles, each containing two blocks of five tri-
als. Participants were paid US$0.75 plus a bonus proportional to the 
reward from a randomly chosen trial. The interface and structure was 
designed to match CPC’s as closely as possible. Additional details are 
given in the supplementary materials of the original paper17.

Datasets
The choices13k as well as the CPC15 datasets used in this paper 
were used unaltered from their publication. Since the format of the 
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gambles slightly changed between CPC15, choices13k and CPC18, 
we reduced CPC18 to the subset of gambles that match the previ-
ous format35. This selects approximately 90% of the training data 
and 72% of the test data. It is important to mention that the train-
ing data of CPC18 fully contains CPC15’s gambles and behavioural 
data and that additional data for new gambles was collected in the 
same experimental setup as in CPC15 and also at Technion and the 
HUJI. The synthetic dataset, synth15, which was used to pre-train 
the NNs, was sampled using the algorithm described in ref. 14 to 
match the CPC15 dataset, as described in ref. 16. The psychologi-
cal features were constructed using the open source code from 
Plonsky et al.15. Our analysis does not exclude any type of gam-
bles (for example, Peterson et al. excluded ambiguous and non- 
feedback trials17).

Models
In the following, we will discuss details of all models implemented 
in this study, most of which are re-implementations of models from 
prior research. In these cases, we highlight if any assumptions were 
made that could possibly lead to slight differences between the 
original implementation and our reimplementation. In general, the 
computational task defined in the CPC14 that we also adopted here 
takes the base features describing the gambles as input and predicts 
the average rate of choosing gamble B over five trials and over all 
subjects. The SVM and the random forest model additionally take 
the naive and psychological features as input, as Plonsky et al. have 
shown that this improves their performance, while the Bourgin et al. 
NN and BEAST use only base features. Only the NN architecture pro-
posed by Peterson et al.17 uses a transformation of the input space 
that consists of explicit pairs of probability and return value of all  
possible outcomes.

Bourgin et al. NNs
We use a NN that directly predicts the rate of choosing gamble B, with-
out any additional constraints. This kind of NN is very much compara-
ble with the most expressive class of models used by Peterson et al.17. 
Moreover, the general architecture and training method for the NN 
models we used was proposed in a study16 to which all authors of Peter-
son et al.17 had contributed. The authors described the architecture of 
the best performing NN as follows16:

The best multilayer perceptron […] had three layers with 200, 
275, and 100 units, respectively, SReLU activation functions70, 
layer-wise dropout rates of 0.15, and an RMSProp optimizer with 
a 0.001 learning rate. The output layer was one-dimensional 
with a sigmoid activation function to match the range of the 
human targets.

Additionally, Bourgin et al. also made use of a training procedure 
called sparse evolutionary training (SET)71. In SET, the layers of the 
multilayer perceptron start with random sparse connections. After 
each epoch of training, a fraction of the smallest positive and the largest 
negative weights are removed. The same number of removed weights 
gets replaced with new random connections, such that the total number 
of connections stays constant.

While Bourgin et al. provided detailed information about the 
architecture, training algorithm and optimizer, some details neces-
sary for reimplementation had to be investigated. We will discuss the 
details of our training procedure to highlight possible differences due 
to our reimplementation.

The first deviation occurred at the initialization procedure of the 
SET algorithm, where Bourgin et al. used a different level of sparsity 
for every layer, while we used the same for each one, because experi-
ments of adding these additional parameters led to no noticeable 
improvement.

In cases when we used pre-training, the NN was trained on the 
synthetic data synth15 generated from BEAST as targets. We found a 
higher learning rate of 10−3 to be suitable for the pre-training phase. 
We optimized the two parameters of the SET algorithm, as well as the 
batch size using a tree-structured Parzen estimator72 from the python 
package hyperopt73. For each set of parameters, we trained five dif-
ferent networks from random initialization to reduce the effect of 
the random training procedure. During pre-training, we trained each 
network for 300 epochs and saved the weights after every epoch. Later, 
only the weights with the best validation loss were used for fine-tuning.

During the fine-tuning phase, we used the same batch size as dur-
ing pre-training and the learning rate of 1 × 10−6 that was provided 
by the authors of the original study. The number of epochs used for 
fine-tuning were given as 100 for choices13k. For CPC15 we needed 
more epochs, since the dataset itself is much smaller and hence much 
fewer updates were made per epoch. The results reported here are 
based on using 3000 epochs of fine-tuning for CPC15.

Peterson et al. NNs
We additionally trained the most unconstrained class of NN models 
from Peterson et al.17, called context-dependent models. The authors 
describe the network as follows:17

Our most flexible class of models are neural networks that 
directly output P(A) given all information about both gambles 
as input, in our case using two 32-unit hidden layers. Specifically, 
we define a neural network g such that

P(A) = g(xA,pA, xB,pB),

where xA and xB are the sets of all possible outcome values and pA and 
pB are the respective probabilities of these outcomes. As previously 
mentioned, the input features of this NN are different from the base 
features used by BEAST and the Bourgin et al. NN. The base features 
are transformed to pairs of probability and value of all outcomes. 
This transformation therefore does not incorporate the information 
contained in the base features ambiguity, correlation, feedback and 
block, which is why Peterson et al. excluded such gambles17. However, 
for a fair comparison among all models we include these gambles in 
our evaluation and comparions of all models.

We also used the Adam optimizer with a learning rate of 1 × 10−3, as 
described in the original work. We assumed all units to have sigmoid 
activation functions because most other models described by Peter-
son et al.17 do. Models were trained for 100 epochs on the same 80/20 
train–test split as all other models. Optional pre-training on synth15 
was done for 20 epochs, using the same learning rate.

Note, that different from the NN model from Bourgin et al.16, these 
NNs do not use any form of regularization such as dropout layers or the 
SET training procedure. Accordingly, we were not able to successfully 
train this class of models on the CPC15 dataset without overfitting.

BEAST
The BEAST model is a baseline model for CPC15 introduced by Erev 
et al.14. BEAST predicts gambles by sampling 4,000 agents that are 
parametrized by six properties, each drawn from uniform distribu-
tions. The agents estimate the utility of both gambles by sampling 
their outcomes, using four different sampling tools. The parameters 
include the s.d. of the noise term, the number of samples drawn and the 
tendency for the different samplers. The upper bounds of the uniform 
distributions were fitted by grid search on the training set of CPC15 to 
maximize performance. The lower bound for all properties is 0. The 
choice of a single agent is the sum of the following three factors:

	(1)	 The difference of the best estimates of the expected value of the 
two gambles: BEVA(r) − BEVB(r)
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	(2)	 The difference of the average over κi samples drawn from the 
prospect distributions using one of four simulation tools: 
STA(r) − STB(r)

	(3)	 Gaussian noise e(r) with mean 0 and s.d. σi.

To summarize, an agent decides for gamble A if and only if:

[BEVA(r) − BEVB(r)] + [STA(r) − STB(r)] + e(r) > 0

Analogously, if the term above is less than 0, the agent decides for 
gamble B. A property of BEAST that relates to the results of this study 
concerning stochastic dominance is that the Gaussian noise on the 
decision of each agent is reduced if one gamble stochastically domi-
nates the other one.

BEAST’s sampling tools are designed to reflect four different ten-
dencies. First, the equal weighting tendency towards the option with 
the best payoff, assuming that all outcomes are equally likely. Second, 
the tendency to prefer the option that maximizes the probability of the 
best payoff sign. Third, pessimism as a tendency to assume the worst 
outcome, and fourth, minimization of immediate regret, which favours 
options with a low probability of immediate regret. Details regarding 
the four sampling tools and the influence of the parameters on those 
can be found in the original work by Erev et al.14.

There exist multiple variants of BEAST with small adaptations 
and differences. We used the Python implementation of the original 
baseline model introduced by Erev et al.14. This version differs from later 
versions implementing individual differences or the changes made for 
the format of the CPC18.

SVM and random forest
Both the SVM and the random forest model were implemented using 
the respective scikit-learn74 versions. The SVM parameters were all 
kept at their default values in the library, which includes a radial basis 
function kernel as well as a regularization value of C = 1. Additionally, 
for the SVM, all features were pre-processed by subtracting the mean 
and re-scaling the data to unit variance. The random forest includes 
500 decision trees, each requiring at least five training data points 
in each leaf node and used a maximum of four features per split. The 
parametrizations of these models were chosen such that they match 
the ones proposed in ref. 15. As mentioned in Table 1, both the SVM and 
the random forest use naive and psychological features, in addition 
to the basic gamble features. Plonsky et al. have shown that including 
them increases the performance of these classical machine-learning 
models15. The performance of both models is similar to the ones origi-
nally reported by Plonsky et al.15.

Hybrid probabilistic generative noise model
Our noise model is an extension of the NN fine-tuned on CPC15 to bet-
ter fit the data from choices13k. It incorporates the prediction from 
NNCPC15 as well as noise from two different sources. The first one is a 
multiplication in log-odds space,

logodds = log ( pCPC

1−pCPC
)

p1 =
exp( logodds×f)

1+exp(logodds×f) ,

where pCPC is the prediction of the NN trained on CPC15. If the factor f is 
positive, but smaller than 1, this transformation leads to a shift of the 
predicted probabilities towards 0.5. This type of transformation has 
been used often to model decision noise or equivalently a limitation 
on computational precision46,47. The second part of our mixture is a 
random noise term, which assumes that some proportion pguess of the 
participants are simply guessing whether they choose gamble A or B, 
with p2 = 0.5.

We model the number of subjects in a particular gamble who are 
guessing as

nguess = pguess × n ,

where n is the number of participants who played that particular gam-
ble in the choices13k dataset. The two free parameters (f and pguess) of 
this noise model were estimated on the choices13k training dataset 
using the probabilistic programming language Turing.jl75. For details 
about the probabilistic model, see Extended Data Figs. 7 and 8 for the 
posterior distribution of the latent variables. For inference about the 
posterior distribution, we drew 10,000 samples using the No-U-Turn 
sampler76.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All three datasets, CPC15, CPC18 and choices13k, used in this research, 
were already available before this study. They can be downloaded 
under the following links: https://github.com/jcpeterson/choices13k 
for choices13k, https://economics.agri.huji.ac.il/crc2015/raw-data for 
CPC15 and https://cpc-18.com/data/ for CPC18.

Code availability
All code, including pre-trained model weights, needed to replicate 
the results in this study is publicly available in the GitHub repository 
at https://github.com/RothkopfLab/DatasetBias.

References
1.	 Starmer, C. Developments in non-expected utility theory: the 

hunt for a descriptive theory of choice under risk. J. Econ. Lit. 38, 
332–382 (2000).

2.	 Glimcher, P. W. Efficiently irrational: deciphering the riddle of 
human choice. Trends Cogn. Sci. 10.1016/j.tics.2022.04.007 
(2022).

3.	 Simon, H. A. A behavioral model of rational choice. Q. J. Econ. 69, 
99–118 (1955).

4.	 Kahneman, D., Slovic, Stewart Paul, Slovic, P. & Tversky, A. 
Judgment Under Uncertainty: Heuristics and Biases (Cambridge 
Univ. Press, 1982).

5.	 Gold, J. I. et al. The neural basis of decision making. Annu. Rev. 
Neurosci. 30, 535–574 (2007).

6.	 Glimcher, P. W. & Fehr, E. Neuroeconomics: Decision Making and 
the Brain (Academic Press, 2013).

7.	 Morgenstern, O. & Von Neumann, J. Theory of Games and 
Economic Behavior (Princeton Univ. Press, 1953).

8.	 Savage, L. J. The Foundations of Statistics (John Wiley & Sons, 
1954).

9.	 Heukelom, F. Behavioral Economics: A History (Cambridge Univ. 
Press, 2014).

10.	 Kahneman, D. & Tversky, A. Prospect theory: an analysis of 
decision under risk. Econometrica 47, 263–292 (1979).

11.	 Schmidt, M. & Lipson, H. Distilling free-form natural laws from 
experimental data. Science 324, 81–85 (2009).

12.	 Kates-Harbeck, J., Svyatkovskiy, A. & Tang, W. Predicting 
disruptive instabilities in controlled fusion plasmas through deep 
learning. Nature 568, 526–531 (2019).

13.	 Jumper, J. et al. Highly accurate protein structure prediction with 
alphafold. Nature 596, 583–589 (2021).

14.	 Erev, I., Ert, E., Plonsky, O., Cohen, D. & Cohen, O. From anomalies 
to forecasts: toward a descriptive model of decisions under risk, 
under ambiguity, and from experience. Psychol. Rev. 124, 369 
(2017).

http://www.nature.com/nathumbehav
https://github.com/jcpeterson/choices13k
https://economics.agri.huji.ac.il/crc2015/raw-data
https://cpc-18.com/data/
https://github.com/RothkopfLab/DatasetBias
https://doi.org/10.1016/j.tics.2022.08.001


Nature Human Behaviour | Volume 8 | April 2024 | 679–691 690

Article https://doi.org/10.1038/s41562-023-01784-6

15.	 Plonsky, O., Erev, I., Hazan, T. & Tennenholtz, M. Psychological 
forest: predicting human behavior. In Proc. AAAI Conference on 
Artificial Intelligence Vol. 31, 656–662 (AAAI Press, 2017).

16.	 Bourgin, D. D., Peterson, J. C., Reichman, D., Russell, S. J. & 
Griffiths, T. L. Cognitive model priors for predicting human 
decisions. In Proc. 36th International Conference on Machine 
Learning (eds Chaudhuri, K. & Salakhutdinov, R.) 5133–5141 (PMLR, 
2019).

17.	 Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman, D. & 
Griffiths, T. L. Using large-scale experiments and machine 
learning to discover theories of human decision-making. Science 
372, 1209–1214 (2021).

18.	 Bhatia, S. & He, L. Machine-generated theories of human 
decision-making. Science 372, 1150–1151 (2021).

19.	 Jaynes, E. T. Probability Theory: The Logic of Science (Cambridge 
Univ. Press, 2003).

20.	 Pearl, J. Causality (Cambridge Univ. Press, 2009).
21.	 MacKay, D. J. C. Information Theory, Inference and Learning 

Algorithms (Cambridge Univ. Press, 2003).
22.	 Pearl, J. & Mackenzie, D. The Book of Why: The New Science of 

Cause and Effect (Basic Books, 2018).
23.	 Devezer, B., Nardin, L. G., Baumgaertner, B. & Buzbas, E. 

O. Scientific discovery in a model-centric framework: 
reproducibility, innovation, and epistemic diversity. PLoS ONE 14, 
e0216125 (2019).

24.	 Boumans, M. Science Outside the Laboratory: Measurement in 
Field Science and Economics (Oxford Univ. Press, 2015).

25.	 Hand, D. J. Measurement: A Very Short Introduction (Oxford Univ. 
Press, 2016).

26.	 Hastie, T., Tibshirani, R. & Friedman, J. H. The Elements of 
Statistical Learning: Data Mining, Inference, and Prediction 2nd 
edn (Springer, 2009).

27.	 Belkin, M., Hsu, D., Ma, S. & Mandal, S. Reconciling modern 
machine-learning practice and the classical bias–variance 
trade-off. Proc. Natl Acad. Sci. USA 116, 15849–15854 (2019).

28.	 Advani, M. S., Saxe, A. M. & Sompolinsky, H. High-dimensional 
dynamics of generalization error in neural networks. Neural Netw. 
132, 428–446 (2020).

29.	 Geiger, M. et al. Jamming transition as a paradigm to understand 
the loss landscape of deep neural networks. Phys. Rev. 100, 
012115 (2019).

30.	 Szegedy, C. et al. Intriguing properties of neural networks. In Proc. 
2nd International Conference on Learning Representations (eds 
Bengio, Y. & LeCun, Y.) (ICLR, 2014).

31.	 Lapuschkin, S. et al. Unmasking clever hans predictors and 
assessing what machines really learn. Nat. Commun. 10, 1096 
(2019).

32.	 Roberts, M. et al. Common pitfalls and recommendations for 
using machine learning to detect and prognosticate for covid-19 
using chest radiographs and ct scans. Nat. Mach. Intell. 3, 199–217 
(2021).

33.	 DeGrave, A. J., Janizek, J. D. & Lee, S.-I. AI for radiographic 
COVID-19 detection selects shortcuts over signal. Nat. Mach. 
Intell. 3, 610–619 (2021).

34.	 Torralba, A. & Efros, A. A. Unbiased look at dataset bias. In CVPR 
2011 1521–1528 (IEEE, 2011).

35.	 Plonsky, O. et al. Predicting human decisions with behavioral 
theories and machine learning. Preprint at https://arxiv.org/
abs/1904.06866 (2019).

36.	 Lundberg, S. M. & Lee, S.-I. in Advances in Neural Information 
Processing Systems 30 (eds Guyon, I. et al.) 4765–4774 (Curran 
Associates, 2017).

37.	 Paolacci, G. & Chandler, J. Inside the turk: understanding 
mechanical turk as a participant pool. Curr. Dir. Psychol. Sci. 23, 
184–188 (2014).

38.	 Bradshaw, J., Matthews, A. G. D. G. & Ghahramani, Z. Adversarial 
examples, uncertainty, and transfer testing robustness in 
gaussian process hybrid deep networks. Preprint at https://arxiv.
org/abs/1707.02476 (2017).

39.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
40.	 Erev, I. & Roth, A. E. Maximization, learning, and economic 

behavior. Proc. Natl Acad. Sci. USA 111, 10818–10825 (2014).
41.	 Kourouxous, T. & Bauer, T. Violations of dominance in 

decision-making. Bus. Res. 12, 209–239 (2019).
42.	 Hadar, J. & Russell, W. R. Rules for ordering uncertain prospects. 

Am. Econ. Rev. 59, 25–34 (1969).
43.	 Bawa, V. S. Optimal rules for ordering uncertain prospects. J. 

Financ. Econ. 2, 95–121 (1975).
44.	 Whitmore, G. A. Third-degree stochastic dominance. Am. Econ. 

Rev. 60, 457–459 (1970).
45.	 Train, K. E. Discrete Choice Methods with Simulation (Cambridge 

Univ. Press, 2009).
46.	 Zhang, H., Ren, X. & Maloney, L. T. The bounded rationality of 

probability distortion. Proc. Natl Acad. Sci. USA 117, 22024–22034 
(2020).

47.	 Juechems, K., Balaguer, J., Spitzer, B. & Summerfield, C. 
Optimal utility and probability functions for agents with 
finite computational precision. Proc. Natl Acad. Sci. USA 118, 
e2002232118 (2021).

48.	 Tversky, A. & Kahneman, D. in Multiple Criteria Decision Making 
and Risk Analysis Using Microcomputers (eds Karpak, B. & Zionts, 
S.) 81–126 (Springer, 1989).

49.	 Jacobs, R. A., Jordan, M. I., Nowlan, S. J. & Hinton, G. E. Adaptive 
mixtures of local experts. Neural Comput. 3, 79–87 (1991).

50.	 Brodeur, A., Cook, N. & Heyes, A. We Need to Talk about 
Mechanical Turk: What 22,989 Hypothesis Tests Tell Us About 
Publication Bias and p-Hacking in Online Experiments (IZA Institute 
of Labor Economics, 2022).

51.	 Oppenheimer, D. M., Meyvis, T. & Davidenko, N. Instructional 
manipulation checks: detecting satisficing to increase statistical 
power. J. Exp. Soc. Psychol. 45, 867–872 (2009).

52.	 Hauser, D. J. & Schwarz, N. Attentive turkers: mturk participants 
perform better on online attention checks than do subject pool 
participants. Behav. Res. Methods 48, 400–407 (2016).

53.	 Levy, H. First degree stochastic dominance violations: decision 
weights and bounded rationality. Econ. J. 118, 759–774 (2008).

54.	 Birnbaum, M. H. Tests of branch splitting and branch-splitting 
independence in allais paradoxes with positive and mixed 
consequences. Organ. Behav. Hum. Decis. Process. 102, 154–173 
(2007).

55.	 Choi, S., Fisman, R., Gale, D. M. & Kariv, S. Revealing preferences 
graphically: an old method gets a new tool kit. Am. Econ. Rev. 97, 
153–158 (2007).

56.	 Lopes, L. L. & Oden, G. C. The role of aspiration level in risky 
choice: a comparison of cumulative prospect theory and sp/a 
theory. J. Math. Psychol. 43, 286–313 (1999).

57.	 Kachelmeier, S. J. & Shehata, M. Examining risk preferences  
under high monetary incentives: experimental evidence  
from the peopleas republic of china. Am. Econ. Rev. 82, 1120–1141 
(1992).

58.	 Cisek, P. & Pastor-Bernier, A. On the challenges and mechanisms 
of embodied decisions. Phil. Trans. R. Soc. 369, 20130479 (2014).

59.	 Bum Michael Yoo, S., Hayden, B. Y. & Pearson, J. M. Continuous 
decisions. Phil. Trans. R. Soc. 376, 20190664 (2021).

60.	 Hunt, L. T. et al. Formalizing planning and information search  
in naturalistic decision-making. Nat. Neurosci. 24, 1051–1064 
(2021).

61.	 Zhi-Xuan, T., Mann, J., Silver, T., Tenenbaum, J. & Mansinghka, V. 
Online bayesian goal inference for boundedly rational planning 
agents. Adv. Neural Inf. Process. Syst. 33, 19238–19250 (2020).

http://www.nature.com/nathumbehav
https://arxiv.org/abs/1904.06866
https://arxiv.org/abs/1904.06866
https://arxiv.org/abs/1707.02476
https://arxiv.org/abs/1707.02476


Nature Human Behaviour | Volume 8 | April 2024 | 679–691 691

Article https://doi.org/10.1038/s41562-023-01784-6

62.	 Wu, Z., Kwon, M., Daptardar, S., Schrater, P. & Pitkow, X. Rational 
thoughts in neural codes. Proc. Natl Acad. Sci. USA 117,  
29311–29320 (2020).

63.	 Schultheis, M., Straub, D. & Rothkopf, C. A. Inverse optimal control 
adapted to the noise characteristics of the human sensorimotor 
system. Adv. Neural Inf. Process. Syst. 34, 9429–9442 (2021).

64.	 Straub, D. & Rothkopf, C. A. Putting perception into action with 
inverse optimal control for continuous psychophysics. eLife 11, 
e76635 (2022).

65.	 Guest, O. & Martin, A. E. How computational modeling can force 
theory building in psychological science. Perspect. Psychol. Sci. 
16, 789–802 (2021).

66.	 Rich, P., de Haan, R., Wareham, T. & van Rooij, I. How hard is 
cognitive science? In Proc. Annual Meeting of the Cognitive 
Science Society Vol. 43, 3034–3040 (Cognitive Science Society, 
2021).

67.	 Schaeffer, R., Khona, M., & Fiete, I. No free lunch from deep 
learning in neuroscience: a case study through models of the 
entorhinal-hippocampal circuit. In Proc. Advances in Neural 
Information Processing Systems Vol. 35 (eds Koyejo, S. et al.) 
16052–16067 (Curran Associates, 2022).

68.	 Xia, K., Lee, Kai-Zhan, Bengio, Y. & Bareinboim, E. The 
causal-neural connection: expressiveness, learnability, and 
inference. Adv. Neural Inf. Process Syst. 34, 10823–10836 (2021).

69.	 Marcus, G. Deep learning: a critical appraisal. Preprint at  
https://arxiv.org/abs/1801.00631 (2018).

70.	 Jin, X. et al. Deep learning with s-shaped rectified linear activation 
units. In Proc. AAAI Conference on Artificial Intelligence Vol. 30, 
1737–1743 (AAAI Press, 2016).

71.	 Mocanu, D. C. et al. Scalable training of artificial neural networks 
with adaptive sparse connectivity inspired by network science. 
Nat. Commun. 9, 2383 (2018).

72.	 Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms 
for hyper-parameter optimization. In Proc. 24th International 
Conference on Neural Information Processing Systems (eds 
Shawe-Taylor, J. et al.) 2546–2554 (Curran Associates, 2011).

73.	 Bergstra, J. et al. Hyperopt: a Python library for optimizing the 
hyperparameters of machine learning algorithms. In Proc. 12th 
Python in Science Conference (eds van der Walt, S. et al.) 13–19 
(Citeseer, 2013).

74.	 Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. 
Mach. Learn. Res. 12, 2825–2830 (2011).

75.	 Ge, H., Xu, K. & Ghahramani, Z. Turing: a language for flexible 
probabilistic inference. In Proc. Twenty-First International 
Conference on Artificial Intelligence and Statistics (eds Storkey, A. 
& Perez-Cruz, F.) 1682–1690 (PMLR, 2018).

76.	 Hoffman, M. D. et al. The no-u-turn sampler: adaptively setting 
path lengths in hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 
1593–1623 (2014).

Acknowledgements
We thank the authors of the studies ‘Cognitive model priors for 
predicting human decisions’16 and ‘Using large-scale experiments and 
machine learning to discover theories of human decision-making’17, 
particularly D. Bourgin and J. Peterson, for extensive help in 
re-implementing their models and fruitful discussion. C.A.R. and 

K.K. acknowledge the support of the Hessian research priority 
program LOEWE within the project ‘WhiteBox’. F.T., C.A.R. and K.K. 
are supported by the cluster project ‘The Adaptive Mind’. To.T., C.A.R. 
and K.K.’s research is supported by the cluster project ‘The Third Wave 
of AI’ as part of the Excellence Program of the Hessian Ministry of 
Higher Education, Science, Research and Art. Finally, we thank the 
anonymous reviewer 3 and F. Jäkel for useful comments to the paper. 
The funders had no role in study design, data collection and analysis, 
decision to publish or preparation of the manuscript.

Author contributions
To.T., D.S., F.T., M.S., Tü.T. and C.A.R. designed the research. To.T., F.T., 
M.S. and Tü.T. carried out the experiments. To.T., D.S., F.T., M.S., Tü.T., 
K.K. and C.A.R. analysed the data. To.T., D.S., F.T., C.A.R. and K.K. have 
written and revised the paper.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/
s41562-023-01784-6.

Supplementary information The online version contains 
supplementary material available at https://doi.org/10.1038/s41562-
023-01784-6.

Correspondence and requests for materials should be addressed to 
Tobias Thomas.

Peer review information Nature Human Behaviour thanks  
Ido Erev, Anja Leist and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work. Peer reviewer reports 
are available.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/nathumbehav
https://arxiv.org/abs/1801.00631
https://doi.org/10.1038/s41562-023-01784-6
https://doi.org/10.1038/s41562-023-01784-6
https://doi.org/10.1038/s41562-023-01784-6
https://doi.org/10.1038/s41562-023-01784-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01784-6

Extended Data Fig. 1 | Relationship between single features and NNdifference for all networks. Repeating the analysis from Figure 2a for NNBourgin,Prior (a), NNPeterson 
(b), and NNPeterson,Prior (c) as the NN model trained on choices13k. Errorbars still represent the 95% confidence interval, which are based on the sample size, which is 
choices13k (N = 14568 gambles).
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Extended Data Fig. 2 | Influence of Dominance on human behavior and NN predictions. Repeating the analysis from Figure 3b for NNBourgin,Prior (a), NNPeterson (b), and 
NNPeterson,Prior (c) as the NN model trained on choices13k. Figure 3a,c were not repeated because they do not depend on the model trained on choices13k.
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Extended Data Fig. 3 | Relationship between features and NNdifference. 
Every small plot visualizes one feature on the x-axis and the difference in NN 
predictions on the y-axis. Every decision problem corresponds to a single point. 
The color of the points represent the type of feature (orange = basic, red = naive, 

blue = psychological, for a detailed explanation see16). The title indicates the 
Pearson correlation coefficient between the two properties as well as the 95% 
confidence interval of the correlation coefficient.
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Extended Data Fig. 4 | Feature correlation matrix. Pairwise Pearson correlation 
coefficient matrix between all features. Data to measure this correlation 
were taken from the choices13k dataset. The black lines separate types of 
features. From left to right (and top to bottom), basic features, naive features, 

psychological features and higher orders of stochastic dominance. Note that, 
beyond the features proposed in previous studies and employed by Plonsky 
et al.16, we additionally computed second (SOSD) and third order stochastic 
dominance (TOSD).
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Extended Data Fig. 5 | Relationship between NN input feature values and their respective SHAP value. The plots show each choices13k gamble as one dot. The 
x-axis is one of basic gamble (NN input) features, while the y-axis is the corresponding SHAP value from the difference between both NNs.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01784-6

Extended Data Fig. 6 | Probability transformation. Displayed is the transformation of a probability by multiplying in log-odd space. The multiplication factor is 
0.6236 - the posterior mean of the model shown in Figure S7. The x-axis is the probability, while the y-axis shows the corresponding probability after multiplying it in 
log-odd space.
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Extended Data Fig. 7 | Bayesian network of the noise model. Clear nodes 
represent latent variables, whereas shaded nodes represent observed quantities. 
Variables inside diamonds are deterministic given its parents, while the ones 
inside circles are random variables. The plate i = 1…N is over the number of 
gambles in the choices13k dataset. The model has two parameters, the 
proportion of participants assumed to be guessing randomly in each trial pguess 
and the rescaling factor in log-odds space f to account for the decision noise of 

the remaining participants. The prior for both parameters were chosen to be 
Beta(1, 1), that is uniform over the [0, 1] interval. The distribution of the sum of 
two Binomial random variables needed to compute the distribution of ki was 
approximated using the Gaussian approximation to the Binomial. The 
predictions NN CPC15

i  in this model are from the NN finetuned on CPC15 and the 
observed responses ki are the human responses on choices13k.
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Extended Data Fig. 8 | Parameter posterior distributions. Posterior distribution over the two parameters from the model shown in Figure S7.
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Extended Data Table 1 | Table 2 for other NNs trained on choices13k

Linear regressions between different sets of features and NNdifference for different NN models trained on choices13k. This is a repetition of the analysis from Table 2 three more NN models trained 
on choices13k.
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Extended Data Table 2 | Description of all gamble features

The basic features are necessary to describe a gamble, while all the other ones are transformations of basic features. For further details on all features and the respective background 
literature on the psychological ones, see16.

http://www.nature.com/nathumbehav


1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Thomas, Tobias

Last updated by author(s): Sep 19, 2023

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We have not collected any data, so no software was used.

Data analysis python 3.8.10, numpy 1.18.5, pandas 1.3.5, scipy 1.4.1, tensorflow 2.3.0, scikit-learn 1.0.2, shap 0.37.0, hyperopt 0.2.3, Julia 1.7.0, Turing.jl 
0.21.13

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All three datasets, CPC15, CPC18, as well as choices13k, used in this research, were already available prior to this study. 
They can be downloaded under the following links: https://github.com/jcpeterson/choices13k for choices13k, https://economics.agri.huji.ac.il/crc2015/raw-data for 
CPC15, and https://cpc-18.com/data/ for CPC18.



2

nature portfolio  |  reporting sum
m

ary
April 2023

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Not applicable

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Not applicable

Population characteristics Not applicable

Recruitment Not applicable

Ethics oversight Not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description All three datasets used in this study (CPC15, CPC18 and choices13k) were previously collected and already publicly available. All three 
share the same experimental paradigm of economic binary choice under risk, potential ambiguity and from experience. Subjects 
were faced with descriptions of two monetary prospects and needed to decide between the two. Both CPC15 and CPC18 were 
recorded in three seperate experiments, using between 125 and 240 students from Technion and HUJI. choices13k on the other 
hand, was recorded online on Amazon Mechanical Turk, using 14711 participants from all over the US. 
More details are given in the paper as well as in the original papers, introducing these datasets.

Research sample Not applicable

Sampling strategy Not applicable

Data collection Not applicable

Timing Not applicable

Data exclusions Not applicable

Non-participation Not applicable

Randomization Not applicable

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 



3

nature portfolio  |  reporting sum
m

ary
April 2023

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Modelling dataset bias in machine-learned theories of economic decision-making

	Results

	Choice data

	Choice models and training

	Establishing dataset bias

	Data-driven analysis of dataset bias

	Theory-driven identification of dataset bias

	Automatic methods to (re)discover explanations

	Theory-driven modelling of the cause of dataset bias


	Discussion

	Dataset difference

	Closing the gap


	Conclusion

	Methods

	Data collection

	CPC15

	CPC18

	choices13k

	Datasets

	Models

	Bourgin et al. NNs

	Peterson et al. NNs

	BEAST

	SVM and random forest

	Hybrid probabilistic generative noise model

	Reporting summary


	Acknowledgements

	Fig. 1 Schematic of analyses of the relationship between datasets and models.
	Fig. 2 Relationship between single features of gambles and difference in NN predictions (NNdifference).
	Fig. 3 Influence of dominance on human behaviour and NN predictions.
	Fig. 4 Relationship between SHAP values and other features.
	Extended Data Fig. 1 Relationship between single features and NNdifference for all networks.
	Extended Data Fig. 2 Influence of Dominance on human behavior and NN predictions.
	Extended Data Fig. 3 Relationship between features and NNdifference.
	Extended Data Fig. 4 Feature correlation matrix.
	Extended Data Fig. 5 Relationship between NN input feature values and their respective SHAP value.
	Extended Data Fig. 6 Probability transformation.
	Extended Data Fig. 7 Bayesian network of the noise model.
	Extended Data Fig. 8 Parameter posterior distributions.
	Table 1 Transfer testing between models trained on CPC15 and choices13k.
	Table 2 Relationship between the difference in NN predictions (NNdifference) and gambles’ features.
	Extended Data Table 1 Table 2 for other NNs trained on choices13k.
	Extended Data Table 2 Description of all gamble features.




