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The development of large-scale programmable quantum hard-
ware has opened the door to testing a fundamental question 
in the theory of computation: can quantum computers out-

perform classical ones for certain tasks? This idea, termed quan-
tum computational advantage, has motivated the design of novel 
algorithms and protocols to demonstrate advantage with minimal 
quantum resources, such as qubit number and gate depth1–10. Such 
protocols are naturally characterized along two axes: the compu-
tational speedup and the ease of verification. The former distin-
guishes whether a quantum algorithm exhibits a polynomial or 
super-polynomial speedup over the best known classical one. The 
latter classifies whether the correctness of the quantum computa-
tion is efficiently verifiable by a classical computer. Along these 
axes lie three broad paths to demonstrating advantage: (1) sam-
pling from entangled quantum many-body wavefunctions, (2) 
solving a deterministic problem, for example prime factorization, 
via a quantum algorithm and (3) proving quantumness through 
interactive protocols.

Sampling-based protocols directly rely on the classical hardness 
of simulating quantum mechanics1,3,7–10. The ‘computational task’ is 
to prepare and measure a generic complex many-body wavefunc-
tion with little structure. As such, these protocols typically require 
minimal resources and can be implemented on near-term quan-
tum devices11,12. The correctness of the sampling results, however, 
is exponentially difficult to verify. This has an important conse-
quence: in the regime beyond the capability of classical computers, 
the sampling results cannot be explicitly checked, and quantum 
computational advantage can only be inferred (for example, extrap-
olated from simpler circuits).

Algorithms in the second class of protocols are naturally bro-
ken down by whether they exhibit polynomial or super-polynomial 
speedups. In the case of polynomial speedups, there are nota-
ble examples that are provably faster than any possible classical  

algorithm13,14. However, polynomial speedups are tremendously 
challenging to demonstrate in practice due to the slow growth of 
the separation between classical and quantum run-times, and over-
heads such as the time taken to read the input. Accordingly, the 
most attractive algorithms for demonstrating advantage tend to be 
those with a super-polynomial speedup, including Abelian hidden 
subgroup problems such as factoring and discrete logarithms15. The 
challenge is that, for all known protocols of this type, the quantum 
circuits required to demonstrate advantage are well beyond the 
capabilities of near-term experiments.

The final class of protocols demonstrates quantum advantage 
through an interactive proof16–23. At a high level, this type of pro-
tocol involves multiple rounds of communication between the 
classical verifier and the quantum prover; the prover must give 
self-consistent responses, despite not knowing what the verifier 
will ask next. This requirement of self-consistency rules out a broad 
range of classical cheating strategies and can imbue ‘hardness’ into 
questions that would otherwise be easy to answer. To this end, inter-
active protocols expand the space of computational problems that 
can be used to demonstrate quantum advantage. From a more prag-
matic perspective, this can enable the realization of efficiently verifi-
able quantum advantage on near-term quantum hardware.

Recently, a beautiful interactive protocol was introduced that can 
operate both as a test for quantum advantage and as a generator 
of certifiable quantum randomness16. The core of the protocol is a 
two-to-one function, f, built on the computational problem known 
as ‘learning with errors’ (LWE)24. The demonstration of advan-
tage leverages two important properties of the function. First, it 
is claw-free, meaning that it is computationally hard to find a pair 
of inputs (x0, x1) such that f(x0) = f(x1). Second, there exists a trap-
door: given some secret data t, it becomes possible to efficiently 
invert f and reveal the pair of inputs mapping to any output. (See 
Supplementary Information for an overview of trapdoor claw-free 
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functions, TCFs.) However, to fully protect against cheating prov-
ers, the protocol requires a stronger version of the claw-free prop-
erty called the adaptive hardcore bit; namely, for any input x0, which 
may be chosen by the prover, it is computationally hard to find even 
a single bit of information about x1 (specifically, the parity of any 
subset of the bits of x1). The need for an adaptive hardcore bit within 
this protocol severely restricts the class of functions that can operate 
as verifiable tests of quantum advantage.

In this Article we propose and analyse an interactive quantum 
advantage protocol that removes the need for an adaptive hardcore 
bit, with essentially zero overhead in the quantum circuit and no 
extra cryptographic assumptions. We present four main results. 
First, we demonstrate how an idea from tests of Bell’s inequality 
can serve the same cryptographic purpose as the adaptive hardcore 
bit25. In essence, our interactive protocol is a variant of the CHSH 
(Clauser, Horne, Shimony, Holt) game26, in which one player is 
replaced by a cryptographic construction. Normally, in CHSH, two 
quantum parties are asked to produce correlations that would be 
impossible for classical devices to produce. If space-like separation 
is enforced to rule out communication between the two parties, 
then the correlations constitute a proof of quantumness. In our case, 
the space-like separation is replaced by the computational hardness 
of a cryptographic problem. In particular, the quantum prover holds 
a qubit whose state depends on the cryptographic secret in the same 
way that the state of one CHSH player’s qubit depends on the secret 
measurement basis of the other player. An alternative interpreta-
tion, from the perspective of Bell’s theorem, is that the protocol 
can be thought of as a ‘single-detector Bell test’—the cryptographic 
task generates the same single-qubit state as would be produced by 
entangling a second qubit and measuring it with another detector. 
As in the CHSH game, a quantum device can pass the verifier’s test 
with a probability of ~85%, but a classical device can only succeed 
with probability of at most 75%. This finite gap in success probabili-
ties is precisely what enables a verifiable test of quantum advantage.

Second, by removing the need for an adaptive hardcore bit, our 
protocol accepts a broader landscape of functions for interactive 
tests of quantum advantage (Table 1 and Methods). We contribute 
two constructions to this list. The first is based on the decisional 
Diffie–Hellman problem (DDH)27–29, and the second utilizes the 
function fN(x) = x2 mod N, where N is the product of two primes, 
which forms the backbone of the Rabin cryptosystem30,31. On the 
one hand, DDH is appealing because the elliptic-curve version of 
the problem is particularly hard for classical computers32–34. On 
the other hand, x2 mod N can be implemented substantially more 
efficiently, and its hardness is equivalent to factoring. We hope that 
these two constructions will provide a foundation for the search for 
more TCFs with desirable properties (small key size and efficient 
quantum circuits).

