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Long-lived valley states in bilayer graphene 
quantum dots

Rebekka Garreis    1,4  , Chuyao Tong    1,4  , Jocelyn Terle1, 
Max Josef Ruckriegel    1, Jonas Daniel Gerber    1, Lisa Maria Gächter    1, 
Kenji Watanabe    2, Takashi Taniguchi    3, Thomas Ihn    1, Klaus Ensslin    1 & 
Wei Wister Huang    1

Bilayer graphene is a promising platform for electrically controllable qubits 
in a two-dimensional material. Of particular interest is the ability to encode 
quantum information in the valley degree of freedom, a two-fold orbital 
degeneracy that arises from the symmetry of the hexagonal crystal structure. 
The use of valleys could be advantageous, as known spin- and orbital-mixing 
mechanisms are unlikely to be at work for valleys, promising more robust 
qubits. The Berry curvature associated with valley states allows for electrical 
control of their energies, suggesting routes for coherent qubit manipulation. 
However, the relaxation time of valley states—which ultimately limits these 
qubits’ coherence properties and therefore their suitability as practical 
qubits—is not yet known. Here we measure the characteristic relaxation times 
of these spin and valley states in gate-defined bilayer graphene quantum dot 
devices. Different valley states can be distinguished from each other with a 
fidelity of over 99%. The relaxation time between valley triplets and singlets 
exceeds 500 ms and is more than one order of magnitude longer than for spin 
states. This work facilitates future measurements on valley-qubit coherence, 
demonstrating bilayer graphene as a practical platform hosting electrically 
controlled, long-lived valley qubits.

Bilayer graphene (BLG) offers unique opportunities as a host mate-
rial for spin qubits1,2. These include weak spin–orbit interactions3,4 
and natural nuclear-spin concentrations as low as 1.1% (compared to 
4.7% in Si), which can be further improved by isotopic purification5. 
Two-dimensional (2D) materials allow for the realization of smaller 
transistors6 and possibly more strongly coupled quantum devices, as 
compared to bulk materials.

In addition, the symmetry of the hexagonal Bravais lattice of 
BLG gives rise to a valley degeneracy, which behaves analogously 
to spins7–10. This unique valley degeneracy in BLG with electrically 
tunable valley g-factor8 provides an additional degree of freedom 
to realize and manipulate qubits. In particular, there is the prospect 
of realizing highly robust qubits with valley states. Whereas charge 

qubits couple to electric fields and spin qubits to magnetic fields, 
valley qubits consist of two degenerate states with the same charge 
distribution and the same spin configuration, but differ in their loca-
tions in reciprocal space. Theories have proposed various intervalley 
scattering mechanisms, requiring a short-range event on the scale of 
the lattice period11,12. Hence, for sufficiently low atomic defect density, 
the valley lifetimes are expected to be limited not by intrinsic mixing 
mechanisms such as phonon-mediated spin–valley coupling but by 
the finite size of the dot ultimately breaking translational invariance, 
similar to that previously discussed for transition metal dichalcoge-
nides13. So far, however, only very short valley lifetimes have been 
observed, not in graphene but in optically addressed valley qubits in 
other 2D materials14.
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are well below the Fermi energy in the leads, with (1, 1) remaining in the 
ground state. Subsequently, we pulse quickly (bandwidth-limited to the 
order of 10 kHz) to the read position (R), where the (0, 2) state is lower 
in energy than (1, 1). The electron in the left dot is now energetically 
allowed to relax into the right dot while releasing its excess energy into 
the environment. We wait at this position for a time tR before returning 
to the unload point U. An inelastic transition between the (1, 1) and 
the (0, 2) state happening within the time interval tR is detected in real 

The development of BLG quantum dot devices has made rapid  
progress in recent years7,15–18, with the demonstration of high qual-
ity and controllability8,19 and the discovery of intriguing phys-
ics3,4,9,20,21, such as switchable Pauli spin and valley blockade in coupled  
double quantum dots22, as well as the realization of high-quality 
charge-sensing technology23,24. In recent experiments, we found 
spin-relaxation times T1 of up to 50 ms measured with the single-shot 
Elzerman readout technique25 in a single quantum dot26, compara-
ble with values from other semiconductor quantum dot systems27,  
such as in III–V28–30, silicon-based31–34 and germanium-based35  
heterostructures. Here we demonstrate single-shot readout with both 
spin and valley Pauli blockade36,37 in gate-defined BLG double quan-
tum dots and the associated measurement of characteristic spin and 
valley relaxation times T1 between spin- or valley-triplet and singlet 
states. Using a property unique to BLG, we can select between spin- 
or valley-blockade regimes by choosing appropriate perpendicular 
magnetic fields22. The spin-T1 time is measured to be up to 60 ms at 
B⊥ = 700 mT, corroborating our recent findings in single quantum 
dots26. By increasing the interdot tunnel coupling, the spin-T1 time is 
reduced. We observe outstandingly long valley-T1 times, longer than 
500 ms at B⊥ = 250 mT. Unlike in the relaxation of spin states, intervalley 
relaxation times are found to be robust against variation of the interdot 
tunnel coupling strength. This valley lifetime is comparable with the 
state-of-the-art spin singlet-triplet T1 measured in Si/SiGe and Si/SiO2 
and an order of magnitude longer than their T1 reported at such low 
magnetic field38,39.

The BLG double quantum dots studied here are defined by elec-
trostatic gating in the sample shown in Fig. 1a (for details on sample 
fabrication and quantum dot tuning, see Methods). In one channel, 
we define the two quantum dots L and R underneath their respective 
plunger gates (dark red) with voltages VL and VR. The dot–lead and 
interdot tunnel couplings are controlled individually by the left, right 
and middle barrier gate (light red) voltages VLB,RB and VMB, respectively. 
Separated by a depletion region, a third quantum dot (labelled ‘detec-
tor’ in Fig. 1a) formed in the neighbouring channel is controlled by 
the middle and right plunger-gate (blue) voltages VDM and VDR. This 
dot serves as a charge sensor, as it is capacitively coupled to dots L 
and R, more strongly to the left than to the right dot. A change in the 
double-dot charge configuration constitutes a discrete change of the 
electrostatic environment of the sensor dot, giving rise to a step in Vdet, 
the voltage measured across the detection channel when applying a 
constant current bias23. The sensor dot is tuned to be at the rising or 
falling edge of a conductance resonance for optimized sensitivity and 
detection bandwidth24.

We tune the double dot to the previously studied22 two-electron 
configuration near the (1, 1)–(0, 2) charge degeneracy, where (NL, NR) 
labels the number of electrons in the left and in the right dot. With long 
integration time (20 ms) in the detector circuit, the relevant charge 
states manifest themselves as discrete values of Vdet, as shown in the 
charge stability map (Fig. 1b). All four charge states (1, 1), (0, 2), (0, 1) 
and (1, 2) can be clearly distinguished. For single-shot readout, we fix VL 
and VR to an operating point and apply voltage pulses Vpulse,L and Vpulse,R 
to the left and the right plunger gates (see Fig. 1a for the schematic 
circuit). We collect real-time data during the pulsed experiments at a 
sampling rate of 27.5 kHz.

Figure 1b,c depicts the readout protocol for measuring inelastic 
relaxations between (1, 1) and (0, 2) states. Before describing which 
quantum states are addressed in the two charge configurations, we 
first discuss this protocol as an example to explain our general meas-
urement scheme. Starting at the unload point U with a (0, 1) state, we 
first prepare a (1, 1) state by pulsing from U to the load (L) configuration 
within time tL, which is much longer than the dot–lead tunnelling time, 
so that an electron can tunnel into the left dot with high fidelity while 
the (0, 2) level remains above the Fermi energy of the leads. We then 
pulse to an anchor point (A), where both the (1, 1) and the (0, 2) states 
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Fig. 1 | Pulse protocol used to determine spin and valley relaxation times.  
a, False-colour atomic force microscopic image of the device. The double 
quantum dot is formed underneath gates L and R (dark red), with tunable tunnel 
barrier gates (light red). In the other channel, a detector quantum dot with the 
middle and right detector plunger gates DM and DR is capacitively coupled to 
the double quantum dots and serves as a charge sensor. b, Charge stability map 
probed with detector signal Vdet measured across the current-biased detector 
channel, around the (1, 1)–(0, 2) charge transition. Axes of total energy ϵ and 
energy detuning δ are marked. The dashed square with a side length of 8 mV marks 
the experimentally accessible pulse window, limited by the amplitude of the pulse 
generator. c, Spin and valley pulsing protocol for (1, 1) → (0, 2) with corresponding 
exemplary time traces. The gate position for each phase is marked in b. Starting 
from the (0, 1) state in unload (U), we pulse to the load position (L) slower than the 
dot–lead tunnel rate to prepare a (1, 1) state. We then pulse to the anchor point (A) 
slower than the line-bandwidth of the order of 100 μs, before pulsing to the read 
location (R). In the read phase, the system is energetically preferred to transfer 
to (0, 2), but is forbidden to do so by mismatching quantum numbers between 
triplet (1, 1)T− and singlet (0, 2)S, unless a relaxation event occurs (indicated by 
purple arrows in the time traces). d, Characteristic spin and valley relaxation times 
T1 measured at perpendicular magnetic field B⊥ = 250 mT along the δ axis. Valley 
T1 values exceeding 500 ms are measured, much longer than the measured spin 
T1 ≈ 10 ms. Error bars correspond to the standard deviation of the calculated T1. 
The star marks measurements with a read time of 1.5 s.
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time. Figure 1c shows two exemplary time traces, with the inelastic 
transitions occurring at different times (purple arrows). Repeating 
this pulse sequence at least 10,000 times, we obtain the statistical 
distribution of the inelastic relaxation times, from which we extract 
the average relaxation time T1. A similar scheme with points L and A in 
the (0, 2) and R in the (1, 1) region is applied for pulsing from an initial 
(0, 2) into the (1, 1) charge configuration for measuring the T1 time of 
(0, 2) → (1, 1) transitions.

To select the specific quantum states between which we wish to 
measure the T1 time, we apply a magnetic field perpendicular to the 
graphene plane20,22,40,41 and study the relaxation between 
Pauli-blockaded valley and spin states at B⊥ = 250 mT and 700 mT, 
respectively. In both cases, the lowest-energy (1, 1) states are valley- and 
spin-polarized (valley-triplet T−v  and spin-triplet T−s  state).

At B⊥ = 250 mT, the (0, 2) ground state is a valley-singlet Sv 
spin-triplet state T−s ; the (1, 1) ↔ (0, 2) transitions are therefore valley 
blockaded. At B⊥ = 700 mT, the (0, 2) ground state has turned into a 
valley-polarized (valley-triplet T−v ) spin-singlet state, such that the 
(1, 1) ↔ (0, 2) transitions are spin blockaded.

Figure 1d shows the main result of this paper for the T1 times 
measured at B⊥ = 250 mT as a function of detuning δ of the read 
position R from the charge transition line (orientation of the δ axis 
marked in Fig. 1b). At sufficiently small detuning −250 < δ < 420 μeV, 
a valley flip is required to lift the valley blockade, so that the resulting 
T1 times can be identified with the valley relaxation time. We observe 
exceptionally long relaxation times of T1 > 500 ms, demonstrat-
ing that the valley states are remarkably long-lived in this double 
quantum dot system. This suggests that valley flips are suppressed 
within the dot and also during tunnelling, indicating that valley 
states are highly suitable for qubit operation. At δ < −250 μeV, the 
(0, 2) excited state with valley-triplet spin-singlet character is lower 
in energy than the (1, 1) ground state and the valley blockade can 
therefore be circumvented with a spin-flip transition to this state. In 
this regime, we measure the spin-relaxation time T1 ≤ 25 ms, which 
is an order of magnitude shorter than the valley relaxation time, 
but still comparable with values observed in other semiconductor 

quantum dot systems and sufficiently long for high-fidelity qubit 
operation and readout.

As an illustration of the details that lead to and go beyond the 
results presented in Fig. 1d, we show in Fig. 2 data obtained from pulse 
cycles at B⊥ = 250 mT and 700 mT. We pulsed during the load phase 
from U deep into a,c the (1, 1) or b,d the (0, 2) configurations at loca-
tions L′ (marked in Fig. 2) loading predominantly the respective ground 
states. Then, fixing U and L′ and anchoring at L′, we raster-scanned the 
read configuration R over the region marked with the dashed square in 
Fig. 1b and repeated at least 50 pulse cycles for each point. The Vdet sig-
nal averaged over the read time tR and over all the pulse cycles reflects 
the probabilities P(0,2) (Fig. 2a,c) and P(1,1) (Fig. 2b,d) at R36,42. The resulting 
normalized probability maps are shown in Fig. 2a,b for B⊥ = 250 mT and 
Fig. 2c,d for B⊥ = 700 mT. For a detailed description of the relevant (1, 1) 
and (0, 2) states involved and their evolution in the magnetic field B⊥, 
see Supplementary Information section A.

At B⊥ = 250 mT (Fig. 1d and 2a,b), the (0, 2) ground state is the 
valley-singlet spin-triplet T−s Sv. The bundle of (1, 1) states (containing 
all spin-triplet and -singlet states, split off by the Zeeman energy and 
zero field spin–orbit splitting (ΔSO)) with polarized valleys T−v  is lower 
in energy than the bundle of (1, 1)Sv/T0

v  by gvμBB⊥, where μB is the Bohr 
magneton and gv, approximately 20, is the dot-geometry-dependent 
valley g-factor, as the energies of the valley states couple to a perpen-
dicular magnetic field, similar to the Zeeman effect for spins. Thus, in 
Fig. 2a, a strongly blockaded region (green label) is observed for 
(1, 1) → (0, 2), where the system remains mostly in (1, 1)T−v  during reading 
(26 ms), since its transition [i] to the ground state (0, 2)Sv is valley 
blockaded. At large enough ∣δ∣, when the (0, 2)SsT−v  excited state 
becomes accessible, the spin-blockaded transition [ii] to this state can 
circumvent the valley-blockaded transition [i] at the cost of a spin-flip. 
Because the valley-blockaded region (green label) is lifted by spin 
blockade (brown label) on transition [ii] with shorter yet still finite 
relaxation time, we conclude that spin flips occur more frequently than 
valley flips. The (0, 2) excited state, with matching quantum numbers 
T−s T−v  and able to lift both spin and valley blockade, occurs at much 
higher energies40. A strongly blockaded region (green label in Fig. 2b) 
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Fig. 2 | Probability of occupation in (0, 2) and (1, 1) states during the read 
phase and schematics showing the relevant states and transitions.  
a, Probability (left) and transitions (right) for pulsing from (1, 1) → (0, 2) at 
B⊥ = 250 mT, while loading and anchoring at location L′. For (1, 1) → (0, 2) at 
B⊥ = 250 mT, the strong valley blockade from (1, 1)T−s T−v  to the valley-mismatched 
ground state (0, 2)T−s Sv is replaced by the weaker spin blockade to the spin-
mismatched excited state (0, 2)SsT−v  at [ii]. (The green and brown symbols label 
regions of valley and spin blockade, respectively, shown by the low occupation 

probability of the target states shown in the dark blue of the probability  
scale. Dashed lines indicate relevant state alignments. For the rest of the 
measurements, loading is performed at location L and anchoring at A.) b, As in a, 
for pulsing from (0, 2) → (1, 1) at 250 mT. (The parenthesized comments in a apply 
also to b, c and d.) c, As in a, for pulsing from (1, 1) → (0, 2) at B⊥ = 700 mT. At 
B⊥ = 700 mT, the ground-state spin blockade cannot be lifted by the stronger 
excited-state valley blockade at [i]. d, As in c, for pulsing from (0, 2) → (1, 1) at 
B⊥ = 700 mT.
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is also observed for (0, 2) → (1, 1), since transition [i′] from the (0, 2) 
ground state Sv to the (1, 1) ground state T−v  is valley blockaded. This 
blockade is completely lifted at large enough ∣δ∣ at [iii′], giving access 
to the excited state (1, 1)T−s Sv  with matching quantum numbers. We 
observe valley blockade stemming from the same set of states and 
transitions at even lower magnetic field, as low as at B⊥ = 20 mT (see 
Supplementary Information section C).

With this scenario in mind, we move to B⊥ = 700 mT (Fig. 2c,d), 
where the (0, 2) ground state changes to (0, 2)SsT−v , due to T−v  being 
lowered in energy by the coupling of the valleys to B⊥. The [i] valley- and 
[ii] spin-blockaded transitions thus reverse their order in energy rela-
tive to the scenario at B⊥ = 250 mT. In Fig. 2c, the transition [ii] from the 
loaded (1, 1)T−s T−v  to the spin-mismatched ground state (0, 2)SsT−v  gives 
rise to a spin-blockaded region (brown label). Resonance [i] at finite ∣δ∣ 
appears, since the now excited valley-mismatched state (0, 2)T−s Sv is 
accessible in energy. However, unlike at B⊥ = 250 mT, this excited state 
does not lift the spin blockade, since valley flips occur more slowly than 
spin flips. The spin-blockaded region (brown label) in Fig. 2d is much 
smaller for (0, 2) → (1, 1), because the (0, 2) ground state T−s Sv is spin 
blockaded and cannot proceed to the ground state (1, 1)T−s T−v  until 
access to the excited state (1, 1)SsT−v  lifts the spin blockade completely 
at [iv′], gsμBB⊥ + ΔSO away in ∣δ∣, where gs = 2 is the spin g-factor and 
ΔSO ≈ 60 μeV is the zero-field Kane–Mele splitting3,4.

For the quantitative measurement of T1 times, we choose load 
locations L in the probability maps in Fig. 2a that only load the respec-
tive ground states while avoiding the excited states. We choose unload 
and load times tU and tL to be longer than the dot–lead tunnelling rate; 
we choose the time tA spent at the anchor point A to be longer than the 
rise time of our pulse lines at the order of 100 μs; and we choose read 
time tR to be reasonably long compared to the probed relaxation times. 
Examples of time traces for (1, 1) → (0, 2) spin relaxation at 700 mT (at 
δ = −180 μeV, marked by an arrow in Fig. 4b) are shown in Fig. 3a, left, 
with tR = 100 ms, where registered relaxation events are indicated by 
arrows. We show the distribution of relaxation times for 10,000 
repeated pulse cycles in Fig. 3b, left, plotted on a logarithmic scale; this 
distribution is well described by an exponential decay e−t/T1, with T1 
being the characteristic spin-relaxation time. To extract T1, we perform 
a Bayesian analysis based on the exponential model e−t/T1 using the 
average relaxation time 〈t〉 within the read-time interval [t0, t1] as the 
relevant statistics. The finite read-time interval removes events occur-
ring before the detection read-window opens at t0 and those after t1, 
the end of the read-window, with the detection window subtracted (see 
Methods for a detailed explanation of the analysis performed). The 
data as extracted by this method are well fitted by an exponential decay 
with T1 = 34 ± 1 ms.

The long-lived valley states are found for (1, 1) → (0, 2) by measur-
ing valley relaxation at B⊥ = 250 mT (at δ = −100 μeV, marked by an 
arrow in Fig. 4a) with read time tR = 1.5 s, much longer than that for 
spin relaxation, to capture most relaxation events within the readout 
window. Examples of time traces are shown in Fig. 3a, right, with the 
distribution of 10,000 repeated pulse cycles plotted in Fig. 3b, right. 
The valley-relaxation data are also well fitted by an exponential decay, 
evaluating to a characteristic valley-relaxation time of T1 = 354 ± 5 ms, 
in this example.

We now evaluate quantitatively the valley and spin readout fideli-
ties in our experiment. We prepare (1,1)T− with a probability of roughly 
50% at the beginning of the read phase. when plotting histograms of 
detector voltage Vdet during the read phase, well-separated peaks cor-
responding to (1, 1) and (0, 2) charge states are seen, as shown in  
Fig. 3c,e. We follow the framework introduced in Barthel et al.43 to 
model the distribution that includes the effect of a finite relaxation 
time T1 and find an overall fidelity of 99.9727(17)% for the valleys. The 
shoulder in the lower histogram peak in Fig. 3c results from charge 
instabilities close to the detector influencing its asymmetry sensitivity 
and thus shifting both the spin singlet and triplet levels with respect 

to zero, but by a different amount (see Supplementary Information 
section D). The charge instability could be avoided by more accurate 
tuning. We calculate the model function for each singlet peak using 
the mean and variance of a Gaussian fit to extract lower bounds for the 
fidelity of 99.9033(18)% (solid) and 99.80(3)% (dashed) for the spins. 
We plot the evolution of the infidelity with the length of the considered 
read phase in Fig. 3d and find that our signal-to-noise ratio does not 
need improvement to obtain higher fidelity, but that the finite relaxa-
tion time T1 limits the fidelity, which decreases for longer tint for both 
spins and valleys. The decrease of fidelity with tint occurs more quickly 
for spins, due to the shorter T1.

The characteristic relaxation times T1 of valley and spin states 
were measured as a function of detuning δ (see Fig. 1b) by repeating 
the procedure described above. For valley relaxation, we chose a read 
time of tR = 140 ms for shorter measurements and compensated the 
shorter read time by acquiring many more samples, 36,000 pulse cycles 
instead of 10,000 (see Methods for a more detailed discussion on this 
approach). The results are summarized in Fig. 4. The blue star marks 
the single measurement with longer read time in the valley-blockaded 
regime presented in Fig. 3. It matches well with the T1 extracted from 
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shorter measurements. We see clearly a drop of the apparent T1 time 
by roughly an order of magnitude because the detuning causes a 
change from valley to spin blockade at δ = −240 μeV, for transition [ii] in  
Fig. 2a. Both spin and valley T1 times show complex behaviour as a 
function of detuning. Our findings align with a similar trend of 
non-monotonic detuning dependence that was highlighted in ref. 36. 
It is important to note that the detuning range under scrutiny in our 
research is substantialy offset from the (2, 1) and (1, 0) charge states. This 
implies that thermal relaxation may not be the primary factor at play. We 
attribute the dips in relaxation time partially to the coupling to excited 
states transitioning from the (1, 1) triplet to the (0, 2) charge state. These 
distinct peaks of increased relaxation, or hotspots, correspond to situ-
ations of maximal overlap between these states. In such cases, phonon 
interactions facilitate the process, pushing the relaxation times toward a 
minimum. When moving away from these anti-crossings, the relaxation 
time exhibits a recovery to its maximum values.

We also adjusted the strength of the tunnel coupling between the 
quantum dots to probe its influence on the measured spin and valley 
relaxation rates. Any such dependence potentially contains informa-
tion relevant to future research to identify the relaxation mechanisms.  
Figure 4a,b shows measured relaxation times at B⊥ = 250 mT and 
700 mT, respectively, as a function of detuning with T1 times plotted 
on a logarithmic scale for two different voltages VMB applied to the tun-
nel barrier gate between the two dots, resulting in stronger (red) and 
weaker (blue) interdot coupling strength, but both within the overall 
weak-coupling regime. Spin- and valley-blockaded regions are labelled 
in accordance with the discussion of Fig. 2, separated by transition [ii]. 
We mark by arrows in Fig. 4 the locations of δ at which the examples in 
Fig. 3 are taken. We notice that the valley T1 appears to be independ-
ent of interdot coupling, whereas the spin T1 decreases consistently 
at both 250 mT and 700 mT by an order of magnitude from around 
30 ms to 1 ms for stronger interdot coupling. This observation indi-
cates that the mechanisms assisting spin relaxation evidently depend 
on interdot tunnelling, potentially hinting toward the involvement of 
momentum-dependent spin–orbit interactions44. For valley relaxation, 
such mechanisms are clearly not the main contributors. Despite the shift 
of excited-state resonances due to the spin- and valley-state coupling to 
B⊥, no notable influence of B⊥ on the measured T1 times can be concluded 
(for more details, see Supplementary Information section E).

We probe the coupling of resonant (1, 1) and (0, 2) states in the 
spirit of Landau–Zener tunnelling experiments. In Fig. 2, peaks of prob-
abilities are seen when states align in energy (marked by dashes), indi-
cating finite coupling between the aligned states, which lifts the Pauli 
blockade. For the data presented in Figs. 1–4, we have pulsed from the 
anchor point A to the read position R as fast as permitted by our 
line-bandwidth, on the order of 10 kHz permit. In further experiments, 
we altered the transit time from A to R while keeping the read position 
R constant, thereby varying the energy sweep rate v. We repeated the 
procedure for 2,000 pulse cycles at each sweep rate and registered 
events where transfer from (1, 1) to (0, 2) happens diabatically. In  
Fig. 5a,c, the probability distribution Ptriplet of retaining (1, 1)T after 
passing through the avoided crossing is plotted on a logarithmic scale 
against 1/v for the two magnetic fields, Fig. 5a showing results at 
B⊥ = 250 mT and Fig. 5c the results at B⊥ = 700 mT, probing valley and 
spin blockade, respectively. The same experiment was performed for 
stronger (red) and weaker (blue) interdot tunnel coupling. In all cases, 
the data are compatible with the exponential dependence 
PLZ = exp(−2π∆2/vℏ) predicted by the Landau–Zener formula, where 
2Δ is the minimum energy splitting between the states. In agreement 
with the data shown in Fig. 4, intervalley coupling appears to be insensi-
tive to the interdot tunnel coupling, whereas spin coupling clearly 
increases for stronger interdot tunnel coupling.

For a quantitative analysis of the data, we look at the level schemes 
depicted in Fig. 5b,d. Here, the relevant (1, 1) triplet states marked in 
black and the (0, 2) singlet states in green (valley singlets) or brown 

(spin singlets). At B⊥ = 250 mT, the initial state at point A belongs to a 
state of the (1, 1)T−v  bundle (see inset of Fig. 5b), while the resulting state 
at point R is in the same (1, 1) bundle or in the (0, 2) bundle of states 
(green in Fig. 5b). The measured probability distribution Ptriplet is there-
fore a ‘bundle’ distribution potentially giving the coupling between 
the two crossing state bundles of distinct valley character. By contrast, 
at B⊥ = 700 mT, the distribution refers to the coupling between two 
distinct spin states, (1, 1)T−s T−v  and (0, 2)SsT−v . We also note that all dis-
tributions in Fig. 5a,c seem to be double exponentials, with a fast decay 
rate at very small 1/v and a slower rate at larger 1/v (separated in the 
figure by vertical lines). To obtain a naïve estimate of the energy scales 
for the coupling of the involved states, we apply the Landau–Zener 
formula to both the fast and slow decay in all four traces. For the inter-
valley coupling Δ at B⊥ = 250 mT, we find the values 1.5 neV and 1.2 neV 
for weaker (blue in Fig. 5), and 1.6 neV and 1.2 neV for stronger (red) 
tunnel coupling (the two values corresponding to the two slopes of the 
double exponential). At B⊥ = 700 mT for spin states, we find 5.3 neV and 
3.0 neV for weaker (blue) and 7.6 neV and 4.8 neV for stronger (red) 
interdot tunnel coupling. These values correspond to time scales ℏ/Δ 
of the order of a few hundred nanoseconds. For spins, the same meas-
urement technique45 gave a gap size of 60 neV for gallium arsenide46 
and 113 neV for silicon47.

The double-exponential decay could arise from contributions 
of inelastic T1 decay during the transit from point A to R, as well as the 
coherent Landau–Zener physics accounted for by the transition prob-
ability PLZ. This scenario would tend to invalidate our naïve application 
of the Landau–Zener formula and make a more involved, possibly 
incoherent analysis necessary48,49. Furthermore, the energy scales 
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we extracted are extremely small, of the order of nanoelectronvolts,  
a factor of 1,000 smaller than the temperature of the experiment. One 
might therefore expect that interactions of the electronic states with 
other degrees of freedom in the device become relevant, with virtual 
transitions, phonons or charge noise being among the most obvious 
candidates. We therefore regard the extracted coupling values as upper 
bounds for the true ‘intrinsic’ values. The experimental evidence of 
an exponential dependence on 1/v remains a robust outcome of our 
experiment.

The spin T1 times of up to 60 ms in our experiments compare 
well with recent experiments on single quantum dots using the Elzer-
man readout26. The impressively lengthy valley T1 times of more than 
500 ms, which we show to be robust against interdot tunnel coupling, 
open up interesting avenues for exploiting valley physics, and, together 
with the widely tunable valley g-factor, offer experimental schemes for 
electrically and coherently driven valley qubits. Our work raises the 
question of how valley qubits can be manipulated by experimentally 
accessible parameters. That the K-valleys are good quantum numbers 
relies on the translational invariance of the crystal. The electronic wave 
function in our dots extends over approximately 50 nm, comprising 
some 400 lattice constants; this means that translational invariance 
remains a good concept. As layers get thinner, especially the insulat-
ing hBN layers, and gate geometries smaller, it is conceivable that 
graphene quantum dots may be created that are much smaller and tun-
able in size, possibly allowing gate manipulation of the valley degrees 
of freedom. A practical concept for operation and coherent control 
of valley qubits in graphene requires a better understanding of the 
mechanisms limiting the valley (and spin) T1 times as observed in our 
experiments. The next experimental steps will include measurements 
with radio frequency pulse lines, to observe T2, the dephasing time—
another crucial timescale for qubit operation—and of coherent valley 
oscillations in real time.
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Methods
Sample geometry
The same device has been used before for the measurement of 
spin-relaxation times in ref. 26 and the evaluation of the full counting 
statistics in ref. 24. The fabrication of the van der Waals heterostructure 
follows the general procedure described in previous publications7,15,50. 
Stacked with the dry-transfer technique51, it lies on a silicon chip with 
280 nm surface SiO2. From bottom to top, it is built up with a graphite 
back gate, a bottom hBN flake (31 nm) and a bilayer graphene flake 
capped with a top hBN flake (20 nm). The split gates (5 nm Cr and 
20 nm Au) form two channels with a nominal width of 100 nm, with a 
separation gate of 150 nm width between them. The finger gates (5 nm 
Cr and 20 nm Au) have a width of 20 nm and a centre-to-centre distance 
of 85 nm. We use an aluminium oxide layer (30 nm) to separate the 
finger-gate layer from the split gates. Figure 1a shows a false-colour 
atomic force microscope image of the two layers of metal gates fabri-
cated on top of the heterostructure. The split gates (dark grey) are used 
to form two conducting channels (black)50. For the measurements dis-
cussed in this paper, we use two finger gates (blue) to define a quantum 
dot based on a p–n junction7,15 in the lower channel, which we utilize as 
a charge detector23. In the second channel we define two quantum dots 
below the gates marked in dark red colour and use the neighbouring 
gates (light red) to tune the tunnel coupling of the quantum dots to 
the leads and the interdot coupling8,19. All other gates are grounded.

Experimental setup
The sample is mounted in a dilution refrigerator with a nominal base 
temperature of 10 mK; in previous measurements, we extracted an 
electronic temperature of 50 mK in the same device and setup24. The 
detector dot is biased with a constant current of 10 pA using a low noise 
differential amplifier52 and the voltage signal Vdet is measured with a 
detector bandwidth of about 1 kHz and sampled at a rate of 27.5 kHz.

The d.c. voltage VL(R) tuning the left (right) dot is combined with 
the pulse Vpulse,L(R) via two resistors at room temperature. The pulse 
lines to the sample have a rise time of 120 μs. The pulse sampling rate 
to generate the analogue pulse signal is 219.72 kHz.

Determination of T1

The finite memory of our arbitrary waveform generator limits our 
maximum read time to tR = 140 ms. For the measurement presented in  
Fig. 3b, we choose a point in detuning, where we can set the read position 
to a point corresponding to applying Vpulse,L/R = 0, that is, at the centre 
of the pulse window. This allows us to turn off the arbitrary waveform 
generator at the end of the pulse sequence and reach an arbitrarily long 
read phase. This approach is only possible for data points within a small 
range of detuning, because otherwise setting the centre of the pulse 
window at the read position means that the load and unload positions 
fall out of the pulse window. With this method, we choose a read phase of 
tR = 1.5 s, much longer than the extracted T1 = 354 ± 5 ms at this point. This 
allows us to confirm the exponential distribution of relaxation events.

For any other data presented here, the length tR of the read phase 
is not necessarily much longer than the relaxation time T1, so we can-
not estimate T1 = 〈t〉 to describe the exponential decay. Instead, we use 
Bayes’ theorem to find the posterior distribution function of γ = 1/T1 
given the data and evaluate its maximum for estimating T1 and its width 
for estimating the uncertainty of T1.

We select all time traces that show a transition in the time interval 
[tmin, tmax], where tmin = 1ms  and tmax = tR − 1ms. The time interval of 1 ms 
corresponds to the detector rise time. All the remaining traces are 
discarded, because they are either traces with initial decays and hence 
wrong initialization, or traces without a decay within tR. The model 
distribution is then

pdf(t) = 1
α(γ) e

−γtγ (1)

with γ > 0. The normalization constant is given by the condition

∫
tmax

tmin

pdf(t)dt = 1
α(γ) ∫

tmax

tmin

e−γtγdt = 1

and therefore

α(γ) = ∫
tmax

tmin

e−γtγdt = e−γtmin − e−γtmax .

From the sequence of N experimental time traces, we obtain a 
sequence of decay-time data of the form

D = {t1, t2, t3, … , tN},

where N is the number of traces that showed a decay between tmin and 
tmax. The probability of measuring this specific dataset, if γ is known 
(the likelihood of the dataset D) is

prob(D|γ) =
N
∏
i=1

( 1
α(γ)

e−γti γdti)

= γN

α(γ)N
e−γ∑

N
i=1 ti

N
∏
i=1

dti.

We now introduce the time average

⟨ti⟩ =
1
N

N
∑
i=1
ti.

This allows us to write

prob(D|γ) = γN

α(γ)N
e−γN⟨ti⟩

N
∏
i=1

dti.

Using Bayes’ theorem, we find the posterior distribution of γ, given a 
specific dataset D:

pdf(γ|D) = pdf(γ)prob(D|γ)
∫∞
0 pdf(γ)prob(D|γ)dγ

.

A suitable non-informative prior for the scaling variable γ is

prob(γ) = dγ
γ .

This leads us to

pdf(γ|⟨ti⟩,N ) =
γN−1

α(γ)N
e−γN⟨ti⟩

∫∞
0

γN−1

α(γ)N
e−γN⟨ti⟩dγ

. (2)

This is a distribution function for γ with a sharp peak. The maximum 
of this distribution function gives the most probable value for γ, and 
its width gives the associated uncertainty.

The denominator in the posterior distribution is a constant. The 
numerator is a function of γ, which we define to be

h(γ) = γN−1

α(γ)N
e−γN⟨ti⟩.

Finding the maximum of the posterior probability density function in 
equation (2) amounts to finding the maximum of h(γ). Numerically, 
this is most conveniently done by realizing that the maximum of h(γ) 
is also the maximum of ln(h(γ)). We find

ln(h(γ)) = (N − 1) ln γ − N ln(α(γ)) − γN⟨ti⟩ .
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The maximum of this function is found by solving

d ln(h(γ))
dγ

= N − 1
γ − N

α(γ)
dα(γ)
dγ

− N⟨ti⟩ = 0,

so that

1
γ = N

N − 1 (⟨ti⟩ +
1
α(γ)

dα(γ)
dγ

) .
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