Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Alloys

Resistance to fatigue

An additively manufactured AlSi10Mg alloy shows high fatigue strength, even close to its tensile strength, for micro-sized samples. The fine cells in its inherent three-dimensional network are considered as cages to limit damage accumulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fatigue performance of aluminium alloys.

References

  1. Dan, C. et al. Nat. Mater. https://doi.org/10.1038/s41563-023-01651-9 (2023).

    Article  Google Scholar 

  2. Zhang, Q., Zhu, Y., Gao, X., Wu, Y. & Hutchinson, C. Nat. Commun. 11, 5198 (2020).

    Article  CAS  Google Scholar 

  3. Brandl, E., Heckenberger, U., Holzinger, V. & Buchbinder, D. Mater. Des. 34, 159–169 (2012).

    Article  CAS  Google Scholar 

  4. Tang, M. & Pistorius, P. C. Int. J. Fatigue 94, 192–201 (2017).

    Article  CAS  Google Scholar 

  5. He, P. et al. Acta Mater. 220, 117312 (2021).

    Article  CAS  Google Scholar 

  6. Ch, S. R., Raja, A., Jayaganthan, R., Vasa, N. J. & Raghunandan, M. Mater. Sci. Eng. A 781, 139180 (2020).

    Article  CAS  Google Scholar 

  7. Aboulkhair, N. T., Maskery, I., Tuck, C., Ashcroft, I. & Everitt, N. M. Mater. Des. 104, 174–182 (2016).

    Article  CAS  Google Scholar 

  8. Suryawanshi, J. et al. Acta Mater. 115, 285–294 (2016).

    Article  CAS  Google Scholar 

  9. Siddique, S., Awd, M., Tenkamp, J. & Walther, F. J. Mater. Res. 32, 4296–4304 (2017).

    Article  CAS  Google Scholar 

  10. Uzan, N. E., Ramati, S., Shneck, R., Frage, N. & Yeheskel, O. Addit. Manuf. 21, 458–464 (2018).

    CAS  Google Scholar 

  11. Uzan, N. E., Shneck, R., Yeheskel, O. & Frage, N. Mater. Sci. Eng. A 704, 229–237 (2017).

    Article  CAS  Google Scholar 

  12. Awd, M. et al. Materials 11, 17 (2017).

    Article  Google Scholar 

  13. Mower, T. M. & Long, M. J. Mater. Sci. Eng. A 651, 198–213 (2016).

    Article  CAS  Google Scholar 

  14. Damon, J., Dietrich, S., Vollert, F., Gibmeier, J. & Schulze, V. Addit. Manuf. 20, 77–89 (2018).

    CAS  Google Scholar 

  15. Haridas, R. S., Thapliyal, S., Agrawal, P. & Mishra, R. S. Sci. Eng. A 798, 140082 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Hutchinson.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutchinson, C. Resistance to fatigue. Nat. Mater. 22, 1163–1164 (2023). https://doi.org/10.1038/s41563-023-01666-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01666-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing