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The role of the human hippocampus in 
decision-making under uncertainty

Bahaaeddin Attaallah    1  , Pierre Petitet    2, Rhea Zambellas1, Sofia Toniolo1, 
Maria Raquel Maio1, Akke Ganse-Dumrath    1,2, Sarosh R. Irani1, 
Sanjay G. Manohar    1,2 & Masud Husain    1,2

The role of the hippocampus in decision-making is beginning to be 
more understood. Because of its prospective and inferential functions, 
we hypothesized that it might be required specifically when decisions 
involve the evaluation of uncertain values. A group of individuals with 
autoimmune limbic encephalitis—a condition known to focally affect the 
hippocampus—were tested on how they evaluate reward against uncertainty 
compared to reward against another key attribute: physical effort. Across 
four experiments requiring participants to make trade-offs between 
reward, uncertainty and effort, patients with acute limbic encephalitis 
demonstrated blunted sensitivity to reward and effort whenever uncertainty 
was considered, despite demonstrating intact uncertainty sensitivity. 
By contrast, the valuation of these two attributes (reward and effort) was 
intact on uncertainty-free tasks. Reduced sensitivity to changes in reward 
under uncertainty correlated with the severity of hippocampal damage. 
Together, these findings provide evidence for a context-sensitive role of the 
hippocampus in value-based decision-making, apparent specifically under 
conditions of uncertainty.

Humans often face situations where they have to decide whether the 
reward they might obtain from their actions is worth the cost required 
for it—for example, when having to allocate effort to accomplish 
something. Whether it is buying an item in a grocery store or making 
life-changing resolutions, such trade-offs can influence our decisions 
and behaviour in our daily lives. Emerging evidence from animal studies 
suggests that the hippocampus might contribute to reward processing 
and valuation, with reports indicating several forms of reward repre-
sentation in the hippocampal formation and its extended networks 
(for a review, see ref. 1). Theories and empirical reports investigating 
this possible hippocampal role in humans have tied it to this structure’s 
well-known functions in memory, associative inference and imagina-
tion2,3. Mechanistically, these investigations implicate the hippocampus 
in several processes, including the spreading of values between differ-
ent contexts4–6, the construction of values from prior experiences7, 
updating8,9 and the stabilization of preferences10.

One evolving concept connecting these unique properties of the 
hippocampus proposes that it provides context against which reward 
is evaluated to support value-based decisions and preferences11,12. 
This process might be mediated by hippocampus-dependent mental 
time travel into both the past (sampling from memory) and the future 
(sampling from projected possible futures) to allocate these contexts. 
For example, ‘preplay’ signals (corresponding to reward delivery in 
yet-to-be-explored environments) and ‘look ahead’ signals (repre-
senting future trajectories leading to goals) have both been recorded 
in rodent hippocampus13–15. Similarly, in humans, functional MRI  
hippocampal activity has been observed when people make decisions 
that involve reward anticipation and future considerations16–18.

With this perspective, the hippocampus might be implicated in 
the evaluation of reward when episodic thinking is critically involved 
(for example, to process values of projected possible futures)19. Such 
scenarios involve probabilistic consideration of future value states 
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on the effort-based decision-making task (Exp. 3), no significant dif-
ference was found between patients and controls when they made 
effort-based decisions without uncertainty, indicating intact valuation 
of reward and effort under conditions that do not feature uncertainty. 
By contrast, on the third version of Circle Quest (Exp. 4), patients were 
less sensitive to changes in effort and reward than controls, while 
their sensitivity to uncertainty was intact. Intact sensitivity to uncer-
tainty was observed across all versions of the Circle Quest paradigm  
(Exps. 1, 2 and 4).

Taken together, these results indicate an uncertainty-sensitive 
role of the hippocampus in value-based decision-making. These find-
ings might represent an important additional step in understanding 
selective hippocampal contributions to goal-directed and motivated 
behaviour.

Results
Experimental paradigms
Exp. 1—active information gathering prior to committing to  
decisions under uncertainty. In the first experiment (Exp. 1),  
participants completed a shorter version of the Circle Quest paradigm, 
a recently developed behavioural task investigating active informa-
tion sampling before committing to decisions under uncertainty22,39. 
The participants were asked to maximize their reward by localizing a 
fixed-size hidden circle as precisely as possible. Uncertainty about the 
precise location of the hidden circle could be reduced by gathering 
information through touching the screen at different locations. If the 
location where they touched was situated inside the hidden circle, a 
purple dot appeared; and if the location was outside that hidden cir-
cle, a white dot appeared. The participants started each trial with an 
initial credit reserve (R0) from which the cost to obtain a new sample 
(ηs) was subtracted with each additional sample. After the active sam-
pling phase, during which the participants could sample the screen 
for information without restriction of speed or location, a blue disk 
matching the size of the hidden circle appeared. The participants were 
then required to move this blue disk to where they thought the hidden 
circle was located. Depending on localization error (how far the blue 
disk centre was from the true location of the hidden circle) and the 
cost of sampling, the score for each trial was calculated and provided 
as feedback at the end of the trial (equation in Fig. 1). The task thus 
imposed an economic trade-off between the benefit and cost of obtain-
ing information. There were two levels of sampling cost (low and high) 
and two levels of initial credit reserve (low and high). Uncertainty—
indexed by circle localization expected error (EE)—was quantified as the 
probability-weighted average of all the possible errors that could occur 
upon placing the localization disk (Fig. 1d and Methods). To expose the 
participants to the task environment and its scoring, the testing session 
began with a training task in which they practised circle localization at 
various levels of uncertainty and reward. This also helped establish the 
effect of visuospatial demand on localization performance.

Exp. 2—passive decision-making under uncertainty. In the second 
experiment (Exp. 2), the participants performed a second version of the 
Circle Quest paradigm examining how they weighed potential rewards 
against uncertainty when making decisions. Eight dots (four purple 
and four white) were always presented on the screen in each trial. The 
spatial configurations of these dots were manipulated experimentally 
to produce different levels of uncertainty—for example, when the pur-
ple dots were spaced widely apart, the location of the hidden circle was 
less uncertain than when they were clumped closer together because 
the former configuration imposes more limitations on possible circle 
placements. To limit memory load, a circle of the same size as the  
hidden circle was always present on each side of the screen to provide 
a continuous reminder of its size.

On each trial of the passive task, the participants were asked to 
report uncertainty estimates (confidence ratings on a scale from  

(that is, making decisions under uncertainty)20,21. By contrast, this 
conceptualization of the hippocampal role in motivated behaviour 
suggests that contexts of a deterministic nature (for example, when 
evaluating rewards against known physical effort costs) should be 
less influenced by hippocampus-related prospective computations.

In a recent report, we demonstrated that the hippocampus might 
be implicated in active information gathering prior to committing to 
decisions under uncertainty in people with subjective cognitive impair-
ment22. Markers of increased reactivity to uncertainty (for example, 
rapid collection of information) were found to be associated with 
heightened hippocampal–insular connectivity. This finding aligns in 
part with previous studies highlighting hippocampal contribution to 
uncertainty processing and related forms of decision-making such as 
inter-temporal choices and visual information search23–27. However, 
it remains unclear whether this proposed role of the hippocampus in 
valuation and decision-making is contextually specific to uncertainty 
(that is, implicated only when agents have to consider uncertainty) 
or reflects a general hippocampal processing of reward and value 
regardless of contexts.

To answer this question and to directly investigate hippocampal 
involvement in goal-directed decision-making and reward valuation, 
we recruited 19 people with autoimmune limbic encephalitis (ALE)—a 
rare neurological condition known to affect the hippocampus. Patients 
in the chronic phase of ALE characteristically have highly focal hip-
pocampal atrophy28–35, making them an ideal model of selective hip-
pocampal dysfunction that is well suited to making inferences on the 
basis of structure–function correlations35–38. This is especially feasible 
in such an experimental group, as the extent of hippocampal damage 
varies between ALE patients depending on the course of the illness 
and the interval between disease onset and treatment initiation29,33.

The participants (patients and healthy matched controls) were 
tested in four experiments examining how people make decisions 
considering reward, uncertainty and/or physical effort attributes. 
In the first two experiments, we used the Circle Quest behavioural 
paradigm, which has been previously tested and validated in healthy 
people and patients with subjective cognitive impairment22,39. The 
original paradigm has two versions: active and passive (Exps. 1 and 2). 
The active version of the task examines how people give up rewards 
to obtain information and reduce uncertainty before committing to 
decisions. The passive version allows limited agency over uncertainty 
to examine how people make passive decisions on whether to accept 
or reject offers on the basis of predetermined levels of reward and 
uncertainty. In Exp. 3, effort-based decision-making was examined 
using a modified version of an extensively validated behavioural para-
digm used in previous studies in healthy people and individuals with 
neurological disorders40,41. This paradigm has a similar design to the 
passive version of Circle Quest and examines how people make passive 
decisions weighing rewards against physical effort. In Exp. 4, a third 
version of Circle Quest was introduced to investigate how people make 
passive decisions considering the three attributes of interest (reward, 
uncertainty and physical effort). In other words, participants in Exp. 4  
were required to make decisions weighing the reward on offer given 
both the physical effort cost and the uncertainty in the environment.

The results from these experiments converged to indicate that 
in ALE patients, despite intact sensitivity to uncertainty, the presence 
of uncertainty is associated with blunted sensitivity to other value 
attributes (reward and effort cost). In the active version of the Circle 
Quest task (Exp. 1), patients were less sensitive to the cost of sampling 
when gathering information to support decisions under uncertain 
conditions, resulting in faster, extensive and wasteful sampling when 
the cost of sampling and the reward on offer increased. In the passive 
version of Circle Quest (Exp. 2), ALE patients were significantly less 
sensitive to changes in reward, and this effect correlated with lower sen-
sitivity to sampling cost changes observed in active sampling (Exp. 1)  
as well as with the severity of hippocampal atrophy. When assessed 
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0 to 100) reflecting how well they thought they might be able to locate 
the hidden circle, given the configuration of dots on the screen. Next, 
they were presented with the reward on offer and were asked, ‘Do you 
want to play this trial for this potential reward?’ to which they could 
respond either ‘Yes’ or ‘No’ (by pressing the corresponding answer 
on the touchscreen). The participants were told that 10 of their ‘Yes’ 
responses from the 100 trials played would be randomly selected at 
the end of the experiment, and that they would have to place a blue 
disk (of the same size as the hidden circle) where they thought the hid-
den circle was located for each of these trials. Their monetary reward 
would be based on their localization performance on these 10 trials. 
If they located the hidden circle perfectly (that is, if they placed the 
blue disk exactly on top of the hidden circle), they won all credits on 

offer. If not, they lost credits proportionally to the magnitude of their 
localization error.

Exp. 3—effort-based decision-making. To investigate effort-based 
decision-making, we used a modified version of a well-validated 
effort-based decision-making task that has been extensively used 
in healthy people and different patient groups41–46. This task had a 
similar design as the passive choices task used in Exp. 2 to investi-
gate reward valuation against uncertainty (Fig. 1a). Reward was rep-
resented as apples on trees that the participants were asked to weigh 
against physical effort levels that they needed to exert to obtain the 
apples (Fig. 2). Physical effort in the task pertained to squeezing a 
hand-held dynamometer up to various force levels. There were five 
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Fig. 1 | Task paradigms for Exps. 1 and 2. Exp. 1 investigated active information 
gathering. Each trial began with a purple dot giving an initial hint about the 
hidden circle’s location. The participants touched the screen to reveal further 
clues (purple or white dots), narrowing down the solution space of the location 
of the hidden circle. Purple dots indicated a location inside the hidden circle, 
whereas white dots signalled outside locations. The participants were free to 
touch anywhere on the screen within the 18-second trial period, with the option 
to stop anytime. However, each touch providing additional information reduced 
the initial reward reserve R0, shown inside the two purple circles on the side of  
the screen. For example, in the illustrated trial, the participants started with  
95 credits and lost one credit for each additional sample. After the active 
sampling phase (18 seconds), a blue disk appeared automatically at the screen’s 
centre, which the participants then moved to their estimated hidden circle 
location. ITI, intertrial interval. Trial scores were calculated by subtracting a 
localization error penalty (e × ηe, where e is the error in pixels and ηe the error 

cost in credits per pixel) from the remaining reward reserve (R0 − s × ηs, where s is 
the number of samples and ηs the sampling cost). The error cost ηe was constant 
and equal to 1.2 credits per pixel. Exp. 2 investigated passive decision-making 
under uncertainty. The task examined how people weigh potential rewards 
against uncertainty when making decisions. a, An example of an offer with a 
search configuration representing uncertainty and credits indicating the reward 
on offer. b, Different spatial configurations were associated with different 
uncertainty levels quantified as EE, which is equal to the probability-weighted 
average of all the possible errors that could result when placing the localization 
disk at the best possible location. c, The participants first reported their 
subjective estimation of uncertainty (their confidence about the circle location). 
After this, the credits on offer appeared, and the participants decided whether 
to accept or reject the offer. d, At the end of the experiment, ten of the accepted 
offers were played (placing the blue disk), determining the final score. Hand icon 
from macrovector on Freepik.
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effort levels corresponding to 16%, 32%, 48%, 64% and 80% of each 
participant’s maximal voluntary contraction (MVC) measured at 
the beginning of the task. After a familiarization period with these 
effort levels, the participants made accept/reject decisions for vari-
ous reward–effort offer combinations. Similar to the passive version 
of the Circle Quest task (Exp. 2), individuals were instructed that 
some of the offers they accepted (10 of 125 trials played) would be 
randomly selected at the end of the experiment to be carried out, 
and that they would receive monetary rewards based on the number  
of apples they collected.

Exp. 4—effort-based decision-making under uncertainty. In the 
fourth experiment (Exp. 4), the participants were re-invited to perform 
a third version of the Circle Quest paradigm, this time designed to inves-
tigate effort-based decision-making under uncertainty. The task was 
similar to those in Exps. 2 and 3. However, instead of making decisions 
(accept/reject) on the basis of two attributes (reward versus uncertainty 
as in Exp. 2 and reward versus effort as in Exp. 3), the participants now 

had to make decisions under the three attributes together (reward, 
uncertainty and effort simultaneously) (Fig. 2a).

Before engaging in the decision-making phase, the participants 
were familiarized with the task using an interactive tutorial and then 
trained on circle localization (similar to Exps. 1 and 2) and effort prac-
tice (similar to Exp. 3). Unlike Exp. 2, where participants estimated 
uncertainty prior to each decision, participants in this task gave these 
reports in one block before the decision phase. This accommodated 
two uncertainty conditions, present or absent, ensuring an experimen-
tally balanced design for decision trials across these two conditions.

On each trial in the decision phase, the participants responded to 
offers considering three attributes:

•	 Reward, depicted as credits with the same four levels as Exp. 2.
•	 Effort, represented by the bar height on a rectangle, mirroring 

the five levels from Exp. 3. Successfully achieving the effort level 
unveiled the blue disk used in localizing the hidden circle to  
win credits.
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Fig. 2 | Task paradigms for Exps. 3 and 4. Exp. 3 investigated effort-based 
decision-making. The design is similar to that of Exp. 2. Initial calibration 
involved setting the hand-held dynamometer on the basis of each participant’s 
MVC. The participants then familiarized themselves with various effort levels, 
squeezing the handle to match the effort indicated by a yellow line; a higher line 
denoted more effort. They practised this twice per effort level. The core task 
involved deciding whether the reward (apples) on offer was worth the effort 
assigned to it. The participants were informed that ten of their choices would be 
randomly selected at the experiment’s end to physically execute for obtaining 
apples. Exp. 4 investigated effort-based decision-making under uncertainty. 
ITI, intertrial interval. a, Post-training (see below), the participants underwent 
200 trials of accept/reject decisions, balancing rewards (credits) against effort 
levels. Decisions were made considering the presence or absence of uncertainty, 
particularly in estimating the hidden circle’s location on the basis of dot 

configurations (as detailed in Methods). The absence of uncertainty was signified 
by directly showing the purple circle’s location. b,c, After the experiment,  
24 trials were randomly chosen from the accepted decisions. Here, the 
participants exerted physical effort (b) to earn the chance to place a blue disk  
(c) where they thought the hidden circle was. In 12 trials, the purple circle’s 
location was shown, and in the other 12, it was not. Performance accuracy 
determined the final credits earned. Training occurred in three stages: (1) an 
interactive tutorial on Circle Quest (as in Exps. 1 and 2) introduced the scoring 
function and assessed localization accuracy (Fig. 8a); (2) the participants rated 
their confidence in locating the hidden circle on a scale of 0 to 100, with dot 
configurations reflecting those in the decision-making phase and additional 
catch trials to broaden the uncertainty range (subjective uncertainty estimates in 
Fig. 8b); and (3) effort calibration and familiarization mirrored Exp. 3. Hand icons 
from BioRender.com and macrovector on Freepik.
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•	 Uncertainty, showcased through dot configurations (as in Exps. 1 
and 2). Uncertainty was absent on half of the trials by revealing the 
true circle location. When present, uncertainty ranged between 
EEs of 31.8 and 73.95 pixels, similar to Exp. 2.

Thus, similar to Exp. 2, each trial presented the participants with 
credit offers attainable upon accurately localizing the hidden circle. 
However, achieving the effort level designated for the trial was essential 
to reveal the localization disk. The participants had to make ‘Yes/No’ 
decisions across 200 trials, encompassing three economic attributes: 
uncertainty (present or absent), reward (four levels) and effort (five 
levels). Ten additional catch trials were included when uncertainty was 
present, expanding the range of uncertainty beyond that used in the 
main task. The participants were informed that 24 ‘Yes’ decisions would 
be randomly selected at the task’s end, providing them an opportunity 
to play and receive rewards.

Demographics
Demographics and group characteristics are summarized in Supple-
mentary Tables 1 and 2. ALE patients had lower cognitive scores on 
Addenbrooke’s Cognitive Examination III (ACE III) (controls: μ = 97.52, 
s.d. = 2.03; ALE: μ = 93.42, s.d. = 5.64; t36 = 2.99; P = 0.005; 95% confidence 
interval (CI), (1.31, 6.89); Cohen’s d = 0.94). These cognitive differences 
were seen mainly in two domains of ACE III: memory (controls: μ = 24.79,  

s.d. = 1.36; ALE: μ = 23.16, s.d. = 2.54; z = 2.19, P = 0.028, Cliff’s δ = 0.40) 
and fluency (controls: μ = 13.32, s.d. = 1.36; ALE: μ = 11.21, s.d. = 2.69; 
z = 2.81, P = 0.004, Cliff’s δ = 0.51). The other three domains including 
language, visuospatial abilities and attention were not significantly dif-
ferent between the two groups. There was no significant difference in 
measures of executive function (digit span), apathy (Apathy Motivation 
Index), fatigue (Fatigue Severity Scale), depression (Beck Depression 
Inventory-II) or hedonic experience (Snaith–Hamilton Pleasure Scale).

Exp. 1—reduced sensitivity to changes in information cost in 
ALE patients
In the active sampling task (Exp. 1), participants in both groups acquired 
samples to reduce uncertainty. Similar to previous reports22,39, reduc-
tion in uncertainty followed an exponential decay as a function of the 
number of samples acquired, indicating purposeful sampling abiding 
by task rules (Fig. 3a). Both patients and healthy controls behaved 
rationally, sampling less when acquiring samples was more expen-
sive (main effect of ηs on the number of samples acquired: β = −0.11; 
t2272 = −6.25; P < 0.0001; 95% CI, (−0.14, −0.07); Supplementary Table 4) 
and not responding to changes in the initial reward reserve (main effect 
of R0 on the number of samples acquired: β = 0.023; t2272 = 1.29; P = 0.20; 
95% CI, (−0.01, 0.05)).

Patients’ and controls’ performance in the active task was evalu-
ated with regard to optimal sampling behaviour to determine whether 
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Fig. 3 | Exp. 1—reduced sensitivity to changes in information cost in ALE 
patients. a, Uncertainty (indexed as EE) decreases with sampling and follows an 
exponential decay slope on average in both patients and controls. b, ALE patients 
and healthy controls oversampled when the sampling cost was high. Patients, 
however, oversampled to a greater extent than controls, mainly when the initial 
reward reserve and sampling cost both increased (z = 2.267, P = 0.023, Cliff’s 
δ = 0.43). There was no significant difference between the two groups under  
low-cost conditions. c, Higher sampling cost was associated with slower sampling 
rates. This effect was less evident in ALE patients than in controls, resulting in 

faster sampling in ALE patients in high-sampling-cost conditions  
(ALE × ηs: β = −0.0719; t2272 = −2.14; P = 0.033; 95% CI, (−0.13, −0.005)).  
d, Sampling behaviour was characterized by a speed–efficiency trade-off 
whereby faster sampling rates (shorter inter-sampling intervals) were associated 
with lower sampling efficiency (smaller α). The figure shows this trade-off for the 
high-sampling-cost conditions, in which ALE patients sampled faster and also 
oversampled when the initial reward was high. The error bars and shading  
show ±s.e.m. The data are from 19 patients and 19 controls. See Supplementary 
Tables 4–6 for the full statistical details.
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they tended to under- or oversample (Fig. 3b). Optimal sampling refers 
to the number of samples, s⋆, that maximizes the expected return, given 
the current cost–benefit structure (R0, ηs, ηe) and search efficiency 
(that is, the rate at which participants reduce uncertainty from one 
sample to the next, parameterized as the information extraction rate, 
α; Methods).

Both ALE patients and healthy controls oversampled when 
the sampling cost was high (deviation from optimal; ALE: β = 3.93; 
t1138 = 4.32; P < 0.0001; 95% CI, (2.15, 5.72); controls: β = 1.93; t1138 = 3.485; 
P < 0.001; 95% CI, (0.84, 3.02); see also Supplementary Table 5), but 
patients oversampled to a greater extent than controls when the initial 
reward reserve was high in these conditions (z = 2.267, P = 0.023, Cliff’s 
δ = 0.43; Fig. 3b). There was no significant difference between the two 
groups when the sampling cost was low (t36 = 0.579, P = 0.56).

ALE patients’ sampling speed was also less deterred by increasing 
sampling cost than that of controls (ALE × ηs: β = −0.0719; t2272 = −2.14; 
P = 0.033; 95% CI, (−0.13, −0.005); Fig. 3c and Supplementary Table 4). 
This suggests faster and less deliberate sampling in ALE patients when 
sampling costs are high, as seen in a speed–efficiency trade-off 
characterizing sampling behaviour in both groups (inter-sampling 
interval ∝ α; ALE: β = 0.26; t1138 = 4.82; P < 0.0001; 95% CI, (0.15, 0.36); 
controls: β = 0.137; t1138 = 2.96; P = 0.003; 95% CI, (0.04, 0.22); Fig. 3d 
and Supplementary Table 6).

These findings suggest that ALE patients’ sampling behaviour 
demonstrates at least partially blunted sensitivity to sampling cost 

leading to oversampling (that is, giving up more reward than needed 
in exchange for information) as well as faster sampling (see Supple-
mentary Information for a computational model characterizing this 
difference in sensitivity to sampling cost; Supplementary Fig. 1). This 
had consequences in terms of total reward received, as patients’ scores 
suffered to a greater extent than controls’ when the sampling cost 
increased (ALE × ηs: β = −3.66; t2272 = −2.00; P = 0.046; 95% CI, (−7.26, 
−0.06); Supplementary Table 4).

Exp. 2—ALE patients are less sensitive to changes in reward 
against uncertainty
The passive task paradigm (Exp. 2) offers a reliable mechanistic deline-
ation between responses to reward and to uncertainty when making 
value-based decisions. This helps answer whether oversampling in ALE 
patients is indeed related to lower sensitivity to changes in reward, 
rather than increased sensitivity to uncertainty.

A generalized logistic mixed-effects model (LgMM) with maximal 
randomness was used to analyse the accept/reject choice data (Sup-
plementary Table 8). As expected, participants (patients and controls) 
adjusted their decisions rationally according to offer attributes, accept-
ing more offers with higher rewards and lower uncertainty (main effect 
of reward on offer acceptance: β = 1.41; t3748 = 7.15; P < 0.001; 95% CI, 
(1.02, 1.79); main effect of uncertainty on offer acceptance: β = −2.73; 
t3748 = −8.72; P < 0.001; 95% CI, (−3.34, −2.11); Fig. 4a,b). There was no 
significant interaction between the effects of reward and uncertainty 
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Fig. 4 | Exp. 2—ALE patients are less sensitive to changes in reward under 
uncertainty. a, Patients (n = 19) and healthy controls (n = 19) adjusted their 
decisions according to the reward and uncertainty on offer. The influence of 
reward on offer acceptance was blunted in ALE patients when compared with 
controls (shallower reward slope). Level 1 indicates lowest reward/uncertainty 
level on offer. b, Controls accepted more of the high-value offers (blue region) 
than hippocampal patients did. c, Investigation of the group effect using an LgMM 
revealed that patients had significantly lower sensitivity to reward than controls 
but did not significantly differ in their sensitivity to uncertainty (ALE × reward: 
β = −0.983; t3748 = −3.58; P < 0.001; 95% CI, (−1.52, −0.44)). It also showed that the 

impact of uncertainty on decision-making was more significant than the impact 
of reward (histogram on the corner). d, Lower sensitivity to reward, but not to 
uncertainty, in the passive task is associated with lower sensitivity to sampling 
cost in the active sampling task (Exp. 1) driving group differences in the number 
of samples collected. The colour scale indicates the contribution of each data 
point to the model. The blue dots represent controls and are added for visual 
comparison. The error bars and shading in a show ±s.e.m. The solid line and 
shading in d show the regression line and 95% CI. See Supplementary Table 8 for 
the full statistical details.
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(R × EE: β = 0.065; t3748 = 0.53; P = 0.60; 95% CI, (−0.17, 0.31)). Patients 
and controls did not significantly differ in the time they took to accept 
(z = −0.379, P = 0.70) or reject offers (t36 = −0.34, P = 0.73). However, 
they differed with regard to the influence that reward exerted on the 
decision to accept the offer. Compared with controls, ALE patients 
were overall less influenced by the reward on offer (ALE × reward: 
β = −0.983; t3748 = −3.58; P < 0.001; 95% CI, (−1.52, −0.44); Fig. 4a–c). 
By contrast, their sensitivity to uncertainty was not significantly dif-
ferent from controls’ (ALE × EE: β = 0.336; t3748 = 0.76; P = 0.45; 95% CI, 
(−0.53, 1.20)). Taken together, this means that patients accepted fewer 
of the high-value offers (high-reward and low-uncertainty) (z = −2.14, 
P = 0.032, Cliff’s δ = 0.55 and = −2.93, P = 0.003, Cliff’s δ = 0.40, for the 
two offers of the highest value; Fig. 4b).

Next, in an exploratory analysis, we investigated whether sensitiv-
ity to changes in reward and uncertainty was associated with differ-
ences observed in sampling behaviour in Exp. 1. Sensitivity to reward 
and uncertainty were extracted from an LgMM that included the two 
attributes and their interaction as predictors of offer acceptance (that 
is, the same model used above but with no group effect). For each par-
ticipant, reward sensitivity and uncertainty sensitivity correspond to 
model-derived parameter estimates that capture how decisions are 
influenced by changes in these two offer attributes. A robust regression 
model showed that reward sensitivity, but not uncertainty sensitivity, 
correlated significantly with the sensitivity to sampling cost at high 
initial reward reserves in the active task—that is, the effect differenti-
ating patients from controls in Exp. 1 (indexed by the difference in the 
number of samples between low- and high-sampling-cost conditions) 
(R2 = 0.33; β = 2.61; t17 = 2.88; 95% CI, (0.70, 4.53); = 0.010; Fig. 4d).  
However, as this is an exploratory and potentially underpowered analy-
sis, this correlation should be interpreted cautiously and might not 
be replicable.

In brief, the findings from Exps. 1 and 2 converge to indicate that 
ALE patients are less responsive to changes in reward under conditions 
of uncertainty in active and passive contexts. This is evidenced by less 
flexible sampling in response to changes in sampling cost in the active 
task, and reduced sensitivity to changes in the reward on offer in the 
passive task.

Exp. 3—intact effort-based decision-making in ALE patients
In Exp. 3, we asked whether the blunted reward sensitivity observed in 
ALE patients for decisions involving a trade-off with uncertainty was 
also evident for a different discounting attribute—physical effort. In 
other words, is this a generalized phenomenon? A new version of a 
well-validated paradigm measuring effort and reward sensitivity was 
used to examine effort-based decision-making (Methods).

An LgMM with full randomness was used to analyse the choice 
data (Supplementary Table 10). The results showed that, as expected, 
participants from both groups accepted more offers (showed more 
willingness to allocate effort) when the reward on offer increased and 
the required effort decreased (main effect of reward on offer accept-
ance: β = 2.97; t4739 = 11.12; 95% CI, (2.44, 3.49); P < 0.0001; main effect 
of physical effort on offer acceptance: β = −2.82; t4739 = −8.45; 95% 
CI, (−3.47, −2.16); P < 0.0001; Fig. 5a and Supplementary Table 10).  
However, neither reward nor effort sensitivity differed significantly 
between patients and controls (ALE × reward and ALE × effort, both 
P > 0.05; Fig. 5a,b). To quantify the evidence in favour of this null result, 
we ran the same analysis using Bayesian mixed modelling. Once again, 
this analysis did not suggest differences between the two groups in 
reward (or effort) valuation (Bayes factor of 3.78 for null effect of 
ALE × reward; Bayes factor of 5.28 for null effect ALE × effort; Supple-
mentary Fig. 4 and Supplementary Table 11). Note that there was also 
no significant difference in total acceptance of offers (effect of dis-
ease (ALE) on offer acceptance: β = −0.13; t4739 = −0.13; 95% CI, (−1.356, 
1.082); P = 0.82) or in decision times (accept decisions: t36 = 0.87; 95% 
CI, (−0.22, 0.56); P = 0.388; Cohen’s d = 0.27; reject decisions: t36 = 0.99; 
95% CI, (−0.16, 49); P = 0.325; Cohen’s d = 0.31). Compared with Exp. 2,  
these decision times were slower (Exp. 2: μ = 2.04, s.d. = 0.40; Exp 3: 
µ = 2.40, s.d. = 0.49; t18 = 2.25; 95% CI, (0.02, 0.68); P = 0.036; Cohen’s 
d = 0.77), indicating less deliberation when making decisions under 
uncertainty in Exp. 2 than when making effort-based decisions  
(Supplementary Fig. 2 and Supplementary Table 24; see Supplemen-
tary Information for an extended analysis of decision times across 
Exps. 2–4).

Finally, the group effect on reward sensitivity across Exps. 2 and 
3 was examined using a generalized mixed model after combining 
choices from both tasks (Supplementary Tables 12 and 13). As expected, 
reward sensitivity in ALE patients compared with controls was sig-
nificantly blunted in Exp. 2 compared with Exp. 3 (ALE × reward × task: 
β = 0.467; t8495 = 4.15; 95% CI, (0.24, 0.68); P < 0.0001; Supplementary 
Table 12). These results are consistent with a sparing of reward sensi-
tivity in ALE patients when reward had to be weighed against effort, 
without uncertainty being considered.

Exp. 4—blunted reward and effort sensitivity under 
uncertainty in ALE patients
One might argue that the comparison of reward sensitivity in Exps. 2  
and 3 is not fully matched due to the difference in task cues and 
environment (for example, reward as credits versus virtual apples). 
These concerns were addressed using a new version of Circle Quest 
that was designed to examine effort-based decision-making under 
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uncertainty (Fig. 2). The task had the same reward levels and cues 
used in Exp. 2 and the same effort levels and cues used in Exp. 3. 
The participants (12 controls and 8 ALE patients) also made the 
decisions either with or without uncertainty. Thus, the task over-
all examined how participants adjusted their decisions when tak-
ing into consideration these three attributes (reward, effort and  
uncertainty).

Choice data were analysed using the same approach as in Exps. 2 
and 3 with generalized mixed-effects models (Supplementary Table 14). 
The results showed that ALE patients were indeed less sensitive to 
reward than controls when making effort-based decisions under uncer-
tain conditions (reward × uncertainty × ALE: β = 0.684; t4184 = 2.37; 95% 
CI, (0.11, 1.24); P = 0.018).

The three-way interaction investigating group difference in 
effort sensitivity under uncertainty was also statistically significant 
(effort × uncertainty × ALE: β = −0.541; t4184 = −1.97; 95% CI, (−1.07, 
−0.003); P = 0.049; Fig. 6 and Supplementary Table 14). There was no 
significant difference between the two groups in their sensitivity to 
uncertainty (ALE × uncertainty: β = 0.89; t4184 = 1.003; 95% CI, (−0.85, 
2.65); P = 0.315).

These findings are thus consistent with the results from Exps. 1 
and 2 showing intact sensitivity to uncertainty and reduced sensitiv-
ity to reward in the presence of uncertainty in ALE patients. They also 
suggest that effort sensitivity can be blunted in ALE patients under 
conditions requiring uncertainty consideration. Thus, overall, while 
healthy controls managed to flexibly adjust their decisions taking 
into consideration the three attributes of the offers, ALE patients were 
generally more responsive to the uncertainty component of the offers, 
with less emphasis on other economic attributes such as reward and 
effort. Importantly, this is not a replication of the Exp. 2 results because 
(1) decision-making involves effort consideration in addition to uncer-
tainty and reward and (2) the task includes a new certain condition 
against which the effect of uncertainty is compared. That said, these 
findings from Exp. 4 should interpreted with caution due to the small 
sample size.

In summary, the results from Exps. 1–4 suggest that the presence 
of uncertainty is associated with deficits in processing other attributes 
(reward and effort) in hippocampal dysfunction, with intact uncer-
tainty processing.

Hippocampal atrophy correlates with decreased reward 
sensitivity under uncertainty
A whole-brain voxel-based morphometry (VBM) analysis was per-
formed. Compared with healthy controls, ALE patients had lower grey 
matter intensity in three clusters involving the limbic, thalamic and tem-
poral regions (Supplementary Table 15). As expected, the largest cluster 
(limbic region) included mainly the hippocampal and parahippocampal 
regions (Fig. 7a). Hippocampal atrophy was also demonstrated by 
comparing extracted total hippocampal volume using the Freesurfer 
analysis pipeline, showing reduced right whole hippocampal volumes 
in ALE patients (Supplementary Table 1). Note that a few participants 
also had severely atrophied left hippocampi (with and without right 
hippocampal atrophy; Supplementary Table 2).

We then performed robust regression analysis to examine the rela-
tionship between hippocampal atrophy and reduced reward sensitivity 
observed in ALE patients. For this purpose, reward and uncertainty 
sensitivities from Exp. 2 were used as key behavioural markers charac-
terizing the performance of ALE patients when compared to controls. 
The results showed that sensitivity to changes in reward was associated 
with total average hippocampal volumes in patients (model R2 = 0.41; 
β = 0.0006; t13 = 3.05; 95% CI, (0.0002, 0.001); P < 0.009; Fig. 7b). This 
correlation remained significant after we controlled for age and gender 
(model R2 = 0.38; β = 0.0006; t11 = 2.28; 95% CI, (0, 0.0012); P = 0.043). 
In contrast, the correlation between uncertainty sensitivity and total 
hippocampal volume was not significant (model R2 = 0.062; β = 0.0004; 
t13 = 0.92; 95% CI, (−0.0006, 0.001); P = 0.371).

Repeating the same analysis for reward sensitivity from Exp. 3 
revealed no significant correlation between total hippocampal volume 
and reward sensitivity against effort (P = 0.88). Due to the limitation of 
sample size, this analysis was not performed for Exp. 4.

To assess the anatomical specificity of this result, we also extracted 
the volume of the amygdala—another limbic brain region that was 
highlighted in the VBM analysis—and the same analysis was run on this 
metric. This showed no significant correlation between the amygdala 
volume and sensitivity to reward or uncertainty (Supplementary Fig. 5).

Intact localization and uncertainty estimation in ALE patients
Two control analyses were performed to examine possible factors that 
might influence response to uncertainty in the Circle Quest task. First, 
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were less sensitive to changes in reward under uncertainty and effort (the slope 
difference between the continuous and dashed lines across the two groups) while 
having intact uncertainty sensitivity (the degree of downward shift between the 

continuous and dashed lines) (reward × uncertainty × ALE: β = 0.684; t4184 = 2.37; 
95% CI, (0.11, 1.24); P = 0.018; effort × uncertainty × ALE: β = −0.541; t4184 = −1.97; 
95% CI, (−1.07, −0.003); P = 0.049). These results are consistent with the findings 
from Exps. 1 and 2, highlighting disrupted reward and cost valuation in ALE 
patients under uncertainty. The shaded areas show ±s.e.m. See Supplementary 
Table 14 for the full statistical details.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01855-2

participants might differ in their motor performance and accuracy of 
placing the blue disk for given uncertainty levels, which might bias their 
estimation and valuation. To examine this, we analysed performance 
in the training task where the participants were required to move the 
blue disk for fixed levels of uncertainty. Distance to the hidden circle 
was compared between the two groups. There was no significant dif-
ference between ALE patients and controls in this metric, indicating 
similar placement performance on the task (difference between ALE 
patients and controls in Exps. 1 and 2: z = 1.10, P = 0.267, Cliff’s δ = 0.21; 
Exp. 4: z = 0.10, P = 0.913, Cliff’s δ = 0.038; Fig. 8a). To compare locali-
zation performance on trials that did not feature the same levels of 
uncertainty, we calculated the distance to the optimal placement point 
(the centroid of the posterior belief of all the possible locations of the 
hidden circle). This measure across all versions of Circle Quest was not 
significantly different between the two groups (Supplementary Fig. 6).

Second, different participants might have different estimations of 
uncertainty for the same visual displays, ultimately affecting their per-
formance on the task as they gather information and make decisions. 
To examine inter-individual differences in uncertainty estimation, the 
participants provided these estimates as confidence ratings before 
making decisions in Exp. 2 and during training in Exp. 4 (Methods).  
A generalized mixed-effects model indicated that in both experiments 
there was no significant difference in subjective uncertainty estimation 
between patients and controls (Exp. 2, ALE × EE: β = −0.054; t3752 = −0.77; 
95% CI, (−0.19, 0.08); P = 0.442; Exp. 4, ALE × EE: β = −0.022; t2306 = −0.16; 
95% CI, (−0.30, 0.25); P = 0.873; Fig. 8b and Supplementary Table 16). 
The results indicate that subjective estimates of uncertainty mapped 
well onto experimentally defined uncertainty across study participants. 

As a result, the choice performance results did not change when these 
subjective estimates were used to analyse performance instead of 
objective uncertainty (EE) (Supplementary Fig. 7 and Supplementary 
Table 18).

In addition to these control analyses, we investigated the pos-
sible effects of cognitive deficit and memory decay on performance. 
There was no significant correlation between cognitive performance 
indexed by ACE III scores (whether total or subdomains) and sensitiv-
ity to either reward or uncertainty in Exp. 2 (robust regression: ACE 
III ∝ reward sensitivity in Exp. 2: R2 = 0.18; β = 0.01; t17 = 0.59; 95% CI, 
(−0.02, 0.05); P = 0.557; ACE III ∝ uncertainty sensitivity: R2 = 0.028; 
β = 0.03; t17 = 0.68; 95% CI, (−0.075, 0.14); P = 0.501; Supplementary 
Fig. 8a and Supplementary Table 20).

To investigate whether performance (mainly reward sensitiv-
ity) was influenced by task duration across the different tasks in ALE 
patients, we analysed decisions in the first half compared to the second 
half in Exps. 2–4. This showed that reward sensitivity across the differ-
ent tasks did not differ between the two task halves in ALE patients, 
indicating minimal effect of memory decay during task performance 
(reward × second task half, Exp. 2: β = 0.21; t1848 = 1.16; 95% CI, (−0.14, 
0.56); P = 0.246; Exp. 3: β = 0.35; t2364 = 1.39; 95% CI, (−0.14, 0.85); 
P = 0.163; Exp. 3: β = −0.039; t1592 = −0.25; 95% CI, (−0.35, 0.27); P = 0.803; 
Supplementary Fig. 8b and Supplementary Table 22).

Finally, we analysed the catch trials from Exp. 4 to investigate 
features that might suggest random responding (for example, sensi-
tivity to sudden changes in uncertainty levels). The results from these 
trials showed that ALE patients responded as expected with intact 
sensitivity to sudden uncertainty changes during both the uncertainty 
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Fig. 7 | Severity of hippocampal atrophy correlates with decreased reward 
sensitivity under uncertainty. a, VBM analysis shows that ALE patients have 
significantly reduced grey matter intensity in the right hippocampal region 
(cluster 1, Supplementary Table 15). b, Patients with more severely atrophied 
hippocampi were less sensitive to reward when traded against uncertainty 

(behavioural data from Exp. 2). By contrast, hippocampal volumes were not 
significantly correlated with sensitivity to uncertainty, which was preserved 
in ALE patients (model R2 = 0.41; β = 0.0006; t13 = 3.05; 95% CI, (0.0002, 0.001); 
P < 0.009). The shading around the regression line represents the 95% CI. NS, not 
significant.
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estimation phase (ALE × uncertainty: β = 0.0056; t206 = 0.05; 95% CI, 
(−0.22, 0.23); P = 0.960) and the decision phase (ALE × uncertainty: 
β = −0.914; t201 = −0.20; 95% CI, (−9.84, 8.01); P = 0.840; Supplementary 
Fig. 8c and Supplementary Table 23). ALE patients also showed blunted 
sensitivity to effort during these trials, as demonstrated in the rest of 
the experiment (ALE × effort: β = 6.63; t201 = 2.74; 95% CI, (1.85, 11.41); 
P = 0.006). Analysis of reward responsivity in these trials is restricted 
because of their unbalanced design, which does not feature all reward 
levels equally, as well as the small sample size.

Discussion
The studies presented here assessed patients with ALE, which is associ-
ated with damage to the hippocampus. In four experiments, patients 
were assessed on how they evaluated reward, uncertainty and effort 
when making value-based decisions. The results converged to indicate 
that ALE patients had intact uncertainty processing across different 
contexts such as passive reward valuation (Figs. 4 and 6) and active 
information gathering prior to decisions (Fig. 3). However, whenever 
uncertainty was a factor that needed to be considered, sensitivity to 
other attributes (reward and physical effort) was blunted (Figs. 4 and 6),  
despite intact valuation of these attributes in a context that did not 
feature uncertainty (Fig. 5). Reduced sensitivity to changes in reward in 
the context of uncertainty correlated with the severity of hippocampal 
atrophy in ALE patients (Fig. 7). The results thus indicate a specific 
role of the hippocampus in processing uncertain rewards and costs.

Previous decision-making studies have demonstrated several 
potential contributions of the hippocampus to goal-directed behav-
iour. For example, numerous reports have indicated that the hippocam-
pus might be critical for inter-temporal decision-making, especially 
when participants are required to imagine future outcomes47–49. 
The results of other investigations have demonstrated that the 

hippocampus might be needed for deliberation preceding value-based 
decisions but not other value-independent decisions such simple 
sensory discrimination50. This differential involvement proposes a 
specific role of the hippocampus in value construction and estimation 
during decisions rather than general executive processing. In line with 
this, some researchers have demonstrated hippocampal involvement 
in inferring values of novel stimuli from previously encountered cues 
and stimuli4,5,7.These functions are thought to be related to the estab-
lished role of the hippocampus in episodic thinking and prospection, 
with some researchers proposing that it contributes to inferring values 
through sampling from memories or futuristic projections51–55.

In a broader conceptual context, such scenarios necessitating 
value inference based on mental time travel can be regarded as forms 
of decision-making under uncertainty. For instance, examining delay 
discounting in inter-temporal decisions reveals cognitive and com-
putational parallels with probabilistic discounting that characterizes 
uncertainty valuation56–60. This resemblance might stem from the inher-
ent risk associated with both discounting properties, representing 
the likelihood of obtaining probabilistic or delayed rewards57,59. But it 
might also reflect a temporal aspect in probabilistic discounting, where 
agents consider the attempts required to secure certain probabilistic 
rewards and the time investment58. The hippocampus seems to have 
a pivotal role in inter-temporal decision processes that particularly 
involve episodic future thinking, where the inclusion of episodic details 
of future rewards reduces delay discounting16,61,62. Hippocampal dam-
age in humans has been shown to reduce this effect and blunt sensitiv-
ity to delay changes and future rewards requiring episodic inputs16,63. 
Such effects could also be interpreted from an uncertainty-centred 
view, where the hippocampus’s episodic future thinking contributes 
to reducing the uncertainty attached to these values or delays.

This conceptualization is consistent with functional neuroimaging 
studies that have demonstrated hippocampal activation that correlates 
with the degree of uncertainty (entropy) of sensory stimuli when mak-
ing decisions23–26,64 as well as measures of reactivity to uncertainty (for 
example, information sampling speed) prior to committing to deci-
sions under uncertainty22. These investigations align with the view that 
regards uncertainty as a threatening stimulus (that is, one that carries 
risk signals) processed by the hippocampus-centred behavioural inhi-
bition system65. The hippocampus, according to this view, works as a 
mismatch-detection system comparing expectations with perceived 
stimuli and triggering behavioural avoidance when confronted by 
uncertainty (or other anxiety-inducing stimuli)65.

These features of uncertainty as a probabilistically discounted 
risk signal offer a key distinction from other costs such as physical 
effort, which is more deterministic. The results presented in this 
study provide evidence that the hippocampus is critically involved 
in valuation processes under the first context (uncertainty) but not 
the second (physical effort), providing specific insights into the role 
of the hippocampus in value-based decision-making. Counterintui-
tively, hippocampal damage was associated with the preservation of 
uncertainty estimation and valuation, but blunted sensitivity to other 
decision attributes (for example, reward and effort) if simultaneously 
considered with uncertainty.

These findings suggest that hippocampal damage might be related 
to a specific deficit in the integration of relatively intact uncertainty 
signals with other attributes that contribute to the value space. Note 
that this is unlikely to reflect a global deficit in decision-making or 
value computation, as participants demonstrated intact effort-based 
decision-making in Exp. 3 (Fig. 5). One possible explanation for this 
might be that people with hippocampal atrophy possess limited 
computational resources that prioritize uncertainty processing (and 
perhaps other risk-related signals) over other value determinants 
when computing subjective values to guide behaviour and decisions. 
In fact, the results from the active search experiment (Exp. 1) could 
also be interpreted as evidence of uncertainty prioritization, as ALE 
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Fig. 8 | Exps. 1, 2 and 4—intact localization and subjective uncertainty 
estimation in ALE patients. a, ALE patients (n = 19 in Exps. 1 and 2, n = 8 in 
Exp. 4) and controls (n = 19 in Exps. 1 and 2, n = 12 in Exp. 4) did not differ in 
their localization error (the distance between the centre of the blue disk and 
the hidden circle) for fixed levels of uncertainty, indicating similar motor and 
localization performance. b, Subjective uncertainty is measured as z-scored 
sign-flipped confidence ratings that participants reported before seeing the 
reward on offer (Exp. 2) or during training (Exp. 4, including catch trials). There 
was no significant difference between ALE patients and controls in this measure, 
indicating intact uncertainty estimation. The error bars in a show ±s.e.m. The 
solid lines and shading in b show mean values and 95% CIs. See Supplementary 
Table 16 for the full statistical details.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01855-2

patients sampled faster and more extensively than controls to abolish 
uncertainty before committing to their decisions (Fig. 3c), disregarding 
changes in sampling cost. The hippocampal role therefore might be to 
infer decision values by multiplying the probability of outcomes (that 
is, uncertainty) with other economic attributes such as reward and 
effort. These signals might then be related to other regions involved in 
subjective value estimation such as the anterior cingulate cortex and 
orbitofrontal cortex5,50,66–73.

These findings resonate with previous reports that highlighted the 
hippocampus as part of a wider brain valuation network, which includes 
regions that have established roles in processing rewards and costs 
such as dopaminergic brain regions (for example, the ventral striatum), 
the ventromedial prefrontal cortex and the anterior cingulate cortex74. 
The hippocampus shares functional and structural connections with 
these regions and is thought to provide contextual information that 
supports the valuation process5,50,66–70. The behavioural results in this 
study indicate that hippocampal processing of uncertainty signals 
might be a key determinant of how different brain regions evaluate 
rewards and costs when computing subjective values.

The neural mechanism underlying how hippocampal signals sup-
port reward-related behaviours is not yet fully established and will 
require further research. However, previous studies have demonstrated 
that the hippocampus might share future-related signals (for example, 
preplay and look-ahead signals) with dopaminergic regions involved 
in reward evaluation and processing13–15,75. Similarly, several forms of 
reward representation in the hippocampal formation and its extended 
networks have been reported, correlating with various reward-related 
behaviours and cognitive processes such as appetitive responses to 
rewards76,77, approach–avoid decisions78 and reward-guided explora-
tion1. While hippocampal-lesioned animals might show behavioural 
adjustments in responses to changes in reward in the environment79,80, 
these findings might differ between contexts and depend on the way 
reward is manipulated (for example, whether animals move from 
high-reward environments to low, or the opposite)77. Consumma-
tory responses of lesioned animals seem to be unaffected despite the 
changes in behaviour, challenging the notion that the role of the hip-
pocampus in reward processing is of a hedonic nature80, and further 
substantiating its goal-related and context-dependant contribution.

This uncertainty-sensitive hippocampal contribution might serve 
to support not only passive valuation but also active goal-directed 
behaviours such as information seeking to resolve uncertainty. While 
results from a previous investigation have shown that people with 
hippocampal damage exhibit less structured and stochastic visual 
information exploration than controls27, it was unclear how economic 
factors come into play. In this study, less optimal decision-making when 
uncertainty-related value computations had to occur was evident in 
ALE patients when they actively gathered information and sequentially 
updated the expected values of their decisions, as well as when they 
made passive decisions under uncertainty. The source of this disrup-
tion was related to less flexible decision adjustments based on reward 
changes in the environment while maintaining sensitivity to uncertainty. 
The results thus provide insights into how the hippocampus contributes 
to the economics of information gathering, in addition to its potential 
exploratory role81, which was not strongly affected in ALE patients as 
they managed to reduce uncertainty as efficiently as healthy controls.

A positive correlation was observed between total hippocampal 
volumes and reward sensitivity under uncertainty. Future investiga-
tions might build on this to investigate the drivers of this relationship. 
For example, such an association might be related to specific hip-
pocampal subfields and sub-circuits. In rats, reward cells have been 
described in the subiculum and CA1 subfields82, which might suggest 
that atrophy or disruption of these regions might have a more specific 
role in the process. Moreover, distinct hippocampal subfields and 
regions might have differential functional connectivity profiles with 
other cortical and sub-cortical regions that might be contributing to 

motivation and decision-making22,83–86. Hippocampal damage observed 
in ALE patients is likely to be associated with more widespread dis-
turbances of such networks contributing to reward valuation under 
uncertainty35,87–89. With advanced neuroimaging acquisition and analy-
sis techniques, it will be crucial to try to answer these questions at 
the subfield level and provide a more comprehensive account of hip-
pocampal contribution to motivation.

It is, however, challenging to fully ascertain whether the results of 
this study reflect a specific computational property of the hippocam-
pus or instead a general disruption of cognitive processing that might 
be observed with other brain lesions. Three factors make this possibility 
unlikely. The first is the correlation between behaviour and the sever-
ity of hippocampal atrophy, rather than other closely related regions 
such as the amygdala, which might have been affected by the disease 
process as well (Fig. 7 and Supplementary Fig. 5). Second, the results 
do not correlate with cognitive dysfunction indexed by ACE III scores 
(both total and subdomains, including memory) or metacognitive 
deficits in uncertainty estimation (Supplementary Fig. 8a and Sup-
plementary Tables 19 and 20). Third, the analysis of additional experi-
mental parameters, including performance on catch trials and closer 
examination of decisions made around task onset and finish points 
(Supplementary Fig. 8b,c), contradicts the idea that performance is 
a reflection of cognitive dysfunction or random responding. This is 
especially notable considering that the main results exhibit a selec-
tive deficit not globally affecting all value attributes, as one would 
expect with chance-level performance. Moreover, the task design and 
administration have been tailored to minimize such effects, including 
completing comprehension and debriefing questionnaires, using inter-
active tutorials for training and adding cues to reduce memory load. 
Nevertheless, despite these considerations, it might be impossible 
to completely rule out the effect of cognitive or memory deficits on 
decision-making in patients with hippocampal damage, and this could 
be a potential limitation of this study. It would be more reasonable to 
aim to interpret the findings within the broader context of hippocampal 
episodic and memory functions rather than in isolation, as highlighted 
in our previous discussions (for example, considering similarities 
between inter-temporal decisions and uncertainty).

In a similar vein, it could be argued that the results might merely 
reflect a difficulty effect imposed by more complex demands of uncer-
tainty cues than those of other cues. However, if this were the case, one 
would expect patients to take longer than controls when making deci-
sions under uncertainty (Exp. 2). This expectation did not align with 
the observed results. It would also be predicted to find slower reaction 
times in Exp. 2 (involving reward and uncertainty) than in Exp. 3 (involv-
ing reward and effort). On the contrary, the results demonstrated the 
opposite trend, indicating shorter deliberation time in ALE patients 
when confronted with uncertainty. This performance is consistent 
with the decision-making pattern observed in the study that tends to 
disregard other attributes in the presence of uncertainty, potentially 
leading to quicker decisions centred on uncertainty. A similar tendency 
is also evident in the active sampling experiment (Exp. 2), with faster 
sampling rates among ALE patients than among controls. While such 
analyses indirectly provide some insights into complexity effects on 
performance, future studies might want to focus on disentangling 
this experimentally in task designs that feature analogous cues for 
the attributes being measured. Along these lines, it would also be 
insightful to contextualize and establish the empirical connection 
between the observed pattern of the results in this study and a broader 
spectrum of potential hippocampal roles in goal-directed behaviour, 
such as task representation from integrating complex features70,90,91 
and experimental range adaptation92. Impairment in these functions 
might lead to diminished sensitivity to some task features when agents 
are required to integrate them to guide decisions and behaviour63,93,94.

The present study has a few other limitations. First, it is possible 
that the dissociation between effort and uncertainty in Exp. 2 and  
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Exp. 3 might be not well delineated. For example, in the Circle Quest par-
adigm, one might need to consider effort costs such as moving the blue 
localization disk on the screen or additional cognitive effort required 
to translate the configuration of dots into uncertainty estimates. Such 
costs can also affect active sampling behaviour, influencing the speed 
and efficiency of gathering information39 (see also Supplementary 
Information for a computational model characterizing these effects). 
Similarly, the effort task (Exp. 3) might theoretically involve some ele-
ments of uncertainty (for example, aligning visualized effort levels 
to subjective cost estimates). Second, while Exp. 4 was designed to 
address such limitations, only a subset of the participants performed it, 
which might not be strictly representative of the larger group. This task 
also introduced a more complex decision structure that might require 
more planning (two steps to reach goals) and additional cognitive load 
on memory and attention. It is important to discuss and consider the 
results from one experiment in the context of the other experiments 
performed to obtain a bigger picture of how the hippocampus might 
be contributing to value processing. Finally, it might also be beneficial 
for future studies to obtain more objective measures of such processes 
(for example, pupillometry for reward sensitivity40,95), which could help 
bridge the gap with conclusions based on subjective estimates obtained 
from decision-making and goal-directed behaviour.

In conclusion, the results presented here provide evidence from 
human participants that the hippocampus plays a crucial role in 
decision-making. This contribution appears to be specific to con-
texts that involve uncertainty, influencing how people evaluate other 
economic attributes such as reward and effort.

Methods
Participants
In Exps. 1–3, 19 individuals with a previously established diagnosis 
of ALE (age: μ = 60.00 years, s.d. = 11.36 years, 13 males) were tested 
along with 19 healthy age- and gender-matched controls (age: μ = 61.16 
years, s.d. = 11.71 years, 13 males). In Exp. 4, 8 ALE patients and 12 con-
trols completed an additional follow-up task. The sample size was deter-
mined on the basis of previous comparable work in ALE patients34,36,37 
as well as previous research using the behavioural paradigms used in 
the study22,39,40,45. All participants gave written consent to take part in 
the study and were offered monetary compensation for their time. 
The study was approved by the University of Oxford ethics committee 
(RAS ID No. 248379, Ethics Approval Reference No. 18/SC/0448). Sup-
plementary Tables 1 and 2 show the demographics and characteristics 
of the study groups. Due to a technical error during testing, two blocks 
(out of five) were missing from the passive choices task for one patient 
(code 14 in Supplementary Table 2). Analyses were conducted with and 
without this patient’s data, and there was no difference in the results or 
conclusions. After completing a practice session, the participants had 
to correctly answer all the questions of a task comprehension quiz to 
be eligible to do the task and continue the experiment.

External measures
All participants underwent a cognitive assessment using ACE III96 and 
an executive function assessment with digit span. They also completed 
self-report questionnaires on apathy (Apathy Motivation Index97), 
depression (Beck Depression Inventory-II98), fatigue (Fatigue Severity 
Scale99) and hedonic experience (Snaith–Hamilton Pleasure Scale100).

Procedure
The tasks were presented on a 17-inch touchscreen PC using MATLAB 
(MathWorks, version 2018b) and Psychtoolbox101,102 version 3. Testing 
was done in a quiet room with an experimenter present at all times. The 
participants sat within reaching distance of the screen (~50 cm) and were 
instructed to use the index finger of their dominant hand to respond. The 
task environment was adjusted according to handedness (for example, 
uncertainty rating on the side of the dominant hand in Exps. 2 and 3).

Experimental paradigm for Exps. 1 and 2
A modified, shorter version of the Circle Quest task was used (described 
in detail in ref. 39). In Exp. 1, the participants performed the active sam-
pling version of the task designed to test active information gathering 
prior to committing to decisions. In Exp. 2, the participants performed 
the passive choices/decisions version designed to test decision-making 
under fixed, experimentally defined levels of uncertainty and reward. 
The participants were told that their goal in the two parts of the task was 
to maximize reward. All participants performed a training task followed 
by the active task and then the passive task. The purpose of this order 
was to ensure that by the time the participants performed the passive 
choices version of the task, they had extensive training and exposure 
to the task environment and scoring function through their interaction 
with the task during the active version. The average total duration of 
the testing session was approximately one hour (average duration in 
minutes ± s.d.: training, 7.38 ± 2.96; active sampling, 30.11 ± 5.20; pas-
sive choices, 22.86 ± 1.48).

Training and exposure. The task was explained to the participants 
using an interactive tutorial in the presence of the experimenter. In this 
interactive tutorial, the participants were simply required to localize 
a hidden purple circle on the screen. This circle had a fixed size on all 
trials (radius, 130 pixels; area, 5.80% of the search space). Two purple 
circles of the same size were always present on the right and left sides 
of the screen as a visual reminder of the circle on quest. This served 
to limit the memory demands of the task. Clues about the location of 
the hidden circle could be obtained by touching the screen. If a purple 
dot appeared where they touched (radius, 4 pixels), this indicated that 
the location was inside the hidden circle. Alternatively, if a white dot 
appeared where they touched, the location was outside the hidden 
circle. After completing the search, they were asked to move a blue 
disk of the same size as the hidden circle on top of where they thought 
the hidden circle was located, on the basis of the information they had 
gathered. During this tutorial, the participants performed five trials 
with no constraints on the number of samples they could acquire and 
without any sampling penalty. They were also encouraged to ask the 
experimenter in case they had any questions.

Following this short introduction to the game, the participants 
performed a training task that included 20 trials. The goal of this task 
was to (1) practise localizing the hidden circle for various levels of 
uncertainty and (2) expose the participants to the scoring function. On 
each trial of this training task, a configuration of eight dots (four purple 
and four white) was displayed on the screen, and the participants were 
required to move the blue disk on top of where they thought the hidden 
circle was located. Different configurations mapped onto different 
levels of uncertainty. For example, displays with spaced-out purple 
dots represented lower levels of uncertainty than displays in which 
the purple dots were clustered more closely. The former configuration 
had a lower number of possible circle placements that were compatible 
with the dots displayed on the screen (purple dots should be inside 
the hidden circle), and consequently, the expected localization error 
(EE, a quantitative measure of uncertainty) for such a configuration 
was smaller. EE was calculated as the probability-weighted average of 
all possible errors a participant could incur by placing the blue disk at 
the best possible location (the centroid of posterior belief) (Fig. 1b; for 
more details, see Supplementary Information). The two circles on the 
right and left sides of the search space contained the reward at stake, 
which the participants could obtain if they managed to perfectly local-
ize the hidden circle. After the participants placed the blue disk, the 
location of the hidden circle was revealed, and the score they obtained 
for this localization appeared. The score was calculated as the reward 
at stake minus the localization error penalty upon placing the blue disk 
(ηe × e), where e is the distance between the centre of the blue disk and 
the centre of the hidden circle in pixels, and ηe is the spatial error cost 
per pixel, which was constant and equal to 1.2 credits per pixel.
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Active sampling task (Exp. 1). In the active version of the task (Fig. 1), 
the participants could reduce their uncertainty about the location of 
the hidden circle by actively sampling the search space—that is, touch-
ing the screen to obtain information. Similar to the training tutorial, 
this provided them with binary information about the location of 
that sample in relation to the hidden circle. If where they touched 
was inside the hidden circle, the sample was purple. Otherwise, the 
sample was white. At the beginning of every trial, the participants 
had 18 seconds to sample whenever, wherever and how much they 
wanted. After this, they were required to move the blue disk to where 
they thought the hidden circle was located to collect monetary credits. 
The participants started each trial with an initial reward reserve, R0, 
from which they lost credits each time they acquired a new sample 
depending on the cost of sampling, ηs, on that trial. There were two 
levels of initial reward (R0: low, 95 credits; high,130 credits) and two 
levels of sampling cost (ηs: low, 1 credit per sample; high, 5 credits 
per sample), giving rise to four conditions in four blocks that were 
counterbalanced between participants. Each condition included 15 
trials. The score (in credits) that participants obtained on each trial  
was calculated as follows:

Score = R0 − s × ηs − e × ηe (1)

where R0 is the initial reward reserve, s is the number of samples 
obtained, ηs is the cost of acquiring a new sample, e is the placement 
error and ηe is the error cost per pixel, which was fixed and equal to 1.2 
credit per pixel.

Quantifying deviations from optimal behaviour. The expected value, 
EV, changed dynamically with each sample, s, as follows:

EV(s) = R0 − s × ηs − EE(s) × ηe (2)

where EV(s) is the expected value at the sth sample, which is calculated 
as what is left of the initial reward reserve R0 after subtracting the cred-
its lost during sampling (s × ηs) and the expected localization error pen-
alty (EE(s) × ηe). The optimal number of samples to acquire corresponds 
to the number of samples, s⋆, that maximizes the expected value. Devia-
tion from optimal sampling (either over- or undersampling) is the 
difference between the number of samples obtained and s⋆. Note that 
in the equation above, the rate at which EE decays from one sample to 
the next depends on the participant’s choices of sampling locations 
(Fig. 3a). Therefore, the dynamics of EE over successive samples (that 
is, the efficiency of the search) may vary across trials and participants. 
Sampling efficiency was parameterized as the information extraction 
rate, α, which was computed for each trial as follows:

̂EE(n,1) =
∑60

i=1 EE(i,1)
60

̂EE(n,s) = ( ̂EE(n,1) − ̂EE∞) × (1 − αn)
s−1 + ̂EE∞

0 < α < 1 and ̂EE∞ > 0

(3)

where n is the trial number, s is the sample number within the trial (the 
0th sample is the sample displayed on the screen at the beginning of 
the trial, before the participants touched the screen; Fig. 1) and ̂EE∞ is 
the asymptotic EE level reflecting limitations in uncertainty reduction. 
This model was fitted using fmincon in MATLAB (MathWorks, version 
2019a) with a minimum mean square error method.

Passive choices task (Exp. 2). Each trial of the passive version of the 
task had two parts (Fig. 1c,d). First, the participants saw a configura-
tion of dots on the screen (four purple dots and four white dots) that 
mapped onto an experimentally defined level of uncertainty, EE. On the 
basis of this configuration, the participants were required to indicate 

how confident they were about the location of the hidden circle. They 
could do this by touching a rating scale on the side of the screen ranging 
between 0 and 100. A value of 0 on this scale meant that the participant 
had no idea where the hidden circle was, and 100 meant that the par-
ticipant knew exactly where it was. Uncertainty estimation accuracy, 
a measure of how objective uncertainty is translated into subjective 
estimates, was defined as the slope of the relationship between EE and 
sign-flipped confidence ratings.

Next, once the participants had reported their confidence, the 
reward on offer appeared. They then were required to make ‘Yes/No’ 
decisions on the basis of whether they wished to place the blue disk 
given the reward on offer and the uncertainty they had just rated. 
There were four reward levels (R: 40, 65, 90 and 115 credits) and five 
uncertainty levels (EE: 16.3–24.4, 27.1–38.9, 57.5–58.9, 73.33–74.18 
and 91.9–93.3 pixels). The participants were told that ten of the offers 
they accepted from the 100 trials would be randomly selected at the 
end of the experiment, and they would be required to play them (that 
is, localize the hidden circle using the blue disk). The credits they col-
lected on these ten trials determined the monetary rewards they won 
in this version of the task. The score was calculated in the same way as 
in the training task. The participants were rewarded at a rate of €1 per 
150 credits (Supplementary Table 25).

Experimental paradigm for Exp. 3
A modified version of a well-validated effort-based decision-making 
task was used41–46. This task had a similar design as the Circle Quest 
passive choices task, but instead of uncertainty as the discounting 
attribute, the participants evaluated reward against physical effort 
(Fig. 2a). Reward in the task was represented as apples on trees, and 
effort levels were indicated by bars on the tree trunks. The higher the 
effort bar, the more effort the participants needed to exert to obtain 
the apples. Effort in the task was exerted by squeezing a hand-held 
dynamometer. The participants were first asked to squeeze the handle 
as hard as they could to measure their MVC. Crucially, the effort handle 
was calibrated on the basis of MVC for each participant. They were then 
familiarized with the different effort levels that they would encounter 
when making decisions. These effort levels corresponded to 16%, 32%, 
48%, 64% and 80% of MVC. The participants experienced each effort 
level twice before performing the decision phase of the task, where 
they had to evaluate the worthiness of the reward (apples) against these 
effort levels. There were five reward levels corresponding to different 
numbers of apples (1, 4, 7, 10 and 13). The participants could indicate 
whether they wanted to accept or reject the offer on the screen by 
pressing either the left or right arrow on the keyboard to select ‘Yes’ or 
‘No’, which were displayed on the sides of the screen. The positions of 
‘Yes’ and ‘No’ changed randomly between trials. The participants were 
told that 10 of their decisions from the 125 trials would be randomly 
selected at the end of the experiment and that they would have to play 
them (that is, squeeze the effort handle to obtain the reward).They 
were rewarded on the basis of performance on these trials at a rate of 
€1 per ten apples. Before making their decisions, the participants had 
the chance to perform five practice decisions.

Experimental paradigm for Exp. 4
In Exp. 4, a new version of Circle Quest (Exps. 1 and 2) was designed to 
investigate effort-based decision-making under uncertainty (Fig. 2). 
The participants were familiarized with uncertainty, reward and effort 
cues using the same training as in Exps. 1–3. This was done in three 
stages:

•	 Circle localization training. This was similar to what was done in 
Exps. 1 and 2.

•	 Confidence rating. Unlike in Exp. 2, confidence ratings were 
blocked and reported during the training phase rather than 
prior to each decision in the decision phase. This was done  
to ensure that offers with and without uncertainty were  
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experimentally matched during the decision phase. Ten catch 
trials were added to increase the range of uncertainty to fully 
capture subjective estimation of uncertainty as in Exp. 2. These 
included five trials at the lower range of uncertainty (EE < 23 
pixels) and five at the higher range (EE > 91 pixels), resulting in 
an uncertainty range of EE between 17.9 and 93.3 pixels.

•	 Effort familiarization and calibration. This was the same  
as in Exp. 3.

After training, the participants were required to respond to (accept 
or reject) offers that had three attributes: reward, uncertainty and 
effort (Fig. 2a). Reward was presented as credits that the participants 
could win if they managed to complete two steps: (1) achieve the 
required level of effort (as in Exp. 3) and (2) find the location of the 
hidden circle without errors (as in Exps. 1 and 2). The blue disk used 
to localize the hidden circle appeared only when the required level 
of effort was achieved. If the effort level was met, the participants 
could then win credits depending on how far their localization using 
the blue disk was from the true location of the hidden purple circle. 
There were four levels of reward (R: 40, 65, 90 and 115 credits; the 
same as in Exp. 2), five levels of effort (16%, 32%, 48%, 64% and 80% of 
MVC; the same as in Exp. 3) and two levels of uncertainty (present and 
absent). The absence of uncertainty was indicated by showing the 
true location of the hidden circle on the screen when the offers were 
presented. On trials in which uncertainty was present, it corresponded 
to the midrange of EE used in Exp. 2 (31.8–73.95 pixels). This resulted 
in 40 different trial types (four reward levels × five effort levels × two 
uncertainty levels), and each was repeated five times over ten blocks 
(200 trials in total). Catch trials (ten in total, one in each uncertainty 
block) were also included in the decision phase. These were the catch 
trials used in the confidence rating phase that featured different 
uncertainty levels than what was otherwise used in the experiment. 
Each of the two levels of uncertainty (high and low) in these catch 
trials featured the five levels of effort. Such trials were designed to 
detect random responding in the task, especially when compared to  
general task performance.

The participants were told that at the end of the decision phase, 
24 trials (12 with uncertainty) from the total 210 trials (including catch 
trials) would be randomly selected for them to play. Performance on 
these trials decided the reward that the participants eventually won. 
Similar to Exp. 2, they were rewarded at a rate of €1 per 150 credits 
(Supplementary Table 25).

Statistical analyses of behavioural data
Statistical analyses and modelling were done in MATLAB R2019a or R 
version 4.0.2. Generalized mixed-effects models and robust regression 
models were fitted using the fitglm and fitlm functions in MATLAB, 
respectively. Bayesian mixed-effects modelling was performed using 
the Stan computational framework (http://mc-stan.org/) accessed 
using brms in R version 3.5.2 (ref. 103). Bayes factors were calculated 
using the brms hypothesis function. For group comparisons, we used 
Student’s t-test if parametric assumptions were fulfilled and the Wil-
coxon rank sum test if not. All statistical tests were two-tailed with 
a testing level (α) of 0.05. The full description of the mixed-effects 
models used and the statistical results is reported in the Supplemen-
tary Information.

MR data acquisition
MRI scans were obtained at the Acute Vascular Imaging Centre at 
John Radcliff Hospital (Oxford) using a SIEMENS Verio 3T scanner. 
High-resolution T1-weighted structural MR images (MPRAGE; 208 
sagittal slices of 1 mm thickness; voxel size, 1 mm isotropic; TR/TE, 
2,000/1.94 ms; flip angle, 8°; FOV read, 256; iPAT, 2; prescan-normalize) 
and T2-weighted fluid-attenuated inversion recovery images (192 
sagittal slices of 1.05 mm thickness; voxel size, 1 × 1 × 1.1; TR/TE, 

5,000/397 ms; FOV read, 256; iPAT, 2; partial Fourier, 7/8; fat satura-
tion; prescan-normalize) were acquired. Four patients and two controls 
were not MRI compatible or did not consent to be scanned; therefore, 
imaging data were acquired for 15/19 patients and 17/19 controls. The 
average time intervals between MRI and behavioural testing for the 
ALE and control groups were 49.73 days (s.d. = 59.00) and 109.82 days 
(s.d. = 93.93), respectively.

MR data analysis
VBM was performed to compare grey matter volumes between patients 
and controls using FSL-VBM104 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FSLVBM). An optimized VBM protocol105 was performed using FSL ver-
sion 6.0 (ref. 106). Nonlinear registration was used to register structural 
brain-extracted and grey-matter-segmented images to the MNI 152 
standard space. A study-specific grey matter template was then cre-
ated using the resulting images. To avoid having a biased template, 15 
controls were randomly selected to match the 15 patients who had MRI 
scans. Nonlinear registration was used to register all native grey matter 
images to the study-specific template, and this was modulated using 
the Jacobian of the warp field. These modulated grey matter images 
were then smoothed with an isotropic Gaussian kernel with a sigma 
of 4 mm. Finally, non-parametric testing using randomise with 5,000 
permutations and corrected for multiple comparisons across space was 
used to detect voxel-wise differences in grey matter volumes between 
patients and controls.

Whole hippocampal volumes were extracted using T1 and T2 imag-
ing in Freesurfer version 7.1 (http://surfer.nmr.mgh.harvard.edu/). The 
automated standard segmentation protocol was used. Hippocampal 
volumes were adjusted for intracranial volume (ICV) using the follow-
ing equation107,108:

Vadj = V − β × (ICV − ICV) (4)

where Vadj and V are the adjusted and observed volumes, β is the slope 
of the relationship between ICV and V in a larger sample of healthy 
controls with similar demographics (n = 31, including the study sample 
and participants recruited for a different study), and ICV  is the mean 
ICV in this control sample. Amygdala volumes were also extracted and 
used as a control comparison region (Supplementary Fig. 5).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Anonymized participant data have been deposited on the Open Science 
Framework platform: https://osf.io/u4n2a/ (ref. 109).

Code availability
The code for running the experiments and replicating the main results 
reported in the manuscript has been deposited on the Open Science 
Framework platform at https://osf.io/u4n2a/ (ref. 109).
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection MATLAB (The MathWorks inc., version 2018b), Psychtoolbox v3. 

Data analysis MATLAB (The MathWorks inc., version 2019a), R version 3.5.2, Freesurfer version 7.1, FSL version 6.0. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Anonymised participant data have been deposited on the Open Science Framework platform: https://osf.io/u4n2a/. 
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Gender was determined based on self-reports.  
Used only for purposes of matching patient and controls and as covariate where applicable.  

Reporting on race, ethnicity, or 
other socially relevant 
groupings

N/A

Population characteristics Exps. 1, 2 and 3:  
N = 36 (19 ALE patients and 19 healthy Controls).  
Age and gender: ALE (age: μ = 60.00, SD = ±11.36, 13 males). Controls (age: μ = 61.16, SD = ±11.71, 13 males). 
 
 In Exp. 4, N = 20  (eight ALE patients and 12 controls)  
Age and gender: ALE (age: μ =55,  SD = ±12.55, 6males). Controls (μ = 64.76, SD = ±7.42, 9 males) 
 
Details characteristics of the two groups are described Tables in S1, S2, and S3 in Supplementary materials. 

Recruitment The ALE patient group was recruited based on a confirmed diagnosis through direct referrals from clinicians, whenever a 
patient with the condition was identified, in addition to the pre-existing pool of patients known to the cognitive neurology 
group in Oxford. All eligible patients identified during the data collection period were contacted and recruited upon their 
agreement to participate in the study. Age- and gender-matched controls were selected from a pool of volunteers who 
expressed interest in contributing to cognitive neurology research in Oxford. A computer code that matched age and gender 
and randomly selected eligible controls was utilized. Contact with potential candidates was established via phone and/or 
email.

Ethics oversight University of Oxford ethics committee (RAS ID: 248379, Ethics Approval Reference: 18/SC/0448)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative case control lesion study.  Data mainly from behavioural experiments. 

Research sample Autoimmune limbic encephalitis patients with LGI1/CASPRE2 anti-bodies and age- and gender matched controls. Demographics and 
group characteristics are summarized in Tables S1 and S2 of the manuscript.  19 individuals with a previously established diagnosis of 
ALE (age: μ = 60.00, SD = ±11.36, 13 males) were tested along with 19 healthy age- and gender-matched controls (age: μ = 61.16, SD 
= ±11.71, 13 males). In Exp. 4, eight ALE patients and 12 controls completed an additional follow-up task.  
 
ALE patients are considered a lesion model for for focal hippocampal damage in humans, which is key to the question of the study 
investigating the role of the hippocampus in decision making.  The study sample is representative of this group of patients with 
confirmed diagnosis and neuroimaging findings showing hippocampal atrophy. 

Sampling strategy Sampling relied on convenience and availability of patients as they present to the neurology clinic in Oxford or if they known patients 
from our database agreed to take part. Given the rarity of the condition, any patient in our data base who fitted the inclusion criteria 
was referred to take part in the study when it was running or invited to participate.  Sample size was determined based on previous 
comparable work in ALE patients (Hanert et al., 2019; Spano et al., 2020a,b) as well as `previous research using the behavioural 
paradigms used in the study (Attaallah et al., 2022; Le Heron et al., 2018a,b; Petitet et al., 2021). See also description of recruitment 
above. 

Data collection All tasks were presented on a 17-inch touchscreen PC using MATLAB version 2018a and Psychtoolbox version 3. Participants sat in a 
quiet testing room, within reaching distance of the screen (about 50 cm). Questionnaire data were collected on an iPad tablet using 
RedCaP and Qualtrics.   
 
An experimenter (sitting about 2-3 meters behind the participants) was present in the room at all time during behavioural testing. 
Their role was to explain the task at the beginning of the session (using an automated instruction script), and check that participants 
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were engaged in the task throughout the session. They did not provide strategy advices when participants asked.   
 
Researchers were not blind to the experimental condition or study hypothesis, but their influence on performance was abolished by 
the use of automated, computerised testing procedures. 
 
MRI scans were obtained at Acute Vascular Imaging Centre (AVIC) at John Radcliff Hospital (Oxford) using SIEMENS Verio 3T scanner. 
Detailed description of the data collection process is explained in the manuscript. 

Timing Experiments 1--3: Feb 2019- Feb 2020.  
Experiment 4: Feb 2022  May 2022 (Post-covid interruption, especially collecting data from vulnerable patient group) 

Data exclusions No exclusions.  
A number of rials from one of the patients for Exp. 2 were lost due to technical error. Data was still usable. 

Non-participation Exp.4:  
11 patients: death (1), clinical deterioration (2), moved abroad (1), did not reply or declined (7).  
7 controls: moved abroad (1), did not reply or declined (6). 

Randomization Participants were assigned to two groups: controls and cases. The cases were ALE patients. No randomisation is applicable across the 
two groups.  
However, behavioural task trials were randomised and study blocks were counter-balanced across participants. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type N/A: Offline structural imaging. 

Design specifications N/A: no task-fMRI data collected

Behavioral performance measures N/A: Reward and uncertainty sensitivity from Exp. 2 from offline behavioural tasks (not task-fMRI). 

Acquisition
Imaging type(s) Structural 

Field strength 3T

Sequence & imaging parameters r. High-resolution T1-weighted structural MR images (MPRAGE; 208 sagittal slices of 1 mm thickness, voxel size = 1 mm 
isotropic, TR/TE = 2000/1.94 ms; flip angle = 8◦, FOV read = 256, iPAT =2, prescan-normalise) and T2 weighted fluid 
attenuated inversion recovery (FLAIR) images (192 sagittal slices of 1.05 mm thickness, voxel size = 1×1×1.1, TR/TE = 
5000/397 ms; FOV read = 256; iPAT = 2, partial Fourier = 7/8, fat saturation, prescan-normalise) were acquired.

Area of acquisition Whole brain. 

Diffusion MRI Used Not used

Preprocessing

Preprocessing software FSL 6.0 and FreeSurfer 7.1. 
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Normalization  Non-linear registration was used to register structural brain-extracted and grey matter-segmented images to the MNI 152 
standard space.

Normalization template MNI 152

Noise and artifact removal N/A: Structural imaging 

Volume censoring N/A: Structural imaging 

Statistical modeling & inference

Model type and settings N/A: Structural analysis with GLM investigating VBM group differences. 

Effect(s) tested N/A

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

VBM (voxel-wise). 

Correction Non-parametric testing using  randomise in FSL with 5000 permutations and corrected for multiple comparisons across space 
was used to detect voxel-wise differences in grey matter volumes between patients and controls.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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