Third, we describe two innovations that facilitate our protocol’s 
use in practice: an inherent postselection scheme for increasing 
noisy devices’ probability of passing the test, and a way to sub-
stantially reduce overhead arising from the reversibility require-
ment of quantum circuits. The former allows quantum devices to 
trade off low quantum fidelities for a proportional increase in the 
overall runtime, while still passing the cryptographic test. The lat-
ter is a measurement-based uncomputation scheme specific to this 
protocol’s structure, which allows classical circuits to be converted 
into quantum ones with essentially zero overhead. We note that 
these constructions are probably applicable to other TCF-based 
quantum cryptography protocols as well, and thus may be of inde-
pendent interest for tasks such as certifiable quantum random  
number generation.

Finally, focusing on the TCF x2 mod N, we provide explicit 
quantum circuits aimed at near-term quantum devices. We show 
that a verifiable test of quantum advantage can be achieved with 
~103 qubits and a gate depth ~105 (a table of circuit sizes is pro-
vided in the Supplementary Information). We also co-design a spe-
cific implementation of x2 mod N optimized for a programmable 
Rydberg-based quantum computing platform. The native physical 
interaction corresponding to the Rydberg blockade mechanism 
enables the direct implementation of multi-qubit-controlled arbi-
trary phase rotations without the need to decompose such gates 
into universal two-qubit operations35–39. Access to such a native gate 
immediately reduces the gate depth for achieving quantum advan-
tage by an order of magnitude.

Background and related work
The use of TCFs for quantum cryptographic tasks was pioneered in 
two recent breakthrough protocols: (1) giving classical homomor-
phic encryption for quantum circuits40 and (2) for generating cryp-
tographically certifiable quantum randomness from an untrusted 
blackbox device16. The latter work also introduced the notion of an 
adaptive hardcore bit and serves as an efficiently verifiable test of 
quantum advantage. Remarkably, the scheme was further extended 
to allow a classical server to cryptographically verify the correctness 
of arbitrary quantum computations41, and it has also been applied 
to remote state preparation with implications for secure delegated 
computation42.

Recently, an improvement to the practicality of TCF-based proofs 
of quantumness was provided in the random oracle model (ROM)—a 
model of computation in which both the quantum prover and clas-
sical verifier can query a third-party ‘oracle’, which returns a random 
(but consistent) output for each input. In that work, the authors pro-
vide a protocol that both removes the need for the adaptive hard-
core bit and also reduces the interaction to a single round17. Because 
the security of the protocol is proven in the ROM, implementing 
this protocol in practice requires applying the random oracle heu-
ristic, in which the random oracle is replaced by a cryptographic 
hash function, but the hardness of classically defeating the protocol 
is taken to still hold. Only contrived cryptographic schemes have 
ever been broken by attacking the random oracle heuristic43,44, so it 
seems to be effective in practice, and the ROM protocol has substan-
tial potential for use as a practical tool for benchmarking untrusted 
quantum servers. On the other hand, for a robust experimental test 
of the foundational complexity-theoretic claims of quantum com-
puting—that quantum mechanics allows for algorithms that are 
superpolynomially faster than classical Turing machines—we desire 
the complexity-theoretic backing of the speedup to be as strong as 
possible (that is, provable in the ‘standard model’ of computation45), 
which is the goal pursued in the present work. With that said, we 
emphasize that the various optimizations described in the follow-
ing—including the TCF families based on DDH and x2 mod N, as 
well as the schemes for postselection and discarding garbage bits—
can be applied to the ROM protocol as well.

Table 1 | Cryptographic constructions for interactive quantum 
advantage protocols

Problem Trapdoor Claw-free Adaptive 
hardcore bit

Asymptotic 
complexity 
(gate count)

LWE16 ✓ ✓ ✓ n2log2n

x2 mod N ✓ ✓ ✗ nlogn

Ring-LWE17 ✓ ✓ ✗ nlog2n

Diffie–Hellman ✓ ✓ ✗ n3log2n

Shor’s algorithm — — — n2logn

n represents the number of bits in the function’s input string. Big-O notation is implied and factors 
of log logn and smaller are dropped. For references and derivations of the circuit complexities, see 
Supplementary Information.
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Finally, we also note two recent works that demonstrate that any 
TCF-based proof of quantumness, including the present work, can 
be implemented in constant quantum circuit depth (at the cost of 
more qubits)46,47.

Interactive protocol for quantum advantage
Our full protocol is shown diagrammatically in Fig. 1. It consists of 
three rounds of interaction between the prover and verifier (with a 
‘round’ being a challenge from the verifier, followed by a response 
from the prover). The first round generates a multi-qubit super-
position over two bitstrings that would be cryptographically hard 
to compute classically. The second round maps this superposition 
onto the state of one ancilla qubit, retaining enough information 
to ensure that the resulting single-qubit state is also hard to com-
pute classically. The third round takes this single qubit as input to a 
CHSH-type measurement, allowing the prover to generate a bit of 
data that is correlated with the cryptographic secret in a way that 
would not be possible classically. Having described the intuition 
behind the protocol, we now lay out each round in detail.

Description of the protocol. The goal of the first round is to gener-
ate a superposition over two colliding inputs to the TCF. It begins 
with the verifier choosing an instance fi of the TCF along with the 
associated trapdoor data t; fi is sent to the prover. As an example, 
in the case of x2 mod N, the ‘index’ i is the modulus N, and the 
trapdoor data are its factorization, p, q. The prover now initializes 
two registers of qubits, which we denote with the subscripts x and 
y. On these registers, they compute the entangled superposition 
|ψ⟩ =

∑
x|x⟩x|fi(x)⟩y, over all x in the domain of fi. The prover then 

measures the y register in the standard basis, collapsing the state to 
(|x0⟩+ |x1⟩)x|y⟩y, with y = f(x0) = f(x1). The measured bitstring y is 

then sent to the verifier, who uses the secret trapdoor to compute x0 
and x1 in full.

At this point, the verifier randomly chooses to either request a 
projective measurement of the x register, ending the protocol, or 
to continue with the second and third rounds. In the former case, 
the prover communicates the result of that measurement, yielding 
either x0 or x1, and the verifier checks that indeed f(x) = y. In the lat-
ter case, the protocol proceeds with the final two rounds.

The second round of interaction converts the many-qubit 
superposition |ψ⟩ = |x0⟩x + |x1⟩x into a single-qubit state 
{|0⟩b, |1⟩b, |+⟩b, |−⟩b} on an ancilla qubit b. The final state of 
b depends on the values of both x0 and x1. The round begins 
with the verifier choosing a random bitstring r of the same 
length as x0 and x1, and sending it to the prover. Using a series 
of CNOT gates from the x register to b, the prover computes the 
state |r · x0⟩b|x0⟩x + |r · x1⟩b|x1⟩x, where r ⋅ x denotes the binary 
inner product. Finally, the prover measures the x register in the 
Hadamard basis, storing the result as a bitstring d, which is sent to 
the verifier. This measurement disentangles x from b without col-
lapsing the superposition of b. At the end of the second round, the 
prover’s state is (−1)d·x0 |r · x0⟩b + (−1)d·x1 |r · x1⟩b, which is one of 
{|0⟩, |1⟩, |+⟩, |−⟩}. Crucially, it is cryptographically hard to pre-
dict whether this state is one of {|0⟩, |1⟩} or {|+⟩, |−⟩}.

The final round of our protocol can be understood in analogy to 
the CHSH game26. Although the prover cannot extract the polariza-
tion axis from their single qubit (echoing the no-signalling property 
of CHSH), they can make a measurement that is correlated with it. 
This measurement outcome ultimately constitutes the proof of quan-
tumness. In particular, the verifier requests a measurement in an 
intermediate basis, rotated from the Z axis around Y, by either θ = π/4 
or −π/4. Because the measurement basis is never perpendicular to 
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Fig. 1 | Schematic representation of the interactive quantum advantage protocol. In the first round of interaction, the classical verifier (right) selects a 
specific function from a trapdoor claw-free family and the quantum prover (left) evaluates it over a superposition of inputs. The goal of the second round 
is to condense the information contained in the prover’s superposition state onto a single ancilla qubit. The final round of interaction effectively performs a 
Bell inequality measurement, the outcome of which is cryptographically protected.
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the state, there will always be one outcome that is more likely than 
the other (specifically, with probability cos2(π/8) ≈ 0.85). The verifier 
returns Accept if this ‘more likely’ outcome is the one received.

In the next section we prove that a quantum device can cause the 
verifier to return Accept with substantially higher probability than 
any classical prover. A full test of quantum advantage would consist 
of running the protocol many times, until it can be established with 
high statistical confidence that the device has exceeded the classical 
probability bound.

Completeness and soundness. We now provide two theorems 
regarding the completeness (the noise-free quantum success prob-
ability) and soundness (an upper bound on the classical success 
probability) of the protocol. The proofs of both theorems are pre-
sented in the Methods.

Recall that after the first round of the protocol, the verifier 
chooses to either request a standard basis measurement of the first 
register or to continue with the second and third rounds. In the 
theorems below, we consider the prover’s success probability across 
these two cases separately. We denote the probability that the veri-
fier will accept the prover’s string x in the first case as px, and the 
probability that the verifier will accept the single-qubit measure-
ment result in the second case as pCHSH.

Theorem 1: Completeness. An error-free quantum device honestly 
following the interactive protocol will cause the verifier to return 
Accept with px = 1 and pCHSH = cos2(π/8) ≈ 0.85.

Theorem 2: Soundness. Assume the function family used in the 
interactive protocol is claw-free. Then px and pCHSH for any classical 
prover must obey the relation

px + 4pCHSH − 4 < ϵ(n) (1)

where ϵ is a negligible function of n, the length of the function family’s 
input strings.

The connection with the CHSH game is highlighted by the fact 
that if we let px = 1, the bound requires that pCHSH < 3/4 + ϵ(n) for 
a classical device, while pCHSH ≈ 0.85 for a quantum device, which 
matches the classical and quantum success probabilities of CHSH. 
In the Supplementary Information, we provide an example of a clas-
sical algorithm saturating the bound with px = 1 and pCHSH = 3/4.

Robustness and error mitigation via postselection. The existence 
of a finite gap between the classical and quantum success probabili-
ties implies that our protocol can tolerate a certain amount of noise. 
A direct implementation of our interactive protocol on a noisy 
quantum device would require an overall fidelity of ~83% to exceed 
the classical bound (taking px = F  and pCHSH = 1/2+ F /2). To 
allow devices with lower fidelities to demonstrate quantum advan-
tage, our protocol allows for a natural tradeoff between fidelity and 
runtime, such that the classical bound can, in principle, be exceeded 
with only a small amount of coherence in the quantum device. This 
holds true even if the coherence is exponentially small in n; ulti-
mately, the scheme is only limited by the runtime becoming exces-
sive when the fidelity is extremely small.

The key idea is based on postselection. For most TCFs, there are 
many bitstrings of the correct length that are not valid outputs of f. 
Thus, if the prover detects such a y value in step 3 (Fig. 1), they can 
simply discard it and try again. In principle, the verifier can even 
use their trapdoor data to silently detect and discard iterations of 
the protocol with invalid y. This procedure does not leak data to a 
classical cheater, because the verifier does not communicate which 
runs were discarded. Because y is a function of x0 and x1, one might 
hope that this postselection scheme also rejects states where x0 or 

x1 has become corrupt. Although this may not always be the case, 
below we demonstrate numerically that this assumption holds for 
a specific implementation of x2 mod N. One could also compute a 
classical checksum of x0 and x1 before and after the main circuit to 
ensure that they have not changed during its execution. Assuming 
that such bit-flip errors are indeed rejected, the possibility remains 
of an error in the phase between |x0⟩ and |x1⟩. In the Supplementary 
Information we demonstrate that a prover holding the correct bit-
strings but with an error in the phase can still saturate the classical 
bound; if the prover can avoid phase errors even a small fraction of 
the time, they will push past the classical threshold.

We numerically analyse the effectiveness of this postselec-
tion scheme for the specific TCF x2 mod N. To add redundancy 
to the outputs of the function, we map this TCF to the function  
(3ax)2mod(32aN), for a tunable integer a, and simulate the circuit 
under a generic noise model (see Methods for details). For a = 0, the 
circuit implements our original function x2 mod N, where, in the 
absence of postselection, an overall circuit fidelity of F ∼ 0.83 is 
required to achieve quantum advantage. As depicted in Fig. 2a, even 
for a = 0, inherent redundancy in the TCF allows our postselection 
scheme to improve the advantage threshold down to F ∼ 0.51.  
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Fig. 2 | Performance of the postselection scheme. Redundancy is added 
to the function x2 mod N by mapping it to (3ax)2mod(32aN). Numerical 
simulations are performed on a quantum circuit implementing the Karatsuba 
algorithm for a = {0, 1, 2, 3} (Supplementary Information). a, ‘Quantumness’ 
measured in terms of the classical bound from equation (1) as a function 
of the total circuit fidelity. With a = 3, even a quantum device with only 
1% circuit fidelity can demonstrate quantum advantage. b, The increased 
runtime associated with the postselection scheme, which arises from a 
combination of slightly larger circuit sizes and the need to re-run the circuit 
multiple times. The latter is by far the dominant effect. Dashed lines are a 
theory prediction with no fit parameters. Symbols are the result of numerical 
simulations at n = 512 bits, and error bars depict 2σ uncertainty.
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For a = 2, circuit fidelities with F � 0.1 remain well above the quan-
tum advantage threshold, while for a = 3 the required circuit fidelity 
drops below 1%. There is an extra runtime cost to performing the 
postselection, but, somewhat remarkably, an overhead of only 4.7× 
already enables quantum advantage to be achieved with an overall 
circuit fidelity of 10% (Fig. 2b). Crucially, this increase in runtime 
is overwhelmingly due to re-running the quantum circuit and does 
not imply the need for longer experimental coherence times.

Quantum circuits for TCFs
Although all of the TCFs listed in Table 1 can be utilized within our 
interactive protocol, each has its own set of advantages and disad-
vantages. For example, the TCF based on the DDH (described in the 
Methods) already enables a demonstration of quantum advantage at 
a key size of 160 bits (with a hardness equivalent to 1,024-bit integer 
factorization34); however, building a circuit for this TCF requires a 
quantum implementation of Euclid’s algorithm, which is challeng-
ing48. We thus focus on designing quantum circuits implementing 
Rabin’s function, x2 mod N.

Quantum circuits for x2 mod N. We explore four different circuits 
(see Supplementary Information for implementations of these algo-
rithms in Python using the Cirq library). The first two are quantum 
implementations of the Karatsuba and ‘schoolbook’ classical inte-
ger multiplication algorithms (see Supplementary Information for 
details). Normally, quantum implementations of classical circuits 
have some overhead due to the need to make the gates reversible 
so as to be consistent with unitarity49–53. Our protocol exhibits the 
surprising property that it permits a measurement scheme to dis-
card so-called ‘garbage bits’ that arise from these reversible gates, 
allowing classical circuits to be converted into quantum ones with 
essentially zero overhead (see Methods for details). This measure-
ment scheme substantially reduces the cost of the schoolbook and 
Karatsuba circuits. The other two circuits, which we call the ‘phase 
circuits’, are intrinsically quantum algorithms: they use doubly con-
trolled phase rotations to directly compute x2 mod N in the phases 
of a superposition state, and then transfer that phase to the compu-
tational basis via a quantum Fourier transform, as shown in Fig. 3.  
Naively this requires O(n3) gates and 2n+O(1) qubits; in the 
Methods we describe how to optimize this type of circuit for qubit 
number and gate count, respectively. A comparison of approximate 

gate counts and other resources for each of the four circuits is pro-
vided in Supplementary Table 1. The Karatsuba algorithm is the 
most efficient in terms of the total gates and circuit depth, and the 
phase circuits are most efficient in terms of qubit usage and mea-
surement complexity.

Experimental implementation. Motivated by recent advances 
in the creation and control of many-body entanglement in pro-
grammable quantum systems11,54–56, we propose an experimental 
implementation of our interactive protocol based on neutral atoms 
coupled to Rydberg states36,39. Crucially, the so-called ‘Rydberg 
blockade’ interaction natively realizes the multi-qubit controlled 
phase rotations from which the ‘phase’ circuits described above 
are built. We envision a three-dimensional (3D) system of either 
alkali or alkaline-earth atoms trapped in an optical lattice or opti-
cal tweezer array [Fig. 4a)57–59. To be specific, we consider 87Rb with 
an effective qubit degree of freedom encoded in hyperfine states: 
|0⟩ = |F = 1, mF = 0⟩ and |1⟩ = |F = 2, mF = 0⟩. Gates between 
atoms are mediated by coupling to a highly excited Rydberg state 
|r⟩, whose large polarizability leads to strong van der Waals interac-
tions. This microscopic interaction enables the Rydberg blockade 
mechanism: when a single atom is driven to its Rydberg state, all 
other atoms within a blockade radius, Rb, become off-resonant from 
the drive, thereby suppressing their excitation (Fig. 4a,b)35.

Somewhat remarkably, this blockade interaction enables the 
native implementation of all multi-qubit-controlled phase gates 
needed for our ‘phase’ circuits. In particular, consider the goal of 
applying a CkRℓ

ϕ gate; this gate applies phase rotations, {ϕ1, ϕ2, …, ϕℓ},  
to target qubits {j1, j2, …, jℓ} if all k control qubits {i1, i2, …, ik} 
are in the |1⟩ state (Fig. 4d). Experimentally, this can be imple-
mented as follows: (1) sequentially apply (in any order) resonant 
π pulses on the |0⟩ ↔ |r⟩ transition for the k desired control atoms, 
(2) off-resonantly drive the |1⟩ ↔ |r⟩ transition of each target 
atom with detuning Δ and Rabi frequency Ω for a time duration 
T = 2π/(Ω2

+∆
2
)
1/2 (Fig. 4c), (3) sequentially apply (in the oppo-

site order as in (1)) resonant −π pulses (that is, π pulses with the 
opposite phase) to the k control atoms to bring them back to their 
original state. The intuition for why this experimental sequence 
implements the CkRℓ

ϕ gate is straightforward. The first step creates 
a blockade if any of the control qubits are in the |0⟩ state, and the 
second step imprints a phase, ϕ = π(1−∆/

√
∆2 +Ω2), on the |1⟩ 

state, only in the absence of a blockade. Note that tuning the val-
ues of ϕi for each of the target qubits simply corresponds to adjust-
ing the detuning and Rabi frequency of the off-resonant drive in 
the second step (Fig. 4c,d). In the Methods, we provide a detailed 
analysis of this protocol in the context of current-generation experi-
ments, including a quantitative accounting of interaction strengths, 
geometry and decoherence.

Conclusion and outlook
The interplay between classical and quantum complexities ulti-
mately determines the threshold for any quantum advantage 
scheme. In this Article we have proposed an interactive protocol for 
classically verifiable quantum advantage based on TCFs; in addi-
tion to proposing two TCFs (Table 1), we also provide explicit quan-
tum circuits that leverage the microscopic interactions present in 
a Rydberg-based quantum computer. Our work allows near-term 
quantum devices to move one step closer toward a loophole-free 
demonstration of quantum advantage and also opens the door to a 
number of promising future directions.

First, our proof of soundness only applies to classical adversaries; 
whether it is possible to extend our protocol’s security to quantum 
adversaries remains an open question. A quantum-secure proof 
could enable our protocol’s use in a number of applications, such 
as certifiable random number generation16 and the verification of 
arbitrary quantum computations41. Second, our work motivates the 

for i in [1 : n]

for j in [i : n]

for k in [1 : m]

∣x〉∣x〉

∣0〉

∣0〉

= Controlled-Rϕ 2π
N

2i + j + k

∣x 2 mod N〉

IQ
F

T

Q
F

T

k

j

i

Fig. 3 | Basic phase circuit implementing x2 mod N. n is the length of 
the input register and m = n+O(1) is the length of the output register. 
This circuit can be modified to reduce both the gate and qubit count (see 
Methods for details).
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search for new TCFs, which can be evaluated in the smallest possible 
quantum volume. Cryptographic primitives such as learning parity 
with noise (LPN), which are designed for use in low-power devices 
such as radio-frequency identification (RFID) cards, represent a 
promising path forward60. More broadly, one could also attempt to 
build modified protocols that simplify either the requirements for 
the cryptographic function or the interactions. Interestingly, recent 
work has demonstrated that using random oracles can remove 
the need for interactions in a TCF-based proof of quantumness17. 
Finally, although we have focused our experimental discussions on 
Rydberg atoms, a number of other platforms also exhibit features 
that facilitate the protocol’s implementation. For example, both 
trapped ions and cavity quantum electrodynamics systems can 
allow all-to-all connectivity, while superconducting qubits can be 
engineered to have biased noise61. This latter feature would allow 
noise to be concentrated into error modes detectable by our pro-
posed postselection scheme.
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Methods
Proof of ideal quantum success rate. 
Theorem 1: Completeness. An error-free quantum device honestly following 
the interactive protocol will cause the verifier to return Accept with px = 1 and 
pCHSH = cos2(π/8) ≈ 0.85.

Proof. If the verifier chooses to request a projective measurement of x after  
the first round, an honest quantum prover succeeds with probability px = 1  
by inspection.

If the verifier chooses to instead perform the rest of the protocol, the prover 
will hold one of {|0⟩, |1⟩, |+⟩, |−⟩} after round 2. In either measurement basis 
the verifier may request in round 3, there will be one outcome that occurs with 
probability cos2(π/8), which is by construction the one the verifier accepts. Thus, 
an honest quantum prover has pCHSH = cos2(π/8) ≈ 0.85. □
Proof of classical success rate bound. 
Theorem 2: Soundness. Assume the function family used in the interactive protocol 
is claw-free. Then px and pCHSH for any classical prover must obey the relation

px + 4pCHSH − 4 < ϵ(n) (2)

where ϵ is a negligible function of n, the length of the function family’s input strings.

Proof. We prove by contradiction. Assume that there exists a classical machine A 
for which px + 4pCHSH − 4 ≥ μ(n), for a non-negligible function μ. We show that there 
exists another algorithm B that uses A as a subroutine to find a pair of colliding 
inputs to the claw-free function, a contradiction.

Given a claw-free function instance fi, B acts as a simulated verifier for A.  
B begins by supplying fi to A, after which A returns a value y, completing the first 
round of interaction. B now chooses to request the projective measurement of the 
x register, and stores the result as x0. Letting px0 be the probability that x0 is a valid 
preimage, by definition of px we have px0 = px.

Next, B rewinds the execution of A to its state before x0 was requested. 
Crucially, rewinding is possible because A is a classical algorithm. B now proceeds 
by running A through the second and third rounds of the protocol for many 
different values of the bitstring r (Fig. 1), rewinding each time.

We now show that, for r selected uniformly at random, B can extract the 
value of the inner product r ⋅ x1 with probability pr·x1 ≥ 1 − 2(1 − pCHSH). 
B begins by sending r to A, and receiving the bitstring d. B then requests the 
measurement result in both the θ = π/4 and θ = −π/4 bases, by rewinding in 
between. Supposing that both the received values are ‘correct’ (that is, would 
be accepted by the real verifier), they uniquely determine the single-qubit state 
|ψ⟩ ∈ {|0⟩, |1⟩, |+⟩, |−⟩} that would be held by an honest quantum prover. This 
state reveals whether r ⋅ x0 = r ⋅ x1, and, because B already holds x0, B can compute 
r ⋅ x1. We may define the probability (taken over all randomness except the choice 
of θ) that the prover returns an accepting value in the cases θ = π/4 and θ = −π/4 
as pπ/4 and p−π/4, respectively. Then, via union bound, the probability that both 
are indeed correct is pr·x1 ≥ 1 − (1 − pπ/4) − (1 − p

−π/4). Considering that 
pCHSH = (pπ/4 + p−π/4)/2, we have pr·x1 ≥ 1 − 2(1 − pCHSH).

Now, we show that extracting r ⋅ x1 in this way allows x1 to be determined in 
full, even in the presence of noise, by rewinding many times and querying for 
specific (correlated) choices of r. In particular, the above construction is a noisy 
oracle to the encoding of x1 under the Hadamard code. By the Goldreich–Levin 
theorem62, list decoding applied to such an oracle will generate a polynomial-length 
list of candidates for x1. If the noise rate of the oracle is noticeably less than 1/2, x1 
will be contained in that list; B can iterate through the candidates until it finds one 
for which f(x1) = y.

By Lemma 1 (below), for a particular iteration of the protocol, the probability 
that list decoding succeeds is bounded by px1 > 2pr·x1 − 1 − 2μ′

(n), for a 
noticeable function μ′

(n) of our choice. (Note that the oracle’s noise rate is not 
simply pr·x1: that is the probability that any single value r ⋅ x1 is correct, but all of 
the queries to the oracle are correlated because they are for the same iteration of 
the protocol, and thus the same value of y.) Setting μ′

(n) = μ(n)/4 and combining 
with the previous result yields px1 > 1 − 4(1 − pCHSH) − μ(n)/2.

Finally, via union bound, the probability that B returns a claw is

P
B

≥ 1 − (1 − px0 ) − (1 − px1 ) > px + 4pCHSH − 4 − μ(n)/2

and via the assumption that px + 4pCHSH − 4 > μ(n) we have

P
B
> μ(n)/2

a contradiction. □

List decoding lemma. In this section we prove a bound on the probability that list 
decoding will succeed for a particular value of y, given an oracle’s noise rate over 
all values of y. Recall that by the Goldreich–Levin theorem62, list decoding of the 
Hadamard code is possible if the noise rate is noticeably less than 1/2.

Lemma 1. Consider a binary-valued function over two inputs g: Y × {0, 1}n → {0, 1}, 
and a noisy oracle G to that function. Assuming some distribution of values y ∈ Y 

and r ∈ {0, 1}n, define ϵ ≡ Pr
y,r
[G(y, r) ̸= g(y, r)] as the ‘noise rate’ of the oracle. Now 

define the conditional noise rate for a particular y ∈ Y as

ϵy ≡ Pr
r
[G(y, r) ̸= g(y, r)] (3)

Then, the probability that ϵy is less than 1/2 − μ(n) for any positive function μ,  
over randomly selected y, is

pgood ≡ Pr
y

[

ϵy < 1/2 − μ(n)
]

≥ 1 − 2ϵ − 2μ(n). (4)

Proof. Let S ⊆ Y be the set of y values for which ϵy < 1/2 − μ(n). Then by definition 
we have

ϵ = pgood · ϵy∈S + (1 − pgood) · ϵy /∈S (5)

Noting that we must have ϵy ≥ 1/2 − μ(n) for y ∉ S by definition, we may 
minimize the right-hand side of equation (5), yielding the bound

ϵ > pgood · 0 + (1 − pgood) · (1/2 − μ(n)) (6)

Rearranging this expression we arrive at pgood > 1 − 2ϵ − 2μ(n), which is what we 
desired to show. □

Numerical analysis of the postselection scheme for x2 mod N. For the TCF 
f(x) = x2 mod N, we explicitly analyse the effectiveness of the postselection 
scheme. Let m be the length of the outputs of this function. In this case, ~1/4 of 
the bitstrings of length m are valid outputs, so one would naively expect to reject 
about 3/4 of corrupted bitstrings. By introducing additional redundancy into the 
outputs of f and thus increasing m, one can further decrease the probability that a 
corrupted y will incorrectly be accepted. Let us consider mapping x2 mod N to  
the function (kx)2modk2N for some integer k. This is particularly convenient 
because the prover can validate y by simply checking whether it is a multiple of k2.  
Moreover, the mapping adds only logk bits to the size of the problem, while 
rejecting a fraction 1 − 1/k2 of corrupted bitstrings.

We perform extensive numerical simulations demonstrating that postselection 
allows for quantum advantage to be achieved using noisy devices with low circuit 
fidelities (Fig. 2). We simulate quantum circuits for (kx)2modk2N at a problem size 
of n = 512 bits. Assuming a uniform gate fidelity across the circuit, we analyse the 
success rate of a quantum prover for k = 3a and a = {0, 1, 2, 3}. For these simulations 
we use our implementation of the Karatsuba algorithm, because it is the most 
efficient in terms of gate count and depth. The choice of k = 3a and details of the 
simulation are explained in the Supplementary Information.

Efficient quantum evaluation of irreversible classical circuits. The central 
computational step in our interactive protocol (that is, step 2 in Fig. 1) is for the 
prover to apply a unitary of the form

Ufi
∑

x
|x⟩x

∣

∣

∣
0⊗m

〉

y
=

∑

x
|x⟩x|fi(x)⟩y, (7)

where fi(x) is a classical function and m is the length of the output register. 
This type of unitary operation is ubiquitous across quantum algorithms, and 
a common strategy for its implementation is to convert the gates of a classical 
circuit into quantum gates. Generically, this process induces substantial 
overhead in both time and space complexity due to the need to make the 
circuit reversible to preserve unitarity49,50. This reversibility is often achieved 
by using an additional register, g, of so-called ‘garbage bits’ and implementing 
U ′

fi
∑

x|x⟩x
∣

∣0⊗m〉
y

∣

∣

∣
0⊗l

〉

g
=

∑

x|x⟩x|fi(x)⟩y|gi(x)⟩g. For each gate in the classical 

circuit, enough garbage bits are added to make the operation injective. In general, 
to maintain coherence, these bits cannot be discarded but must be ‘uncomputed’ 
later, adding substantial complexity to the circuits.

A particularly appealing feature of our protocol is the existence of a 
measurement scheme to discard garbage bits, allowing for the direct mapping of 
classical to quantum circuits with no overhead. Specifically, we envision the prover 
measuring the qubits of the g register in the Hadamard basis and storing the results 
as a bitstring h, yielding the state

|ψ⟩ =

∑

x
(−1)h·gi(x)|x⟩x|fi(x)⟩y. (8)

The prover has avoided the need to do any uncomputation of the garbage bits, at 
the expense of introducing phase flips onto some elements of the superposition. 
These phase flips do not affect the protocol, as long as the verifier can determine 
them. Although classically computing h ⋅ gi(x) is efficient for any x, computing it for 
all terms in the superposition is infeasible for the verifier. However, our protocol 
provides a natural way around this. The verifier can wait until the prover has 
collapsed the superposition onto x0 and x1, before evaluating gi(x) only on those two 
inputs (this is true because gi(x) is the result of adding extra output bits to the gates 
of a classical circuit, which is efficient to evaluate on any input).
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Crucially, the prover can measure away garbage qubits as soon as they  
would be discarded classically, instead of waiting until the computation has 
completed. If these qubits are then reused, the quantum circuit will use no  
more space than the classical one. This feature allows for substantial 
improvements in both gate depth and qubit number for practical 
implementations of the protocol (last rows of Supplementary Table 1). We 
note that performing many individual measurements on a subset of the qubits 
is difficult on some experimental systems, which may make this technique 
challenging to use in practice. However, recent hardware advances have 
demonstrated these ‘intermediate measurements’ in practice with high fidelity, 
for example by spatially shuttling trapped ions63,64. We thus expect that the 
capability to perform partial measurements will not be a barrier in the near 
term. This issue can also be mitigated somewhat by collecting ancilla qubits and 
measuring them in batches rather than one by one, allowing for a direct tradeoff 
between ancilla usage and the number of partial measurements.

TCF constructions. Here we present two TCF families for use in the protocol of 
this Article. These families are defined by three algorithms: Gen, a probabilistic 
algorithm that selects an index i specifying one function in the family and outputs 
the corresponding trapdoor data t; fi, the definition of the function itself; and T, 
a trapdoor algorithm that efficiently inverts fi for any i, given the corresponding 
trapdoor data t. Here we provide the definitions of the function families (proofs of 
their cryptographic properties are included in the Supplementary Information). 
In these definitions we use a security parameter λ following the notation of the 
cryptographic literature; λ is informally equivalent to the ‘problem size’ n defined 
in the main text as the length of the TCF input string.

TCF from Rabin’s function x2 mod N. Rabin’s function fN(x) = x2 mod N,  
with N the product of two primes, was first used in the context of public-key 
cryptography and digital signatures30,31. We use it to define the TCF family FRabin, 
as follows.

Function generation
Gen

(

1λ
)

	1.	 Randomly choose two prime numbers p and q of length λ/2 bits, with 
pmod4 ≡ qmod4 ≡ 3mod4.

	2.	 Return N = pq as the function index, and the tuple (p, q) as the trapdoor data.

(In practice, p and q must be selected with some care such that Fermat 
factorization and Pollard’s p − 1 algorithm65 cannot be used to efficiently factor N 
classically. Selecting p and q in the same manner as for RSA encryption would be 
effective66.)

Function definition
fN: [N/2] → [N] is defined as

fN(x) = x2 mod N (9)

The domain is restricted to [N/2] to remove extra trivial collisions of the form  
(x, −x).

Trapdoor
The trapdoor algorithm is the same as the decryption algorithm of the Rabin 

cryptosystem30. On input y and key (p, q), the Rabin decryption algorithm returns 
four integers (x0, x1, −x0, −x1) in the range [0, N). x0 and x1 can then be selected by 
choosing the two values that are smaller than N/2. A proof in the Supplementary 
Information provides an overview of the algorithm.

TCF from decisional Diffie–Hellman. We now present the TCF family FDDH based 
on the decisional DDH. DDH is defined for a multiplicative group G; informally, 
the DDH assumption states that for a group generator g and two integers a and 
b, given g, ga and gb it is computationally hard to distinguish gab from a random 
group element. We expand on a known DDH-based trapdoor one-way function 
construction28,29, adding the claw-free property to construct a TCF.

Function generation
Gen

(

1λ
)

	1.	 Choose a group G of order q ∼ O
(

2λ
)

, and a generator g for that group.
	2.	 For dimension k > log2q choose a random invertible matrix M ∈ Z

k×k
q .

	3.	 Compute gM =

(

gMij
)

∈ G
k×k (element-wise exponentiation).

	4.	 Choose a secret vector s ∈ {0, 1}k; compute the vector gMs (where Ms is the 
matrix-vector product, and again the exponentiation is element-wise).

	5.	 Publish the pair 
(

gM, gMs), retain (g, M, s) as the trapdoor data.

Function definition
Let d be a power of two with d ∼ O

(

k2
)

. We define the function fi 
as fi(b∣∣x) ≔ fi, b(x), where ∣∣ denotes concatenation, for a pair of functions 
fi, b : Z

k
d → G

k:

fi, 0(x) = gMx (10)

fi, 1(x) = gMxgMs
= gM(x+s) (11)

Trapdoor
The algorithm takes as input the trapdoor data (g, M, s) and a value 

y = gMx0
= gM(x1+s), and returns the claw (x0, x1):

T((g, M, s), y)

	1.	 Compute M−1 using M.
	2.	 Compute gM−1Mx0

= gx0.
	3.	 Take the discrete logarithm of each element of gx0, yielding x0. Crucially, 

this is possible because the elements of x are in Zd and d = poly(n), so the 
discrete logarithm can be computed in polynomial time by brute force.

	4.	 Compute x1 = x0 − s.
	5.	 Return (x0, x1).

Phase circuits for x2 mod N. Here we describe the two circuits, amenable to 
near-term quantum devices, that utilize quantum phase estimation to implement 
the function f(x) = x2 mod N. The intuition behind our approach is as follows: we 
will compute x2/N in the phase and transfer it to an output register via an inverse 
quantum Fourier transform67,68. The modulo operation occurs automatically as the 
phase wraps around the unit circle, avoiding the need for a separate reduction step.

To implement 
∑

x|x⟩x
∣

∣x2 modN
〉

y, we design a circuit to compute

(I ⊗ IQFT) ˜UwN (I ⊗ H⊗m
)|x⟩

∣

∣

∣
0⊗m

〉

= |x⟩|w⟩ (12)

where H is a Hadamard gate, IQFT represents an inverse quantum Fourier 
transform, and w ≡ x2/N = 0. w1w2 ⋯ wm is an m-bit binary fraction with 
m > n + O(1) to sufficiently resolve the value x2 mod N in post-processing.  
Here, ˜UwN is the diagonal unitary:

˜UwN |x⟩|z⟩ = exp
(

2πi x
2

N z
)

|x⟩|z⟩. (13)

By performing a binary decomposition of the phase in equation (13):

exp
(

2πi x
2

N z
)

=

∏

i, j, k
exp

(

2πi 2
i+j+k

N xixjzk

)

, (14)

one immediately finds that ˜UwN is equivalent to applying a series of 
doubly-controlled phase rotation gates of angle

ϕijk =

2π2i+j+k

N (mod 2π). (15)

Here, the control qubits are i, j in the x register, and the target qubit is k in the y 
register. Crucially, the value of this phase for any i, j, k can be computed classically 
when the circuit is compiled.

As depicted in Supplementary Fig. 1, we propose two explicit circuits to 
implement ˜UwN, one optimizing for qubit count and the other for gate count. The 
first circuit (Supplementary Fig. 1a) takes advantage of the fact that the output 
register is measured immediately after it is computed; this allows one to replace the 
m output qubits with a single qubit that is measured and reused m times. Moreover, 
by replacing groups of doubly controlled gates with a Toffoli gate and a series of 
singly controlled gates, one ultimately arrives at an implementation that requires 
n3/2 + O(n2) gates, but only n + O(1) qubits. We note that this does require 
individual measurement and reuse of qubits, which has been a challenge for 
experiments. Recent experiments, however, have demonstrated this capability63,64.

Our second circuit (Supplementary Fig. 1b), which optimizes for gate count, 
leverages the fact that ϕijk (equation (15)) only depends on i + j + k, allowing one 
to combine gates with a common sum. In this case, one can define ℓ = i + j and 
then, for each value of ℓ, simply ‘count’ the number of values of i, j for which both 
control qubits are 1. By then performing controlled gates off of the qubits of the 
counter register, one can reduce the total gate complexity by a factor of n/logn, 
leading to an implementation with 2n2logn + O(n2) gates.

Analysis of experimental details in Rydberg atom systems. Initial demonstrations 
of our protocol can already be implemented in current-generation Rydberg 
experiments, where a number of essential features have recently been shown, 
including (1) the coherent manipulation of individual qubits trapped in  
a 3D tweezer array57,58, (2) the deterministic loading of atoms in a 3D optical 
lattice59 and (3) fast entangling gate operations with fidelities F ≥ 0.974 (refs. 36–38).  
To estimate the number of entangling gates achievable within decoherence 
timescales, let us imagine choosing a Rydberg state with a principal quantum 
number n ≈ 70. This yields a strong van der Waals interaction V(r) = C6/r6, 
where r is the displacement between the interacting atoms and the C6 coefficient 
is ~(2π) × 880 GHz μm6 (ref. 69). Combined with a coherent driving field of Rabi 
frequency Ω ≈ (2π) × 1–10 MHz, the van der Waals interaction can lead to a 
blockade radius of up to Rb = (C6/Ω)

1/6 ≈ 10 μm. Within this radius, one can 
arrange ~102 all-to-all interacting qubits, assuming an atom-to-atom spacing of 
a0 ≈ 2 μm. (We note that this spacing is ultimately limited by a combination of the 
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optical diffraction limit and the orbital size of n ≈ 70 Rydberg states.) In current 
experiments, the decoherence associated with the Rydberg transition is typically 
limited by a combination of inhomogeneous Doppler shifts and laser phase/
intensity noise, leading to 1/T2 ≈ 10–100 kHz (refs. 36,70,71). Taking everything 
together, one should be able to perform ~103 entangling gates before decoherence 
occurs (this is comparable to the number of two-qubit entangling gates possible 
in other state-of-the-art platforms11,72). Although this falls short of enabling an 
immediate full-scale demonstration of classically verifiable quantum advantage, 
we hasten to emphasize that the ability to directly perform multi-qubit entangling 
operations substantially reduces the cost of implementing our interactive protocol. 
For example, the standard decomposition of a Toffoli gate uses six CNOT gates and 
seven T and T† gates, with a gate depth of 12 (refs. 73–75); an equivalent three-qubit 
gate can be performed in a single step via the Rydberg blockade mechanism.

Data availability
No raw data were used in this study.

Code availability
The code used in this work (implementations of quantum circuits for x2 mod N and 
analysis of the effectiveness of the postselection scheme) is available on GitHub 
(https://github.com/GregDMeyer/quantum-advantage) and is also archived on 
Zenodo (https://zenodo.org/record/6519250)76.
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