Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards meaningful diversity, equity and inclusion in physics learning environments

Abstract

Physics is one of the least diverse of all science, technology, engineering and mathematics disciplines with damaging stereotypes about who belongs and who can excel in it. Physics learning environments are generally not inclusive or equitable, with students from historically marginalized groups often reporting an unwelcoming climate. In general, the culture of physics is competitive with a dearth of humanity in interpersonal interactions and communications. Here we provide a narrative review of the research on diversity, equity and inclusion in undergraduate physics learning environments, focusing on women and ethnic and racial minority students, and make recommendations for how to improve this dire current situation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Li, Y. & Singh, C. The impact of perceived recognition by physics instructors on women’s self-efficacy and interest. Phys. Rev. Phys. Educ. Res. 19, 020125 (2023).

    Article  Google Scholar 

  2. Percent of Physics Bachelors and PhDs Earned by Women, Classes of 1975 Through 2016 (AIP Statistics, accessed 15 November 2023); https://www.aip.org/statistics/data-graphics/percent-physics-bachelors-and-phds-earned-women-classes-1975-through-2016

  3. TEAM-UP Report (American Institute of Physics, 2020).

  4. Proc. 6th IUPAP International Conference on Women in Physics (Wilkin, N. et al.) Vol. 2109 (American Institute of Physics, 2017).

  5. Blue, J., Traxler, A. L. & Cid, X. C. Gender matters. Phys. Today 71, 40–46 (2018).

    Article  Google Scholar 

  6. Singh, C. Inclusive mentoring: the mindset of an effective mentor. Preprint at https://arxiv.org/abs/2112.01227 (2021).

  7. Seymour, E. & Hunter, A.-B. Talking about Leaving Revisited: Persistence, Relocation, and Loss in Undergraduate STEM Education (Springer, 2019).

  8. Whitcomb, K., Cwik, S. & Singh, C. Not all disadvantages are created equal: racial/ethnic minority students have largest disadvantage among demographic groups in both STEM and non-STEM GPA. AERA Open 7, 1–16 (2021).

    Article  Google Scholar 

  9. Barthelemy, R., McCormick, M. & Henderson, C. Gender discrimination in physics and astronomy: graduate student experiences of sexism and gender microaggressions. Phys. Rev. Phys. Educ. Res. https://doi.org/10.1103/PhysRevPhysEducRes.12.020119 (2016).

  10. Rodriguez, I., Potvin, G. & Kramer, L. H. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major. Phys. Rev. Phys. Educ. Res. 12, 020118 (2016).

    Article  Google Scholar 

  11. Brewe, E. et al. Toward equity through participation in modeling instruction in introductory university physics. Phys. Rev. ST Phys. Educ. Res. 6, 010106 (2010).

    Article  Google Scholar 

  12. Van Dusen, B. & Nissen, J. Equity in college physics student learning: a critical quantitative intersectionality investigation. J. Res. Sci. Teach. 57, 33–57 (2020).

    Article  Google Scholar 

  13. Watkins, J. E. Examining Issues of Underrepresented Minority Students in Introductory Physics (Harvard Univ., 2010).

  14. Dew, M., Perry, J., Ford, L., Bassichis, W. & Erukhimova, T. Gendered performance differences in introductory physics: a study from a large land-grant university. Phys. Rev. Phys. Educ. Res. 17, 010106 (2021).

    Article  Google Scholar 

  15. Walton, G. M., Logel, C., Peach, J. M., Spencer, S. J. & Zanna, M. P. Two brief interventions to mitigate a ‘chilly climate’ transform women’s experience, relationships, and achievement in engineering. J. Educ. Psychol. 107, 468–485 (2015).

    Article  Google Scholar 

  16. Danielsson, A. T. Exploring woman university physics students ‘doing gender’ and ‘doing physics’. Gend. Educ. 24, 25–39 (2012).

    Article  Google Scholar 

  17. Gonsalves, A. J., Danielsson, A. & Pettersson, H. Masculinities and experimental practices in physics: the view from three case studies. Phys. Rev. Phys. Educ. Res. 12, 020120 (2016).

    Article  Google Scholar 

  18. Marchand, G. C. & Taasoobshirazi, G. Stereotype threat and women’s performance in physics. Int. J. Sci. Educ. 35, 3050–3061 (2013).

    Article  Google Scholar 

  19. Steele, C. M. & Aronson, J. Stereotype threat and the intellectual test performance of African Americans. J. Personal. Soc. Psychol. 69, 797–811 (1995).

    Article  Google Scholar 

  20. Johnson, A., Ong, M., Ko, L. T., Smith, J. & Hodari, A. Common challenges faced by women of color in physics, and actions faculty can take to minimize those challenges. Phys. Teach. 55, 356360 (2017).

    Article  Google Scholar 

  21. Appel, M. & Kronberger, N. Stereotypes and the achievement gap: stereotype threat prior to test taking. Educ. Psychol. Rev. 24, 609–635 (2012).

    Article  Google Scholar 

  22. Lindstrøm, C. & Sharma, M. D. Self-efficacy of first year university physics students: do gender and prior formal instruction in physics matter? Int. J. Innov. Sci. Math. Educ. 19, 1–19 (2011).

    Google Scholar 

  23. Lewis, K. L., Stout, J. G., Pollock, S. J., Finkelstein, N. D. & Ito, T. A. Fitting in or opting out: a review of key social-psychological factors influencing a sense of belonging for women in physics. Phys. Rev. Phys. Educ. Res. 12, 020110 (2016).

    Article  Google Scholar 

  24. Little, A. J., Humphrey, B., Green, A., Nair, A. & Sawtelle, V. Exploring mindset’s applicability to students’ experiences with challenge in transformed college physics courses. Phys. Rev. Phys. Educ. Res. 15, 010127 (2019).

    Article  Google Scholar 

  25. Hazari, Z. & Cass, C. Towards meaningful physics recognition: what does this recognition actually look like? Phys. Teach. 56, 442–446 (2018).

    Article  ADS  Google Scholar 

  26. Li, Y. & Singh, C. Do female and male students’ physics motivational beliefs change in a two- semester introductory physics course sequence? Phys. Rev. Phys. Educ. Res. 18, 010142 (2022).

    Article  Google Scholar 

  27. Godwin, A., Potvin, G., Hazari, Z. & Lock, R. Identity, critical agency, and engineering: an affective model for predicting engineering as a career choice. J. Eng. Educ. 105, 312–340 (2016).

    Article  Google Scholar 

  28. Wang, J. & Hazari, Z. Promoting high school students’ physics identity through explicit and implicit recognition. Phys. Rev. Phys. Educ. Res. 14, 020111 (2018).

    Article  Google Scholar 

  29. Hazari, Z., Chari, D., Potvin, G. & Brewe, E. The context dependence of physics identity: examining the role of performance/competence, recognition, interest, and sense of belonging for lower and upper female physics undergraduates. J. Res. Sci. Teach. 57, 1583–1607 (2020).

    Article  Google Scholar 

  30. Cwik, S. & Singh, C. Damage caused by societal stereotypes: women have lower physics self-efficacy controlling for grade even in courses in which they outnumber men. Phys. Rev. Phys. Educ. Res. 17, 020138 (2021).

    Article  Google Scholar 

  31. Marshman, E., Kalender, Z. Y., Nokes-Malach, T., Schunn, C. & Singh, C. Female students with A’s have similar physics self-efficacy as male students with C’s in introductory courses: a cause for alarm? Phys. Rev. Phys. Educ. Res. 14, 020123 (2018).

    Article  Google Scholar 

  32. Sawtelle, V., Brewe, E. & Kramer, L. H. Exploring the relationship between self-efficacy and retention in introductory physics. J. Res. Sci. Teach. 49, 1096–1121 (2012).

    Article  Google Scholar 

  33. Cwik, S. & Singh, C. How perception of learning environment predicts male and female students’ grades and motivational outcomes in algebra-based introductory physics courses. Phys. Rev. Phys. Educ. Res. 17, 020143 (2021).

    Article  Google Scholar 

  34. Bøe, M. V. & Henriksen, E. K. Love it or leave it: Norwegian students’ motivations and expectations for postcompulsory physics. Sci. Educ. 97, 550–573 (2013).

    Google Scholar 

  35. Mujtaba, T. & Reiss, M. J. What sort of girl wants to study physics after the age of 16? Findings from a large-scale UK survey. Int. J. Sci. Educ. 35, 2979–2998 (2013).

    Article  Google Scholar 

  36. Ong, M. Body projects of young women of color in physics: intersections of gender, race, and science. Soc. Probl. 52, 593–617 (2005).

    Article  Google Scholar 

  37. Johnson, A. in Physics Education and Gender: Identity as an Analytic Lens for Research (eds Gonsalves, A. J. & Danielsson, A. T.) 53–80 (Springer, 2020).

  38. Boveda, M. & Weinberg, A. E. Facilitating intersectionally conscious collaborations in physics education. Phys. Teach. 58, 480 (2020).

    Article  ADS  Google Scholar 

  39. Cho, S., Crenshaw, K. W. & McCall, L. Toward a field of intersectionality studies: theory, applications, and praxis. Signs J. Women Cult. Soc. 38, 785–810 (2013).

    Article  Google Scholar 

  40. Mitchell, J. D., Simmons, C. Y. & Greyerbiehl, L. A. Intersectionality & Higher Education (Peter Lang, 2014).

  41. Morton, T. R. & Parsons, E. C. #BlackGirlMagic: the identity conceptualization of Black women in undergraduate STEM education. Sci. Educ. 102, 1363–1393 (2018).

    Google Scholar 

  42. Avraamidou, L. I am a young immigrant woman doing physics and on top of that I am Muslim’: identities, intersections, and negotiations. J. Res. Sci. Teach. 57, 311–341 (2020).

    Article  Google Scholar 

  43. Mendick, H., Berge, M. & Danielsson, A. A critique of the stem pipeline: young people’s identities in Sweden and science education policy. Br. J. Educ. Stud. 65, 481–497 (2017).

    Article  Google Scholar 

  44. Rosa, K., Blue, J., Hyater-Adams, S., Cochran, G. & Prescod-Weinstein, C. Resource letter RP-1: race and physics. Am. J. Phys. 89, 751–768 (2021).

    Article  ADS  Google Scholar 

  45. Crenshaw, K. Mapping the margins: intersectionality, identity politics, and violence against women of color. Stanford Law Rev. 43, 1241 (1990).

    Article  Google Scholar 

  46. Charleston, L., Adserias, R. P., Lang, N. M. & Jackson, J. F. Intersectionality and STEM: the role of race and gender in the academic pursuits of African American women in STEM. J. Progress. Policy Pract. 2, 273–293 (2014).

    Google Scholar 

  47. Traxler, A. L., Cid, X. C., Blue, J. & Barthelemy, R. Enriching gender in physics education research: a binary past and a complex future. Phys. Rev. Phys. Educ. Res. 12, 020114 (2016).

    Article  Google Scholar 

  48. Kanim, S. & Cid, X. C. Demographics of physics education research. Phys. Rev. Phys. Educ. Res. 16, 020106 (2020).

    Article  Google Scholar 

  49. Rodriguez, I., Brewe, E., Sawtelle, V. & Kramer, L. H. Impact of equity models and statistical measures on interpretations of educational reform. Phys. Rev. ST Phys. Educ. Res. 8, 020103 (2012).

    Article  Google Scholar 

  50. Hasse, C. & Sinding, A. B. in Science Education Research and Practice in Europe. Cultural Perpectives in Science Education Vol. 5 (eds Jorde, D. & Dillon, J.) Ch. 10 (SensePublishers, 2012).

  51. McCullough, L. Gender, context, and physics assessment. J. Int. Womens Stud. 5, 20–30 (2004).

    Google Scholar 

  52. Lorenzo, M., Crouch, C. H. & Mazur, E. Reducing the gender gap in the physics classroom. Am. J. Phys. 74, 118–122 (2006).

    Article  ADS  Google Scholar 

  53. Hazari, Z., Tai, R. H. & Sadler, P. M. Gender differences in introductory university physics performance: the influence of high school physics preparation and affective factors. Sci. Educ. 91, 847–876 (2007).

    Google Scholar 

  54. Pollock, S. J., Finkelstein, N. D. & Kost, L. E. Reducing the gender gap in the physics classroom: how sufficient is interactive engagement? Phys. Rev. ST Phys. Educ. Res. 3, 010107 (2007).

    Article  Google Scholar 

  55. Kost, L. E., Pollock, S. J. & Finkelstein, N. D. Characterizing the gender gap in introductory physics. Phys. Rev. ST Phys. Educ. Res. 5, 010101 (2009).

    Article  Google Scholar 

  56. Kost-Smith, L. E., Pollock, S. J. & Finkelstein, N. D. Gender disparities in second-semester college physics: the incremental effects of a ‘smog of bias’. Phys. Rev. ST Phys. Educ. Res. 6, 020112 (2010).

    Article  Google Scholar 

  57. Madsen, A., McKagan, S. B. & Sayre, E. C. Gender gap on concept inventories in physics: what is consistent, what is inconsistent, and what factors influence the gap? Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013).

    Article  Google Scholar 

  58. Henderson, R., Stewart, G., Stewart, J., Michaluk, L. & Traxler, A. Exploring the gender gap in the conceptual survey of electricity and magnetism. Phys. Rev. Phys. Educ. Res. 13, 020114 (2017).

    Article  Google Scholar 

  59. Karim, N. I., Maries, A. & Singh, C. Do evidence-based active-engagement courses reduce the gender gap in introductory physics? Eur. J. Phys. 39, 025701 (2018).

    Article  Google Scholar 

  60. Henderson, R., Miller, P., Stewart, J., Traxler, A. & Lindell, R. Item-level gender fairness in the force and motion conceptual evaluation and the conceptual survey of electricity and magnetism. Phys. Rev. Phys. Educ. Res. 14, 020103 (2018).

    Article  Google Scholar 

  61. Traxler, A. et al. Gender fairness within the force concept inventory. Phys. Rev. Phys. Educ. Res. 14, 010103 (2018).

    Article  Google Scholar 

  62. Mears, M. Gender differences in the force concept inventory for different educational levels in the United Kingdom. Phys. Rev. Phys. Educ. Res. 15, 020135 (2019).

    Article  Google Scholar 

  63. Salehi, S., Burkholder, E., Lepage, G. P., Pollock, S. & Wieman, C. Demographic gaps or preparation gaps?: The large impact of incoming preparation on performance of students in introductory physics. Phys. Rev. Phys. Educ. Res. 15, 020114 (2019).

    Article  Google Scholar 

  64. Maries, A., Karim, N. & Singh, C. Active learning in an inequitable learning environment can increase the gender performance gap: the negative impact of stereotype threat. Phys. Teach. 58, 430–433 (2020).

    Article  ADS  Google Scholar 

  65. Stewart, J. et al. Mediational effect of prior preparation on performance differences of students underrepresented in physics. Phys. Rev. Phys. Educ. Res. 17, 010107 (2021).

    Article  Google Scholar 

  66. Blue, J., Traxler, A. & Cochran, G. Resource Letter: GP-1: gender and physics. Am. J. Phys. 87, 616–626 (2019).

    Article  ADS  Google Scholar 

  67. Maries, A., Whitcomb, K. & Singh, C. Gender inequities throughout STEM. J. Coll. Sci. Teach. 51, 27–36 (2022).

    Article  Google Scholar 

  68. Whitcomb, K. M. & Singh, C. Underrepresented minority students receive lower grades and have higher rates of attrition across STEM disciplines: a sign of inequity? Int. J. Sci. Educ. 43, 1054–1089 (2021).

    Article  Google Scholar 

  69. Malespina, A. & Singh, C. Gender differences in grades versus grade penalties: are grade anomalies more detrimental for female physics majors? Phys. Rev. Phys. Educ. Res. 18, 020127 (2022).

    Article  Google Scholar 

  70. Whitcomb, K. M. & Singh, C. For physics majors, gender differences in introductory physics do not inform future physics performance. Eur. J. Phys. 41, 065701 (2020).

    Article  Google Scholar 

  71. Andersson, S. & Johansson, A. Gender gap or program gap? Students’ negotiations of study practice in a course in electromagnetism. Phys. Rev. Phys. Educ. Res. 12, 1–12 (2016).

    Article  Google Scholar 

  72. Blickenstaff, J. C. Women and science careers: leaky pipeline or gender filter? Gend. Educ. 17, 369–386 (2005).

    Article  Google Scholar 

  73. Wong, B., Chiu, Y.-L. T., Murray, Ó. M., Horsburgh, J. & Copsey-Blake, M. ‘Biology is easy, physics is hard’: student perceptions of the ideal and typical student across STEM higher education. Int. Stud. Sociol. Educ. 32, 118–139 (2023).

    Article  Google Scholar 

  74. Nyström, A.-S., Jackson, C. & Karlsson, M. S. What counts as success? Constructions of achievement in prestigious higher education programmes. Res. Pap. Educ. 34, 465–482 (2018).

    Article  Google Scholar 

  75. Pettersson, H. Multiple masculinities and gendered research personas: between experiments, career choice and family. Int. J. Gend. Sci. Technol. 10, 108–129 (2018).

    Google Scholar 

  76. Wong, B. in Science Identities: Theory, Method and Reseach (eds Tolstrup Holmegaard, H. & Archer, L.) Ch. 5 (Springer Nature, 2022).

  77. Johansson, A. Negotiating intelligence, nerdiness, and status in physics master’s studies. Res. Sci. Educ. 50, 2419–2440 (2018).

    Article  ADS  Google Scholar 

  78. Francis, B. et al. The construction of physics as a quintessentially masculine subject: young people’s perceptions of gender issues in access to physics. Sex. Roles 76, 156–174 (2017).

    Article  MathSciNet  Google Scholar 

  79. Bøe, M. V., Henriksen, E. K., Terry, L. & Camilla, S. Participation in science and technology: young people’s achievement-related choices in late-modern societies. Stud. Sci. Educ. 47, 37–72 (2011).

    Article  Google Scholar 

  80. Leslie, S.-J., Cimpian, A., Meyer, M. & Freeland, E. Expectations of brilliance underlie gender distributions across academic disciplines. Science 347, 262–265 (2015).

    Article  ADS  Google Scholar 

  81. Upson, S. & Friedman, L. F. Where are all the female geniuses? Sci. Am. Mind 23, 6365 (2012).

    Article  Google Scholar 

  82. Bian, L., Leslie, S.-J. & Cimpian, A. Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science 355, 389–391 (2017).

    Article  ADS  Google Scholar 

  83. Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J. & Handelsman, J. Science faculty’s subtle gender biases favor male students. Proc. Natl Acad. Sci. USA 109, 16474 (2012).

    Article  ADS  Google Scholar 

  84. Hasse, C. The material co-construction of hard science fiction and physics. Cult. Stud. Sci. Educ. 10, 921–940 (2015).

    Article  Google Scholar 

  85. Daane, A., Decker, S. R. & Sawtelle, V. Teaching about racial equity in introductory physics courses. Phys. Teach. 55, 328–333 (2017).

    Article  ADS  Google Scholar 

  86. Beilock, S. L., Rydell, R. J. & McConnell, A. R. Stereotype threat and working memory: mechanisms, alleviation, and spillover. J. Exp. Psychol. Gen. 136, 256 (2007).

    Article  Google Scholar 

  87. LaCosse, J., Sekaquaptewa, D. & Bennett, J. STEM stereotypic attribution bias among women in an unwelcoming science setting. Psychol. Women Q. 40, 378–397 (2016).

    Article  Google Scholar 

  88. Quinn, K. N. et al. Group roles in unstructured labs show inequitable gender divide. Phys. Rev. Phys. Educ. Res. 16, 010129 (2020).

    Article  Google Scholar 

  89. Doucette, D. & Singh, C. Share it, don’t split it: can equitable group work improve student outcomes? Phys. Teach. 60, 166–168 (2022).

    Article  ADS  Google Scholar 

  90. Due, K. Who is the competent physics student? A study of students’ positions and social interaction in small-group discussions. Cult. Stud. Sci. Educ. 9, 441–459 (2014).

    Article  Google Scholar 

  91. Rosa, K. & Mensah, F. M. Educational pathways of Black women physicists: stories of experiencing and overcoming obstacles in life. Phys. Rev. Phys. Educ. Res. 12, 020113 (2016).

    Article  Google Scholar 

  92. Barthelemy, R. S. & Knaub, A. V. Gendered motivations and aspirations of university physics students in Finland. Phys. Rev. Phys. Educ. Res. 16, 010133 (2020).

    Article  Google Scholar 

  93. Bandura, A. in Encyclopedia of Psychology Vol. 3 (ed. Raymond J. Corsini) 368–369 (Wiley, 1994).

  94. Nissen, J. M. & Shemwell, J. T. Gender, experience, and self-efficacy in introductory physics. Phys. Rev. Phys. Educ. Res. 12, 020105 (2016).

    Article  Google Scholar 

  95. Kelly, A. M. Social cognitive perspective of gender disparities in undergraduate physics. Phys. Rev. Phys. Educ. Res. 12, 020116 (2016).

    Article  Google Scholar 

  96. Dweck, C. S. Mindset: The New Psychology of Success (Random House Digital, 2008).

  97. Binning, K. R. et al. Changing social contexts to foster equity in college science courses: an ecological-belonging intervention. Psychol. Sci. 31, 1059–1070 (2020).

    Article  Google Scholar 

  98. Hyater-Adams, S., Fracchiolla, C., Finkelstein, N. & Hinko, K. Critical look at physics identity: an operationalized framework for examining race and physics identity. Phys. Rev. Phys. Educ. Res. 14, 010132 (2018).

    Article  Google Scholar 

  99. Carlone, H. B. & Johnson, A. Understanding the science experiences of successful women of color: science identity as an analytic lens. J. Res. Sci. Teach. 44, 11871218 (2007).

    Article  Google Scholar 

  100. Hazari, Z., Sonnert, G., Sadler, P. M. & Shanahan, M.-C. Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: a gender study. J. Res. Sci. Teach. 47, 978–1003 (2010).

    Article  Google Scholar 

  101. Hazari, Z., Brewe, E., Goertzen, R. M. & Hodapp, T. The importance of high school physics teachers for female students’ physics identity and persistence. Phys. Teach. 55, 96–99 (2017).

    Article  ADS  Google Scholar 

  102. Monsalve, C., Hazari, Z., McPadden, D., Sonnert, G. & Sadler, P. M. Examining the relationship between career outcome expectations and physics identity. In Proc. Physics Education Research Conference (eds Jones, D. L., Ding, L. & Traxler, A.) 228–231 (Per Central, 2016).

  103. Quichocho, X. R., Conn, J., Schipull, E. M. & Close, E. W. Who does physics? Understanding the composition of physicists through the lens of women of color and LGBTQ+ women physicists. In 2019 Physics Education Research Conference Proc. (eds Cao, Y., Wolf, S. & Bennett, M. B) 24–25 (Per Central, 2019); https://doi.org/10.1119/perc.2019.pr.Quichocho

  104. Kalender, Z. Y., Marshman, E., Schunn, C. D., Nokes-Malach, T. J. & Singh, C. Damage caused by women’s lower self-efficacy on physics learning. Phys. Rev. Phys. Educ. Res. 16, 010118 (2020).

    Article  Google Scholar 

  105. Maloney, E. A., Sattizahn, J. R. & Beilock, S. L. Anxiety and cognition. Wiley Interdiscip. Rev. Cogn. Sci. 5, 403–411 (2014).

    Article  Google Scholar 

  106. Li, Y. & Singh, C. Effect of gender, self-efficacy, and interest on perception of the learning environment and outcomes in calculus-based introductory physics courses. Phys. Rev. Phys. Educ. Res. 17, 010143 (2021).

    Article  Google Scholar 

  107. Cwik, S. & Singh, C. Students’ sense of belonging in introductory physics course for bioscience majors predicts their grade. Phys. Rev. Phys. Educ. Res. 18, 010139 (2022).

    Article  Google Scholar 

  108. Li, Y., Whitcomb, K. & Singh, C. How perception of being recognized or not recognized by instructors as a ‘physics person’ impacts male and female students’ self-efficacy and performance. Phys. Teach. 58, 484–487 (2020).

    Article  ADS  Google Scholar 

  109. Cwik, S. & Singh, C. Not feeling recognized as a physics person by instructors and teaching assistants is correlated with female students’ lower grades. Phys. Rev. Phys. Educ. Res. 18, 010138 (2022).

    Article  Google Scholar 

  110. Canning, E. A., Muenks, K., Green, D. J. & Murphy, M. C. STEM faculty who believe ability is fixed have larger racial achievement gaps and inspire less student motivation in their classes. Sci. Adv. 5, eaau4734 (2019).

    Article  ADS  Google Scholar 

  111. Coletta, V. P., Phillips, J. A. & Steinert, J. FCI normalized gain, scientific reasoning ability, thinking in physics, and gender effects. AIP Conf. Proc. 1413, 23–26 (2012).

    Article  ADS  Google Scholar 

  112. Theobald, E. J. et al. Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math. Proc. Natl Acad. Sci. USA 117, 6476–6483 (2020).

    Article  ADS  Google Scholar 

  113. Espinosa, T., Miller, K., Araujo, I. & Mazur, E. Reducing the gender gap in students’ physics self-efficacy in a team-and project-based introductory physics class. Phys. Rev. Phys. Educ. Res. 15, 010132 (2019).

    Article  Google Scholar 

  114. Ericsson, K. A., Krampe, R. T. & Tesch-Romer, C. The role of deliberate practice in the acquisition of expert performance. Psychol. Rev. 100, 363–406 (1993).

    Article  Google Scholar 

  115. Gutmann, B. & Stelzer, T. Values affirmation replication at the University of Illinois. Phys. Rev. Phys. Educ. Res. 17, 020121 (2021).

    Article  Google Scholar 

  116. Miyake, A. et al. Reducing the gender achievement gap in college science: a classroom study of values affirmation. Science 330, 1234–1237 (2010).

    Article  ADS  Google Scholar 

  117. Aguilar, L., Walton, G. & Wieman, C. Psychological insights for improved physics teaching. Phys. Today 67, 43–49 (2014).

    Article  ADS  Google Scholar 

  118. Dasgupta, N. Ingroup experts and peers as social vaccines who inoculate the self-concept: the stereotype inoculation model. Psychol. Inq. 22, 231–246 (2011).

    Article  Google Scholar 

  119. Malespina, A. & Singh, C. Gender differences in test anxiety and self-efficacy: why instructors should emphasize low-stakes formative assessments in physics courses. Eur. J. Phys. 43, 035701 (2022).

    Article  Google Scholar 

  120. Archer, L., Moote, J., Francis, B., DeWitt, J. & Yeomans, L. The ‘exceptional’ physics girl: a sociological analysis of multimethod data from young women aged 10–16 to explore gendered patterns of post-16 participation. Am. Educ. Res. J. 54, 88–126 (2017).

    Article  Google Scholar 

  121. Whitcomb, K., Maries, A. & Singh, C. Progression in self-efficacy, interest, identity, sense of belonging, perceived recognition and effectiveness of peer interaction of physics majors and comparison with non-majors and Ph.D. students. Res. Sci. Educ. https://doi.org/10.1007/s11165-022-10068-4 (2022).

  122. Solomon, D., Battistich, V., Kim, D.-I. & Watson, M. Teacher practices associated with students’ sense of the classroom as a community. Soc. Psychol. Educ. 1, 235–267 (1996).

    Article  Google Scholar 

  123. Kalender, Z. Y., Marshman, E., Schunn, C. D., Nokes-Malach, T. J. & Singh, C. Gendered patterns in the construction of physics identity from motivational factors. Phys. Rev. Phys. Educ. Res. 15, 020119 (2019).

    Article  Google Scholar 

  124. Step Up for Women: Curriculum Materials (STEP UP, accessed 15 November 2023); https://engage.aps.org/stepup/curriculum

  125. Santana, L. M. & Singh, C. Negative impacts of an unwelcoming physics environment on undergraduate women. In 2021 Physics Education Research Conference Proc. 377–383 (2021); https://doi.org/10.1119/perc.2021.pr.Santana

  126. Hogan, K. & Sathy, V. Inclusive Teaching: Strategies for Promoting Equity in the College Classroom (West Virginia Univ. Press, 2022).

  127. Cwik, S. & Singh, C. in The International Handbook of Physics Education Research: Special Topics (eds Fatih Taşar, M. & Heron, P. R. L.) Ch. 17 (AIP, 2023).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Maries.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Anna Danielsson and Kelly Miller for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maries, A., Singh, C. Towards meaningful diversity, equity and inclusion in physics learning environments. Nat. Phys. 20, 367–375 (2024). https://doi.org/10.1038/s41567-024-02391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02391-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing