Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-distance spin transport through a graphene quantum Hall antiferromagnet

A Publisher Correction to this article was published on 09 July 2018

This article has been updated

Abstract

Because of their ultrafast intrinsic dynamics and robustness against stray fields, antiferromagnetic insulators1,2,3 are promising candidates for spintronic components. Therefore, long-distance, low-dissipation spin transport and electrical manipulation of antiferromagnetic order are key research goals in antiferromagnetic spintronics. Here, we report experimental evidence of robust spin transport through an antiferromagnetic insulator, in our case the gate-controlled state that appears in charge-neutral graphene in a magnetic field4,5,6. Utilizing quantum Hall edge states as spin-dependent injectors and detectors, we observe large, non-local electrical signals across charge-neutral channels that are up to 5 μm long. The dependence of the signal on magnetic field, temperature and filling factor is consistent with spin superfluidity1,2,4,7,8,9,10 as the spin-transport mechanism. This work demonstrates the utility of graphene in the quantum Hall regime as a powerful model system for fundamental studies in antiferromagnetic spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device geometry, operating principle and characterization.
Fig. 2: Non-local transport data at T=260 mK.
Fig. 3: Bias and temperature dependence of non-local signal from Device 1.

Similar content being viewed by others

Change history

  • 09 July 2018

    In the version of this Letter originally published, the number in the middle yellow box of Fig. 2d was incorrectly given as +2; it should have been 0. This has now been corrected.

References

  1. Baltz, V. et al. Antiferromagnetism: the next flagship magnetic order for spintronics? Rev. Mod. Phys. 90, 015005 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  2. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

    Article  ADS  Google Scholar 

  3. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  ADS  Google Scholar 

  4. Takei, S., Yacoby, A., Halperin, B. I. & Tserkovnyak, Y. Spin superfluidity in the ν=0 quantum Hall state of graphene. Phys. Rev. Lett. 116, 216801 (2016).

    Article  ADS  Google Scholar 

  5. Young, A. F. et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature 505, 528–532 (2014).

    Article  ADS  Google Scholar 

  6. Kharitonov, M. Edge excitations of the canted antiferromagnetic phase of the ν=0 quantum Hall state in graphene: A simplified analysis. Phys. Rev. B 86, 075450 (2012).

    Article  ADS  Google Scholar 

  7. Takei, S., Moriyama, T., Ono, T. & Tserkovnyak, Y. Antiferromagnet-mediated spin transfer between a metal and a ferromagnet. Phys. Rev. B 92, 020409 (2015).

    Article  ADS  Google Scholar 

  8. Takei, S., Halperin, B. I., Yacoby, A. & Tserkovnyak, Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014).

    Article  ADS  Google Scholar 

  9. Konig, J., Bonsager, M. C. & MacDonald, A. H. Dissipationless spin transport in thin film ferromagnets. Phys. Rev. Lett. 87, 187202 (2001).

    Article  ADS  Google Scholar 

  10. Qaiumzadeh, A., Skarsvåg, H., Holmqvist, C. & Brataas, A. Spin superfluidity in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 118, 137201 (2017).

    Article  ADS  Google Scholar 

  11. Tsoi, M. et al. Generation and detection of phase-coherent current-driven magnons in magnetic multilayers. Nature 406, 46–48 (2000).

    Article  ADS  Google Scholar 

  12. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  13. Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Article  ADS  Google Scholar 

  14. Wang, H. L., Du, C. H., Hammel, P. C. & Yang, F. Y. Antiferromagnonic spin transport from Y3Fe5O12 into NiO. Phys. Rev. Lett. 113, 097202 (2014).

    Article  ADS  Google Scholar 

  15. Hahn, C. et al. Conduction of spin currents through insulating antiferromagnetic oxides. Europhys. Lett. 108, 57005 (2014).

    Article  ADS  Google Scholar 

  16. Moriyama, T. et al. Anti-damping spin transfer torque through epitaxial nickel oxide. Appl. Phys. Lett. 106, 162406 (2015).

    Article  ADS  Google Scholar 

  17. Wang, H. L., Du, C. H., Hammel, P. C. & Yang, F. Y. Spin transport in antiferromagnetic insulators mediated by magnetic correlations. Phys. Rev. B 91, 220410 (2015).

    Article  ADS  Google Scholar 

  18. Nomura, K. & MacDonald, A. H. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 96, 256602 (2006).

    Article  ADS  Google Scholar 

  19. Alicea, J. & Fisher, M. P. A. Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes. Phys. Rev. B 74, 075422 (2006).

    Article  ADS  Google Scholar 

  20. Abanin, D. A. et al. Dissipative quantum Hall effect in graphene near the Dirac point. Phys. Rev. Lett. 98, 196806 (2007).

    Article  ADS  Google Scholar 

  21. Goerbig, M. O., Moessner, R. & Doucot, B. Electron interactions in graphene in a strong magnetic field. Phys. Rev. B 74, 161407 (2006).

    Article  ADS  Google Scholar 

  22. Kim, S., Lee, K. & Tutuc, E. Spin-polarized to valley-polarized transition in graphene bilayers at ν=0 in high magnetic fields. Phys. Rev. Lett. 107, 016803 (2009).

    Article  ADS  Google Scholar 

  23. Jiang, Z., Zhang, Y., Stormer, H. L. & Kim, P. Quantum Hall states near the charge-neutral Dirac point in graphene. Phys. Rev. Lett. 99, 106802 (2007).

    Article  ADS  Google Scholar 

  24. Checkelsky, J. G., Li, L. & Ong, N. P. Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100, 206801 (2008).

    Article  ADS  Google Scholar 

  25. Checkelsky, J. G., Li, L. & Ong, N. P. Divergent resistance at the Dirac point in graphene: Evidence for a transition in a high magnetic field. Phys. Rev. B 79, 115434 (2009).

    Article  ADS  Google Scholar 

  26. Giesbers, A. J. M. et al. Gap opening in the zeroth Landau level of graphene. Phys. Rev. B 80, 201403 (2009).

    Article  ADS  Google Scholar 

  27. Zhao, Y., Cadden-Zimansky, P., Jiang, Z. & Kim, P. Symmetry breaking in the zero-energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 066801 (2010).

    Article  ADS  Google Scholar 

  28. Young, A. F. et al. Spin and valley quantum Hall ferromagnetism in graphene. Nat. Phys. 8, 550–556 (2012).

    Article  Google Scholar 

  29. Zhang, Y. et al. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).

    Article  ADS  Google Scholar 

  30. Sun, Q.-f & Xie, X. C. Spin-polarized ν=0 state of graphene: A spin superconductor. Phys. Rev. B 87, 245427 (2013).

    Article  ADS  Google Scholar 

  31. Abanin, D. A., Lee, P. A. & Levitov, L. S. Spin-filtered edge states and quantum Hall effect in graphene. Phys. Rev. Lett. 96, 176803 (2006).

    Article  ADS  Google Scholar 

  32. Takei, S. & Tserkovnyak, Y. Superfluid spin transport through easy-plane ferromagnetic insulators. Phys. Rev. Lett. 112, 227201 (2014).

    Article  ADS  Google Scholar 

  33. Wu, F., Sodemann, I., Araki, Y., MacDonald, A. H. & Jolicoeur, T. SO(5) symmetry in the quantum Hall effect in graphene. Phys. Rev. B 90, 235432 (2014).

    Article  ADS  Google Scholar 

  34. Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).

    Article  ADS  Google Scholar 

  35. Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011).

    Article  ADS  Google Scholar 

  36. Studer, M. & Folk, J. A. Origins of nonlocality near the neutrality point in graphene. Phys. Rev. Lett. 112, 116601 (2014).

    Article  ADS  Google Scholar 

  37. Chen, H., Kent, A. D., MacDonald, A. H. & Sodemann, I. Nonlocal transport mediated by spin supercurrents. Phys. Rev. B 90, 220401 (2014).

    Article  ADS  Google Scholar 

  38. Zhao, Y. et al. Experimental investigation of temperature-dependent Gilbert damping in permalloy thin films. Sci. Rep. 6, 22890 (2016).

    Article  ADS  Google Scholar 

  39. Johansen, Ø. & Linder, J. Current driven spin–orbit torque oscillator: ferromagnetic and antiferromagnetic coupling. Sci. Rep. 6, 33845 (2016).

    Article  ADS  Google Scholar 

  40. Kim, T. H., Grünberg, P., Han, S. H. & Cho, B. Ultrafast spin dynamics and switching via spin transfer torque in antiferromagnets with weak ferromagnetism. Sci. Rep. 6, 35077 (2016).

    Article  ADS  Google Scholar 

  41. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article  Google Scholar 

  42. Ozyilmaz, B. et al. Electronic transport and quantum Hall effect in bipolar graphene p–n–p junctions. Phys. Rev. Lett. 99, 166804 (2007).

    Article  ADS  Google Scholar 

  43. Wei, D. S. et al. Electrical generation and detection of spin waves in a quantum Hall ferromagnet. Preprint at https://arXiv.org/abs/1801.08534 (2018).

  44. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Chen for helpful discussions. The work is supported by SHINES, which is an Energy Frontier Research Center funded by the Department of Energy (DOE) Basic Energy Sciences (BES) under Award #SC0012670. S.C. is supported by DOE BES under award ER 46940-DE-SC0010597 to study the quantum Hall effect in graphene. A.H.M. acknowledges partial support by the Welch Foundation under grant TBF1473. Part of this work was performed at the NHMFL, which is supported by NSF/DMR-0654118, the State of Florida, and the DOE. Growth of hBN crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan and a Grant-in-Aid for Scientific Research on Innovative Areas ‘Science of Atomic Layers’ from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

Y.B., A.H.M. and C.N.L. conceived the experiment. P.S., S.C. and D.Sh fabricated samples. K.T. and G.V. assisted with sample fabrication. P.S., J.Y., S.C., R.C. and D.Sm performed measurements. K.W. and T.T. provided materials. Y.B., P.S., A.H.M., M.B., R.L. and C.N.L. analysed and interpreted the data. P.S., Y.B., A.H.M., R.L. and C.N.L. wrote the manuscript. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Roger K. Lake, Yafis Barlas, Allan H. MacDonald or Chun Ning Lau.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5

Spin transport through graphene antiferromagnetic insulator

Movie demonstrating spin transport

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, P., Che, S., Shcherbakov, D. et al. Long-distance spin transport through a graphene quantum Hall antiferromagnet. Nature Phys 14, 907–911 (2018). https://doi.org/10.1038/s41567-018-0161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0161-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing