Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Quantum dots

The synthesis behind the 2023 Nobel Prize

In 1993, a new route for the synthesis of semiconductor nanocrystals was reported that exploited organometallic chemistry to afford nearly monodisperse particles. 30 years later the award of the 2023 Nobel Prize in Chemistry can be directly traced to this single publication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  2. Steigerwald, M. L. & Sprinkle, C. R. Organometallic synthesis of II-VI semiconductors. 1. Formation and decomposition of bis(organotelluro)mercury and bis(organotelluro)cadmium compounds. J. Am. Chem. Soc. 109, 7200–7201 (1987).

    Article  CAS  Google Scholar 

  3. Steigerwald, M. L. & Sprinkle, C. R. Application of phosphine tellurides to the preparation of group II-VI (2-16) semiconductor materials. Organometallics 7, 245–246 (1988).

    Article  CAS  Google Scholar 

  4. Steigerwald, M. L. Clusters as small solids. Polyhedron 13, 1245–1252 (1994).

    Article  CAS  Google Scholar 

  5. Steigerwald, M. L. et al. Surface derivatization and isolation of semiconductor cluster molecules. J. Am. Chem. Soc. 110, 3046–3050 (1988).

    Article  CAS  Google Scholar 

  6. Bawendi, M. G., Kortan, A. R., Steigerwald, M. L. & Brus, L. E. X-ray structural characterization of larger CdSe semiconductor clusters. J. Chem. Phys. 91, 7282–7290 (1989).

    Article  CAS  Google Scholar 

  7. Kortan, A. R. et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327–1332 (1990).

    Article  CAS  Google Scholar 

  8. Stuczynski, S. M., Brennan, J. G. & Steigerwald, M. L. Formation of metal-chalcogen bonds by the reaction of metal alkyls with silyl chalcogenides. Inorg. Chem. 28, 4431–4432 (1989).

    Article  CAS  Google Scholar 

  9. Brennan, J. G. et al. The preparation of large semiconductor clusters via the pyrolysis of a molecular precursor. J. Am. Chem. Soc. 111, 4141–4143 (1989).

    Article  CAS  Google Scholar 

  10. Brennan, J. G. et al. Bulk and nanostructure group II-VI compounds from molecular organometallic precursors. Chem. Mater. 2, 403–409 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Green.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, M. The synthesis behind the 2023 Nobel Prize. Nat Rev Chem (2024). https://doi.org/10.1038/s41570-024-00615-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-024-00615-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing