Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The limits of nuclear mass and charge

Abstract

Four new elements with atomic numbers Zā€‰=ā€‰113, 115, 117 and 118 have recently been added to the periodic table. The questions pertaining to these superheavy systems are at the forefront of research in nuclear and atomic physics, and chemistry. This Perspective offers a high-level view of the field and outlines future challenges.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Landscape of nucleon-bound nuclei as a function of Z and N.
Fig. 2: Neutron (left) and proton (right) densities of 294Og (top), 302Og (top) and 326Og (bottom) calculated with SV-min in the (x, z) plane at yā€‰=ā€‰0.
Fig. 3: QĪ± values for the Ī±-decay chain of 294Og predicted by several global theoretical models compared to experimental and estimated values.
Fig. 4: Electron localization function for group-18 elements xenon, radon and oganesson predicted in relativistic calculations.
Fig. 5: Dominating decay channels predicted in density functional theories calculations.

Similar content being viewed by others

References

  1. Karol, P. J., Barber, R. C., Sherrill, B. M., Vardaci, E. & Yamazaki, E. Discovery of the elements with atomic numbers Z ā€‰=ā€‰113, 115 and 117. Pure Appl. Chem. 88, 139ā€“153 (2016).

    ArticleĀ  Google ScholarĀ 

  2. Karol, P. J., Barber, R. C., Sherrill, B. M., Vardaci, E. & Yamazaki, E. Discovery of the element with atomic number Z ā€‰=ā€‰118 completing the 7th row of the periodic table (IUPAC Technical Report). Pure Appl. Chem. 88, 155ā€“160 (2016).

    ArticleĀ  Google ScholarĀ 

  3. MĆ¼nzenberg, G. & Morita, K. Synthesis of the heaviest nuclei in cold fusion reactions. Nucl. Phys. A 944, 3ā€“4 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  4. Oganessian, Y. T. & Utyonkov, V. K. Super-heavy element research. Rep. Prog. Phys. 78, 036301 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  5. DĆ¼llmann, C. E. Studying chemical properties of the heaviest elements: one atom at a time. Nucl. Phys. News 27, 14ā€“20 (2017).

    ArticleĀ  Google ScholarĀ 

  6. Erler, J. et al. The limits of the nuclear landscape. Nature 486, 509ā€“512 (2012).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. Ćwiok, S., Dobaczewski, J., Heenen, P.-H., Magierski, P. & Nazarewicz, W. Shell structure of the superheavy elements. Nucl. Phys. A 611, 211ā€“246 (1996).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  8. Heenen, P.-H., Skalski, J., Staszczak, A. & Vretenar, D. Shapes and Ī±- and Ī²-decays of superheavy nuclei. Nucl. Phys. A 944, 415ā€“441 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  9. Myers, W. D. & Swiatecki, W. Nuclear masses and deformations. J. Nucl. Phys. 81, 1ā€“60 (1966).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  10. Magierski, P. & Heenen, P.-H. Structure of the inner crust of neutron stars: crystal lattice or disordered phase? Phys. Rev. C. 65, 045804 (2002).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  11. Schuetrumpf, B., Nazarewicz, W. & Reinhard, P.-G. Central depression in nucleonic densities: trend analysis in the nuclear density functional theory approach. Phys. Rev. C. 96, 024306 (2017).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  12. Ćwiok, S., Heenen, P. H. & Nazarewicz, W. Shape coexistence and triaxiality in the superheavy nuclei. Nature 433, 705ā€“709 (2005).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  13. DĆ¼llmann, C. E. & Block, M. Island of heavyweights. Sci. Am. 318, 46ā€“53 (2018).

    ArticleĀ  Google ScholarĀ 

  14. Nilsson, S. G. et al. On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131, 1ā€“66 (1969).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  15. Bender, M., Nazarewicz, W. & Reinhard, P.-G. Shell stabilization of super- and hyperheavy nuclei without magic gaps. Phys. Lett. B 515, 42ā€“48 (2001).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  16. Agbemava, S. E., Afanasjev, A. V., Nakatsukasa, T. & Ring, P. Covariant density functional theory: reexamining the structure of superheavy nuclei. Phys. Rev. C. 92, 054310 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  17. Jerabek, P., Schuetrumpf, B., Schwerdtfeger, P. & Nazarewicz, W. Electron and nucleon localization functions of Oganesson: approaching the Thomas-Fermi limit. Phys. Rev. Lett. 120, 053001 (2018).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  18. Mƶller, P., & Nix, J. R. Stability of heavy and superheavy elements. J. Phys. G 20, 1681ā€“1747 (1994).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  19. Tolokonnikov, S. V., Borzov, I. N., Kortelainen, M., Lutostansky, Y. S. & Saperstein, E. E. Alpha-decay energies of superheavy nuclei for the Fayans functional. Eur. Phys. J. A 53, 33 (2017).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  20. Baran, A. et al. Fission barriers and probabilities of spontaneous fission for elements with Zā€‰ā‰„ā€‰100. Nucl. Phys. A 944, 442ā€“470 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  21. Giuliani, S. A., Martnez-Pinedo, G. & Robledo, L. M. Fission properties of superheavy nuclei for r-process calculations. Phys. Rev. C. 97, 034323 (2018).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  22. Poenaru, D. N., Gherghescu, R. A., Greiner, W. & Shakib, N. S. How Rare Is Cluster Decay of Superheavy Nuclei? 131ā€“140 (Springer, Cham, 2015).

  23. Warda, M. & Robledo, L. M. Microscopic description of cluster radioactivity in actinide nuclei. Phys. Rev. C. 84, 044608 (2011).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  24. Schwerdtfeger, P., PaÅ”teka, L. F., Punnett, A. & Bowman, P. O. Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551ā€“577 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  25. Schwerdtfeger, P. Toward an accurate description of solid-state properties of superheavy elements: A case study for the element Og (Zā€‰=ā€‰118). EPJ Web Conf. 131, 07004 (2016).

    ArticleĀ  Google ScholarĀ 

  26. Eliav, E., Fritzsche, S., & Kaldor, U. Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518ā€“550 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  27. Pyykkƶ, P. A suggested periodic table up to Zā€‰ā‰¤ā€‰172, based on Diracā€“Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 13, 161ā€“168 (2011).

    ArticleĀ  Google ScholarĀ 

  28. Wapstra, A. H. et al. Criteria that must be satisfied for the discovery of a new chemical element to be recognized. Pure Appl. Chem. 63, 879ā€“886 (1991).

    ArticleĀ  Google ScholarĀ 

  29. Korschinek, G., & Kutschera, W. Mass spectrometric searches for superheavy elements in terrestrial matter. Nucl. Phys. A 944, 190ā€“203 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  30. Ter-Akopian, G., & Dmitriev, S. Searches for superheavy elements in nature: cosmic-ray nuclei; spontaneous fission. Nucl. Phys. A 944, 177ā€“189 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  31. Goriely, S. & Pinedo, G. M. The production of transuranium elements by the r-process nucleosynthesis. Nucl. Phys. A 944, 158ā€“176 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  32. Ackermann, D. & Theisen, C. Nuclear structure features of very heavy and superheavy nucleiā€”tracing quantum mechanics towards the ā€˜island of stabilityā€™. Phys. Scr. 92, 083002 (2017).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  33. Zagrebaev, V., & Greiner, W. Cross sections for the production of superheavy nuclei. Nucl. Phys. A 944, 257ā€“307 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  34. Itkis, M., Vardaci, E., Itkis, I., Knyazheva, G., & Kozulin, E. Fusion and fission of heavy and superheavy nuclei (experiment). Nucl. Phys. A 944, 204ā€“237 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  35. Loveland, W. Synthesis of transactinide nuclei using radioactive beams. Phys. Rev. C. 76, 014612 (2007).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  36. Lee, M. S. Elemental haiku. Science 357, 461ā€“463 (2017).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  37. Dmitriev, S., Itkis, M. & Oganessian, Y. Status and perspectives of the Dubna superheavy element factory. EPJ Web Conf. 131, 08001 (2016).

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

Discussions with Y. Oganessian and P. Schwerdtfeger, and useful comments from D. Lee are gratefully appreciated. This work was supported by the US Department of Energy under award numbers DOE-DE-NA0002847 (NNSA, the Stewardship Science Academic Alliances programme), DE-SC0013365 (Office of Science) and DE-SC0018083 (Office of Science, NUCLEI SciDAC-4 collaboration).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Nazarewicz.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisherā€™s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarewicz, W. The limits of nuclear mass and charge. Nature Phys 14, 537ā€“541 (2018). https://doi.org/10.1038/s41567-018-0163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0163-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing