Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

BRAF — a tumour-agnostic drug target with lineage-specific dependencies

Abstract

In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.

Key points

  • The FDA-approved BRAF inhibitors vemurafenib, dabrafenib and encorafenib selectively inhibit activated BRAFV600E/K/R/D monomers (class I BRAF mutants) in cancer cells, which underlies their clinical success and wide therapeutic index.

  • Selective inhibitors of BRAF monomers can paradoxically activate RAF proteins that function as dimers and thus enhance ERK signalling in some cancer cells and non-malignant cells.

  • BRAF inhibitor resistance is common and manifests through rapid reactivation of ERK signalling, owing to relief of negative feedback mechanisms, that results in adaptive (re)activation of RTK signalling, RAS activation and RAF dimerization, or through selection for alterations such as NRAS mutations, BRAF amplification and expression of BRAF splice variants that promote RAF dimer formation.

  • Combinations of monomer-selective BRAF inhibitors and MEK inhibitors are something rare in oncology, in that they are more effective and potentially less toxic than either agent alone.

  • Ongoing studies are testing novel RAF inhibitors that effectively inhibit RAF dimers and combination strategies designed to more maximally and durably inhibit ERK signalling or that co-target parallel signalling pathways or other mechanisms of RAF inhibitor resistance.

  • Innovations in genomic, transcriptional and proteomic profiling and serial tumour sampling along with novel trial designs will be needed for the efficient clinical testing and deployment of novel RAF inhibitor combination regimens that target adaptive and selective mechanisms of drug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of activation of wild-type and mutant forms of BRAF, including paradoxical activation by BRAF monomer inhibitors.
Fig. 2: Frequency of BRAF mutations in human cancers.
Fig. 3: Timeline of FDA approvals of RAF inhibitors and RAF inhibitor-based combination therapies for BRAFV600-mutant cancers.
Fig. 4: Influence of tumour lineage on the rate and durability of responses to dabrafenib plus trametinib combination therapy.
Fig. 5: Mechanisms of RAF inhibitor resistance.
Fig. 6: Therapeutic strategies to overcome genetic and epigenetic resistance to RAF inhibitors.
Fig. 7: Clinical development status of select RAF inhibitors and combinations.

Similar content being viewed by others

References

  1. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Poulikakos, P. I., Sullivan, R. J. & Yaeger, R. Molecular pathways and mechanisms of BRAF in cancer therapy. Clin. Cancer Res. 28, 4618–4628 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dankner, M., Rose, A. A. N., Rajkumar, S., Siegel, P. M. & Watson, I. R. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene 37, 3183–3199 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Food & Drug Administration. FDA grants accelerated approval to dabrafenib in combination with trametinib for unresectable or metastatic solid tumors with BRAF V600E mutation. FDA www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-dabrafenib-combination-trametinib-unresectable-or-metastatic-solid (2022).

  5. Corcoran, R. B. et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600-mutant colorectal cancer. J. Clin. Oncol. 33, 4023–4031 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kopetz, S. et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N. Engl. J. Med. 381, 1632–1643 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Yao, Z. et al. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell 28, 370–383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sahadudheen, K., Islam, M. R. & Iddawela, M. Long term survival and continued complete response of vemurafenib in a metastatic melanoma patient with BRAF V600K mutation. Case Rep. Oncol. Med. 2016, 2672671 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Davies, M. A. et al. Dabrafenib plus trametinib in patients with BRAF(V600)-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 18, 863–873 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Long, G. V. et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med. 377, 1813–1823 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Dummer, R. et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 19, 603–615 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Schadendorf, D. et al. Patient-reported outcomes in patients with resected, high-risk melanoma with BRAFV600E or BRAFV600K mutations treated with adjuvant dabrafenib plus trametinib (COMBI-AD): a randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 20, 701–710 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Robert, C. et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N. Engl. J. Med. 381, 626–636 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Dummer, R. et al. Five-year analysis of adjuvant dabrafenib plus trametinib in stage III melanoma. N. Engl. J. Med. 383, 1139–1148 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Suehnholz, S. P. et al. Quantifying the expanding landscape of clinical actionability for patients with cancer. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-23-0467 (2023).

  18. Lavoie, H. & Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 16, 281–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Terrell, E. M. & Morrison, D. K. Ras-mediated activation of the Raf family kinases. Cold Spring Harb. Perspect. Med. 9, a033746 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park, E. et al. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Nature 575, 545–550 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tran, T. H. et al. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. Nat. Commun. 12, 1176 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karoulia, Z., Gavathiotis, E. & Poulikakos, P. I. New perspectives for targeting RAF kinase in human cancer. Nat. Rev. Cancer 17, 676–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caunt, C. J., Sale, M. J., Smith, P. D. & Cook, S. J. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat. Rev. Cancer 15, 577–592 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Pratilas, C. A. et al. V600EBRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc. Natl Acad. Sci. USA 106, 4519–4524 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawazoe, T. & Taniguchi, K. The Sprouty/Spred family as tumor suppressors: coming of age. Cancer Sci. 110, 1525–1535 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dougherty, M. K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Brose, M. S. et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62, 6997–7000 (2002).

    CAS  PubMed  Google Scholar 

  30. Hanrahan, A. J. & Solit, D. B. BRAF mutations: the discovery of allele- and lineage-specific differences. Cancer Res. 82, 12–14 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. AACR Project GENIE Consortium AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).

    Article  Google Scholar 

  33. Sarkozy, A. et al. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Hum. Mutat. 30, 695–702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Romano, A. A. et al. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 126, 746–759 (2010).

    Article  PubMed  Google Scholar 

  35. Spencer-Smith, R. et al. RASopathy mutations provide functional insight into the BRAF cysteine-rich domain and reveal the importance of autoinhibition in BRAF regulation. Mol. Cell 82, 4262–4276.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tidyman, W. E. & Rauen, K. A. Noonan, Costello and cardio-facio-cutaneous syndromes: dysregulation of the Ras-MAPK pathway. Expert. Rev. Mol. Med. 10, e37 (2008).

    Article  PubMed  Google Scholar 

  37. Hebron, K. E., Hernandez, E. R. & Yohe, M. E. The RASopathies: from pathogenetics to therapeutics. Dis. Model. Mech. 15, dmm049107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yao, Z. et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature 548, 234–238 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mason, C. S. et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18, 2137–2148 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Lito, P., Rosen, N. & Solit, D. B. Tumor adaptation and resistance to RAF inhibitors. Nat. Med. 19, 1401–1409 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Hall-Jackson, C. A. et al. Paradoxical activation of Raf by a novel Raf inhibitor. Chem. Biol. 6, 559–568 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Mangana, J., Levesque, M. P., Karpova, M. B. & Dummer, R. Sorafenib in melanoma. Expert. Opin. Investig. Drugs 21, 557–568 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, D., Boerner, S. A., Winkler, J. D. & LoRusso, P. M. Clinical experience of MEK inhibitors in cancer therapy. Biochim. Biophys. Acta 1773, 1248–1255 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Catalanotti, F. et al. Phase II trial of MEK inhibitor selumetinib (AZD6244, ARRY-142886) in patients with BRAFV600E/K-mutated melanoma. Clin. Cancer Res. 19, 2257–2264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heinzerling, L. et al. Tolerability of BRAF/MEK inhibitor combinations: adverse event evaluation and management. ESMO Open. 4, e000491 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kun, E., Tsang, Y. T. M., Ng, C. W., Gershenson, D. M. & Wong, K. K. MEK inhibitor resistance mechanisms and recent developments in combination trials. Cancer Treat. Rev. 92, 102137 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA 105, 3041–3046 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Joseph, E. W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl Acad. Sci. USA 107, 14903–14908 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Lito, P. et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lacouture, M. E., O’Reilly, K., Rosen, N. & Solit, D. B. Induction of cutaneous squamous cell carcinomas by RAF inhibitors: cause for concern? J. Clin. Oncol. 30, 329–330 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Oberholzer, P. A. et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol. 30, 316–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Long, G. V. et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 371, 1877–1888 (2014).

    Article  PubMed  Google Scholar 

  61. Peng, C. & Jie-Xin, L. The incidence and risk of cutaneous toxicities associated with dabrafenib in melanoma patients: a systematic review and meta-analysis. Eur. J. Hosp. Pharm. 28, 182–189 (2021).

    Article  PubMed  Google Scholar 

  62. Callahan, M. K. et al. Progression of RAS-mutant leukemia during RAF inhibitor treatment. N. Engl. J. Med. 367, 2316–2321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abdel-Wahab, O. et al. Efficacy of intermittent combined RAF and MEK inhibition in a patient with concurrent BRAF- and NRAS-mutant malignancies. Cancer Discov. 4, 538–545 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yaktapour, N. et al. BRAF inhibitor-associated ERK activation drives development of chronic lymphocytic leukemia. J. Clin. Invest. 124, 5074–5084 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen, S. H. et al. Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120. Cancer Discov. 6, 300–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Foster, S. A. et al. Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2. Cancer Cell 29, 477–493 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Botton, T. et al. Genetic heterogeneity of BRAF fusion kinases in melanoma affects drug responses. Cell Rep. 29, 573–588.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ross, J. S. et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int. J. Cancer 138, 881–890 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Ishii, N. et al. Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity. Cancer Res. 73, 4050–4060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nissan, M. H. et al. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res. 74, 2340–2350 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Welsh, S. J. & Corrie, P. G. Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma. Ther. Adv. Med. Oncol. 7, 122–136 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Han, J., Chen, J., Zhou, H., Hao, L. & Wang, Q. Ocular toxicities of MEK inhibitors in patients with cancer: a systematic review and meta-analysis. Oncology 37, 130–141 (2023).

    PubMed  Google Scholar 

  74. Whitlock, J. A. et al. Dabrafenib, alone or in combination with trametinib, in pediatric patients with BRAF V600 mutation-positive Langerhans cell histiocytosis [abstract]. Blood 138 (Suppl. 1), 3618–3619 (2021).

    Article  Google Scholar 

  75. Tiacci, E. et al. Safety and efficacy of the BRAF inhibitor dabrafenib in relapsed or refractory hairy cell leukemia: a pilot phase-2 clinical trial. Leukemia 35, 3314–3318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kreitman, R. J. et al. Dabrafenib plus trametinib in patients with relapsed/refractory BRAF V600E mutation-positive hairy cell leukemia. Blood 141, 996–1006 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Subbiah, V. et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: the phase 2 ROAR trial. Nat. Med. 29, 1103–1112 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kopetz, S. et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J. Clin. Oncol. 33, 4032–4038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Falchook, G. S. et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379, 1893–1901 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Infante, J. R. et al. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 13, 773–781 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hauschild, A. et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380, 358–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Hauschild, A. et al. Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib monotherapy: analysis from phase 2 and 3 clinical trials. Eur. J. Cancer 125, 114–120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Robert, C. et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372, 30–39 (2015).

    Article  PubMed  Google Scholar 

  85. Atkins, M. B. et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: the DREAMseq trial – ECOG-ACRIN EA6134. J. Clin. Oncol. 41, 186–197 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Wen, P. Y. et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 23, 53–64 (2022).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  87. Subbiah, V. et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 21, 1234–1243 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Subbiah, V. et al. Dabrafenib plus trametinib in patients with BRAF V600E-mutant anaplastic thyroid cancer: updated analysis from the phase II ROAR basket study. Ann. Oncol. 33, 406–415 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Salama, A. K. S. et al. Dabrafenib and trametinib in patients with tumors with BRAFV600E mutations: results of the NCI-MATCH trial subprotocol H. J. Clin. Oncol. 38, 3895–3904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bouffet, E. et al. Efficacy and safety of trametinib monotherapy or in combination with dabrafenib in pediatric BRAF V600-mutant low-grade glioma. J. Clin. Oncol. 41, 664–674 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Bouffet, E. et al. Dabrafenib plus trametinib in pediatric glioma with BRAF V600 mutations. N. Engl. J. Med. 389, 1108–1120 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Hargrave, D. R. et al. Phase II trial of dabrafenib plus trametinib in relapsed/refractory BRAF V600-mutant pediatric high-grade glioma. J. Clin. Oncol. 41, 5174–5183 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Bhamidipati, D. & Subbiah, V. Impact of tissue-agnostic approvals for patients with gastrointestinal malignancies. Trends Cancer 9, 237–249 (2022).

    Article  PubMed  Google Scholar 

  94. Choi, J. et al. Identification of PLX4032-resistance mechanisms and implications for novel RAF inhibitors. Pigment. Cell Melanoma Res. 27, 253–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, J. et al. A secondary mutation in BRAF confers resistance to RAF inhibition in a BRAFV600E-mutant brain tumor. Cancer Discov. 8, 1130–1141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Raaijmakers, M. I. et al. Co-existence of BRAF and NRAS driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance. Oncotarget 7, 77163–77174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shi, H. et al. Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat. Commun. 3, 724 (2012).

    Article  ADS  PubMed  Google Scholar 

  99. Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Johnson, D. B. et al. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur. J. Cancer 51, 2792–2799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251–255 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  102. Vido, M. J., Le, K., Hartsough, E. J. & Aplin, A. E. BRAF splice variant resistance to RAF inhibitor requires enhanced MEK association. Cell Rep. 25, 1501–1510.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Su, F. et al. Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation. Cancer Res. 72, 969–978 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Montagut, C. et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 68, 4853–4861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Whittaker, S. R. et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 3, 350–362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Maertens, O. et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discov. 3, 338–349 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Malone, C. F. et al. Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers. Cancer Discov. 4, 1062–1073 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, C. et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature 526, 583–586 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Karoulia, Z. et al. An integrated model of RAF inhibitor action predicts inhibitor activity against oncogenic BRAF signaling. Cancer Cell 30, 485–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yao, Z. et al. RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. Nat. Med. 25, 284–291 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Hartsough, E. J. et al. Response and resistance to paradox-breaking BRAF inhibitor in melanomas in vivo and ex vivo. Mol. Cancer Ther. 17, 84–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. De La Fuente, M. I. et al. Safety and efficacy of the novel BRAF inhibitor FORE8394 in patients with advanced solid and CNS tumors: results from a phase 1/2a study [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 3006 (2023).

    Article  Google Scholar 

  113. Bonfill-Teixidor, E. et al. Activity and resistance of a brain-permeable paradox breaker BRAF inhibitor in melanoma brain metastasis. Cancer Res. 82, 2552–2564 (2022).

    Article  PubMed  Google Scholar 

  114. Wichmann, J. et al. Preclinical characterization of a next-generation brain permeable, paradox breaker BRAF inhibitor. Clin. Cancer Res. 28, 770–780 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Nakamura, A. et al. Antitumor activity of the selective pan-RAF inhibitor TAK-632 in BRAF inhibitor-resistant melanoma. Cancer Res. 73, 7043–7055 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Okaniwa, M. et al. Discovery of a selective kinase inhibitor (TAK-632) targeting pan-RAF inhibition: design, synthesis, and biological evaluation of C-7-substituted 1,3-benzothiazole derivatives. J. Med. Chem. 56, 6478–6494 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Girotti, M. R. et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell 27, 85–96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim, N. et al. Novel and potent small molecules against melanoma harboring BRAF class I/II/III mutants for overcoming drug resistance. Int. J. Mol. Sci. 22, 3783 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Choi, S. H., Shin, I., Kim, N., Nam, Y. & Sim, T. The first small molecules capable of strongly suppressing proliferation of cancer cells harboring BRAF class I/II/III mutations. Biochem. Biophys. Res. Commun. 532, 315–320 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Bulfer, S. L. et al. DCC-3084, a RAF dimer inhibitor, broadly inhibits BRAF class I, II, III, BRAF fusions, and RAS-driven solid tumors leading to tumor regression in preclinical models [abstract]. Cancer Res. 83, 4045 (2023).

    Article  Google Scholar 

  121. Henry, J. R. et al. Discovery of 1-(3,3-dimethylbutyl)-3-(2-fluoro-4-methyl-5-(7-methyl-2-(methylamino)pyrido[2,3-d]pyrimidin-6-yl)phenyl)urea (LY3009120) as a pan-RAF inhibitor with minimal paradoxical activation and activity against BRAF or RAS mutant tumor cells. J. Med. Chem. 58, 4165–4179 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Peng, S. B. et al. Inhibition of RAF isoforms and active dimers by ly3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell 28, 384–398 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Vakana, E. et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget 8, 9251–9266 (2017).

    Article  PubMed  Google Scholar 

  124. Sullivan, R. J. et al. A phase I study of LY3009120, a pan-RAF inhibitor, in patients with advanced or metastatic cancer. Mol. Cancer Ther. 19, 460–467 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Han, Y.-C. et al. Preclinical characterization of a brain penetrant RAF inhibitor, BDTX-4933, targeting oncogenic BRAF class I/II/III and RAS mutations [abstract]. Cancer Res. 83 (Suppl. 7), 3415 (2023).

    Article  Google Scholar 

  126. Ng, P. Y. et al. Preclinical efficacy of BDTX-4933, a brain penetrant Masterkey inhibitor targeting oncogenic BRAF class I/II/III mutations [abstract 239 (PB119)]. s3.us-east-1.amazonaws.com/black-diamond-assets.investeddigital.com/files/2022-EORTC-10.27.2022-BDTX-4933.pdf (2022).

  127. Miller, N. L. G. et al. Antitumor activity of KIN-2787, a next-generation pan-RAF inhibitor, in preclinical models of human RAF/RAS mutant melanoma [abstract]. Cancer Res. 82 (Suppl. 12), 2674 (2022).

    Article  Google Scholar 

  128. Wang, T. S. et al. Exarafenib (KIN-2787) is a potent, selective pan-RAF inhibitor with activity in preclinical models of BRAF class II/III mutant and NRAS mutant melanoma [abstract]. Cancer Res. 83 (Suppl. 7), 4927 (2023).

    Article  Google Scholar 

  129. Beck, J. T. T. et al. A phase 1, open-label, dose escalation and dose expansion study to evaluate the safety, tolerability, pharmacokinetics, and antitumor activity of PF-07799933 (ARRY-440) as a single agent and in combination therapy in participants 16 years and older with advanced solid tumors with BRAF alterations [abstract]. J. Clin. Oncol. 41 (Suppl. 16), TPS3164 (2023).

    Article  Google Scholar 

  130. Waizenegger, I. C. et al. A novel RAF kinase inhibitor with DFG-out-binding mode: high efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation. Mol. Cancer Ther. 15, 354–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Posternak, G. et al. Functional characterization of a PROTAC directed against BRAF mutant V600E. Nat. Chem. Biol. 16, 1170–1178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sun, Y. et al. A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas. Neuro Oncol. 19, 774–785 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kilburn, L. B. et al. Clinical activity of pan-RAF inhibitor tovorafenib in the registrational pediatric low-grade glioma arm of the phase 2 FIREFLY-1 (PNOC026) study [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 10004 (2023).

    Article  Google Scholar 

  134. Tang, Z. et al. BGB-283, a novel RAF kinase and EGFR inhibitor, displays potent antitumor activity in BRAF-mutated colorectal cancers. Mol. Cancer Ther. 14, 2187–2197 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Desai, J. et al. Phase I, open-label, dose-escalation/dose-expansion study of lifirafenib (BGB-283), an RAF family kinase inhibitor, in patients with solid tumors. J. Clin. Oncol. 38, 2140–2150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yuan, X. et al. RAF dimer inhibitor lifirafenib enhances the antitumor activity of MEK inhibitor mirdametinib in RAS mutant tumors [abstract]. Cancer Res. 80 (Suppl. 16), 6415 (2020).

    Article  Google Scholar 

  137. Solomon, B. et al. Safety, pharmacokinetics, and antitumor activity findings from a phase 1b, open-label, dose-escalation and expansion study investigating RAF dimer inhibitor lifirafenib in combination with MEK inhibitor mirdametinib in patients with advanced or refractory solid tumors [abstract]. Cancer Res. 83 (Suppl. 8), CT033 (2023).

    Article  Google Scholar 

  138. Schram, A. M. et al. A first-in-human, phase 1a/1b, open-label, dose-escalation and expansion study to investigate the safety, pharmacokinetics, and antitumor activity of the RAF dimer inhibitor BGB-3245 in patients with advanced or refractory tumors.https://www.beigenemedical.com/CongressDocuments/Schram_BGB-3245-AU-001_AACR_Presentation_2023.pdf (2023).

  139. Schram, A. M. et al. A first-in-human, phase 1a/1b, open-label, dose-escalation and expansion study to investigate the safety, pharmacokinetics, and antitumor activity of the RAF dimer inhibitor BGB-3245 in patients with advanced or refractory tumors [abstract]. Cancer Res. 83 (Suppl. 8), CT031 (2023).

    Article  Google Scholar 

  140. Adamopoulos, C. et al. Exploiting allosteric properties of RAF and MEK inhibitors to target therapy-resistant tumors driven by oncogenic BRAF signaling. Cancer Discov. 11, 1716–1735 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cotto-Rios, X. M. et al. Inhibitors of BRAF dimers using an allosteric site. Nat. Commun. 11, 4370 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shao, W. et al. Antitumor properties of RAF709, a highly selective and potent inhibitor of RAF kinase dimers, in tumors driven by mutant RAS or BRAF. Cancer Res. 78, 1537–1548 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Kim, T. W. et al. Belvarafenib, a novel pan-RAF inhibitor, in solid tumor patients harboring BRAF, KRAS, or NRAS mutations: phase I study [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 3000 (2019).

    Article  Google Scholar 

  144. Yen, I. et al. ARAF mutations confer resistance to the RAF inhibitor belvarafenib in melanoma. Nature 594, 418–423 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  145. Kim, T. W. et al. A phase Ib trial of belvarafenib in combination with cobimetinib in patients (pts) with RAS- or RAF- mutated (m) solid tumors: updated safety data and indication-specific efficacy results [abstract 529P]. Ann. Oncol. 32 (Suppl. 5), S595 (2021).

    Article  Google Scholar 

  146. Shin, S. J. et al. A phase Ib trial of belvarafenib in combination with cobimetinib in patients with advanced solid tumors: interim results of dose-escalation and patients with NRAS-mutant melanoma of dose-expansion [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 3007 (2021).

    Article  Google Scholar 

  147. Monaco, K. A. et al. LXH254, a potent and selective ARAF-sparing inhibitor of BRAF and CRAF for the treatment of MAPK-driven tumors. Clin. Cancer Res. 27, 2061–2073 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Janku, F. et al. A phase I study of LXH254 in patients (pts) with advanced solid tumors harboring MAPK pathway alterations [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 2586 (2018).

    Article  Google Scholar 

  149. Stuart, D. D. et al. Pharmacological profile and anti-tumor properties of LXH254, a highly selective RAF kinase inhibitor [abstract]. Cancer Res. 78 (Suppl. 13), DDT01-04 (2018).

    Article  Google Scholar 

  150. Diamond, E. L. et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 6, 154–165 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Imielinski, M. et al. Oncogenic and sorafenib-sensitive ARAF mutations in lung adenocarcinoma. J. Clin. Invest. 124, 1582–1586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nelson, D. S. et al. Somatic activating ARAF mutations in Langerhans cell histiocytosis. Blood 123, 3152–3155 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. de Braud, F. et al. Initial evidence for the efficacy of naporafenib in combination with trametinib in NRAS-mutant melanoma: results from the expansion arm of a phase Ib, open-label study. J. Clin. Oncol. 41, 2651–2660 (2023).

    Article  PubMed  Google Scholar 

  154. Martinez-Garcia, M. et al. First-in-human, phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors. Clin. Cancer Res. 18, 4806–4819 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Lito, P. et al. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell 25, 697–710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Guo, C. et al. Intermittent schedules of the oral RAF-MEK inhibitor CH5126766/VS-6766 in patients with RAS/RAF-mutant solid tumours and multiple myeloma: a single-centre, open-label, phase 1 dose-escalation and basket dose-expansion study. Lancet Oncol. 21, 1478–1488 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Minchom, A. R. et al. Phase I trial of the RAF/MEK clamp VS-6766 in combination with everolimus using an intermittent schedule with expansion in NSCLC across multiple KRAS variants [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 9018 (2022).

    Article  Google Scholar 

  158. Banerjee, S. N. et al. Initial efficacy and safety results from ENGOT-ov60/GOG-3052/RAMP 201: a phase 2 study of avutometinib (VS-6766) ± defactinib in recurrent low-grade serous ovarian cancer (LGSOC) [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 5515 (2023).

    Article  Google Scholar 

  159. Coma, S., Arcas, M. M., Downward, J. & Pachter, J. A. The RAF/MEK clamp avutometinib (VS-6766) induces an immunogenic tumor microenvironment and potentiates the efficacy of anti-PD-1 [abstract]. Cancer Res. 83 (Suppl. 7), 4155 (2023).

    Article  Google Scholar 

  160. Khan, Z. M. et al. Structural basis for the action of the drug trametinib at KSR-bound MEK. Nature 588, 509–514 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gilmartin, A. G. et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin. Cancer Res. 17, 989–1000 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Beneker, C. M. et al. Design and synthesis of type-IV inhibitors of BRAF kinase that block dimerization and overcome paradoxical MEK/ERK activation. J. Med. Chem. 62, 3886–3897 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gunderwala, A. Y., Nimbvikar, A. A., Cope, N. J., Li, Z. & Wang, Z. Development of allosteric BRAF peptide inhibitors targeting the dimer interface of BRAF. ACS Chem. Biol. 14, 1471–1480 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Alabi, S. et al. Mutant-selective degradation by BRAF-targeting PROTACs. Nat. Commun. 12, 920 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bond, M. J., Chu, L., Nalawansha, D. A., Li, K. & Crews, C. M. Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs. ACS Cent. Sci. 6, 1367–1375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vollmer, S. et al. Design, synthesis, and biological evaluation of MEK PROTACs. J. Med. Chem. 63, 157–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Wei, J. et al. Discovery of a first-in-class mitogen-activated protein kinase kinase 1/2 degrader. J. Med. Chem. 62, 10897–10911 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Zhou, C. et al. Discovery of the first-in-class agonist-based SOS1 PROTACs effective in human cancer cells harboring various KRAS mutations. J. Med. Chem. 65, 3923–3942 (2022).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  169. Hofmann, M. H., Gerlach, D., Misale, S., Petronczki, M. & Kraut, N. Expanding the reach of precision oncology by drugging all KRAS mutants. Cancer Discov. 12, 924–937 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Grasso, M. et al. Chemically linked vemurafenib inhibitors promote an inactive BRAFV600E conformation. ACS Chem. Biol. 11, 2876–2888 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Xue, Y. et al. An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer. Nat. Med. 23, 929–937 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gerlach, D. et al. BI-3406 and BI 1701963: potent and selective SOS1::KRAS inhibitors induce regressions in combination with MEK inhibitors or irinotecan [abstract]. Cancer Res. 80 (Suppl. 16), 1091 (2020).

    Article  Google Scholar 

  173. Ketcham, J. M. et al. Design and discovery of MRTX0902, a potent, selective, brain-penetrant, and orally bioavailable inhibitor of the SOS1:KRAS protein-protein interaction. J. Med. Chem. 65, 9678–9690 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ahmed, T. A. et al. SHP2 drives adaptive resistance to ERK signaling inhibition in molecularly defined subsets of ERK-dependent tumors. Cell Rep. 26, 65–78.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nichols, R. J. et al. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat. Cell Biol. 20, 1064–1073 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Stice, J. P. et al. BBP-398, a potent, small molecule inhibitor of SHP2, enhances the response of established NSCLC xenografts to KRASG12C and mutEGFR inhibitors [abstract]. Mol. Cancer Therapeutics 20 (Suppl. 12), P207 (2021).

    Article  Google Scholar 

  177. Su, W. et al. ARAF protein kinase activates RAS by antagonizing its binding to RASGAP NF1. Mol. Cell 82, 2443–2457.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wang, J. et al. Combined inhibition of SHP2 and MEK is effective in models of NF1-deficient malignant peripheral nerve sheath tumors. Cancer Res. 80, 5367–5379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sullivan, R. J. et al. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov. 8, 184–195 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Choi, H. et al. Pulsatile MEK inhibition improves anti-tumor immunity and T cell function in murine Kras mutant lung cancer. Cell Rep. 27, 806–819.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Moriceau, G. et al. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell 27, 240–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hong, A. et al. Exploiting drug addiction mechanisms to select against MAPKi-resistant melanoma. Cancer Discov. 8, 74–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Sale, M. J. et al. MEK1/2 inhibitor withdrawal reverses acquired resistance driven by BRAFV600E amplification whereas KRASG13D amplification promotes EMT-chemoresistance. Nat. Commun. 10, 2030 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  184. Algazi, A. P. et al. Continuous versus intermittent BRAF and MEK inhibition in patients with BRAF-mutated melanoma: a randomized phase 2 trial. Nat. Med. 26, 1564–1568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Marusiak, A. A. et al. Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors. Nat. Commun. 5, 3901 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  186. Lionarons, D. A. et al. RAC1P29S induces a mesenchymal phenotypic switch via serum response factor to promote melanoma development and therapy resistance. Cancer Cell 36, 68–83.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Watson, I. R. et al. The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF. Cancer Res. 74, 4845–4852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Nikolaev, S. I. et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat. Genet. 44, 133–139 (2011).

    Article  PubMed  Google Scholar 

  189. Van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

    Article  PubMed  Google Scholar 

  190. Hanrahan, A. J. et al. Leveraging systematic functional analysis to benchmark an in silico framework distinguishes driver from passenger MEK mutants in cancer. Cancer Res. 80, 4233–4243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gao, Y. et al. Allele-specific mechanisms of activation of MEK1 mutants determine their properties. Cancer Discov. 8, 648–661 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Narita, Y. et al. Novel ATP-competitive MEK inhibitor E6201 is effective against vemurafenib-resistant melanoma harboring the MEK1-C121S mutation in a preclinical model. Mol. Cancer Ther. 13, 823–832 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Yang, H. et al. Activated MEK cooperates with Cdkn2a and Pten loss to promote the development and maintenance of melanoma. Oncogene 36, 3842–3851 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Carlino, M. S. et al. Preexisting MEK1P124 mutations diminish response to BRAF inhibitors in metastatic melanoma patients. Clin. Cancer Res. 21, 98–105 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Shi, H. et al. Preexisting MEK1 exon 3 mutations in V600E/KBRAF melanomas do not confer resistance to BRAF inhibitors. Cancer Discov. 2, 414–424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Trunzer, K. et al. Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. J. Clin. Oncol. 31, 1767–1774 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Kemper, K. et al. Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts. EMBO Mol. Med. 7, 1104–1118 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29, 3085–3096 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Long, G. V. et al. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat. Commun. 5, 5694 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  201. Nathanson, K. L. et al. Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor dabrafenib (GSK2118436). Clin. Cancer Res. 19, 4868–4878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Smalley, K. S. et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol. Cancer Ther. 7, 2876–2883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Chen, S. H. et al. RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1. Oncogene 37, 821–832 (2018).

    Article  PubMed  Google Scholar 

  204. Nassar, K. W. et al. Targeting CDK4/6 represents a therapeutic vulnerability in acquired BRAF/MEK inhibitor-resistant melanoma. Mol. Cancer Ther. 20, 2049–2060 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ascierto, P. A. et al. A phase Ib/II dose-escalation study evaluating triple combination therapy with a BRAF (encorafenib), MEK (binimetinib), and CDK 4/6 (ribociclib) inhibitor in patients (Pts) with BRAF V600-mutant solid tumors and melanoma [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 9518 (2017).

    Article  Google Scholar 

  206. Schuler, M. et al. Phase Ib/II trial of ribociclib in combination with binimetinib in patients with NRAS-mutant melanoma. Clin. Cancer Res. 28, 3002–3010 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Haq, R. et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc. Natl Acad. Sci. USA 110, 4321–4326 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  208. Paraiso, K. H. et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 71, 2750–2760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Irvine, M. et al. Oncogenic PI3K/AKT promotes the step-wise evolution of combination BRAF/MEK inhibitor resistance in melanoma. Oncogenesis 7, 72 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  210. & Catalanotti, F. et al. PTEN loss-of-function alterations are associated with intrinsic resistance to BRAF inhibitors in metastatic melanoma. JCO Precis. Oncol.1JCO Precis. Oncol. 1, PO.16.00054 (2017).

    Google Scholar 

  211. Xing, F. et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring V600EBRAF. Oncogene 31, 446–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Yam, C. et al. A multicenter phase I study evaluating dual PI3K and BRAF inhibition with PX-866 and vemurafenib in patients with advanced BRAF V600-mutant solid tumors. Clin. Cancer Res. 24, 22–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Algazi, A. P. et al. Dual MEK/AKT inhibition with trametinib and GSK2141795 does not yield clinical benefit in metastatic NRAS-mutant and wild-type melanoma. Pigment. Cell Melanoma Res. 31, 110–114 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Do, K. et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest. N. Drugs 33, 720–728 (2015).

    Article  CAS  Google Scholar 

  215. Corcoran, R. B. et al. TORC1 suppression predicts responsiveness to RAF and MEK inhibition in BRAF-mutant melanoma. Sci. Transl. Med. 5, 196ra198 (2013).

    Article  Google Scholar 

  216. Boussemart, L. et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature 513, 105–109 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  217. Corcoran, R. B. et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAFV600E mutant colorectal cancer. Cancer Discov. 8, 428–443 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Kim, S., Carvajal, R., Kim, M. & Yang, H. W. Kinetics of RTK activation determine ERK reactivation and resistance to dual BRAF/MEK inhibition in melanoma. Cell Rep. 42, 112570 (2023).

    Article  CAS  PubMed  Google Scholar 

  219. Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  220. Wang, V. E. et al. Adaptive resistance to dual BRAF/MEK inhibition in BRAF-driven tumors through autocrine FGFR pathway activation. Clin. Cancer Res. 25, 7202–7217 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  221. Grimm, J. et al. BRAF inhibition causes resilience of melanoma cell lines by inducing the secretion of FGF1. Oncogenesis 7, 71 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Patel, H. et al. IGF1R/IR mediates resistance to BRAF and MEK inhibitors in BRAF-mutant melanoma. Cancers 13, 5863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wang, J. et al. PTEN regulates IGF-1R-mediated therapy resistance in melanoma. Pigment. Cell Melanoma Res. 28, 572–589 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Benito-Jardon, L. et al. Resistance to MAPK inhibitors in melanoma involves activation of the IGF1R-MEK5-Erk5 pathway. Cancer Res. 79, 2244–2256 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Wang, J. et al. Epigenetic changes of EGFR have an important role in BRAF inhibitor-resistant cutaneous melanomas. J. Invest. Dermatol. 135, 532–541 (2015).

    Article  PubMed  Google Scholar 

  226. Capdevila, J. et al. Epigenetic EGFR gene repression confers sensitivity to therapeutic BRAFV600E blockade in colon neuroendocrine carcinomas. Clin. Cancer Res. 26, 902–909 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Yaeger, R. et al. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin. Cancer Res. 21, 1313–1320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Tabernero, J. et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J. Clin. Oncol. 39, 273–284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kopetz, S. M. et al. Genomic mechanisms of acquired resistance of patients (pts) with BRAF V600E-mutant (mt) metastatic colorectal cancer (mCRC) treated in the BEACON study [abstract 316O]. Ann. Oncol. 33 (Suppl. 7), S681–S682 (2022).

    Article  Google Scholar 

  230. Yaeger, R. et al. Mechanisms of acquired resistance to BRAF V600E inhibition in colon cancers converge on RAF dimerization and are sensitive to its inhibition. Cancer Res. 77, 6513–6523 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Montero-Conde, C. et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 3, 520–533 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Ligon, G. F., Lillquist, J. S., LaVallee, T. M. & Alvarado, D. KTN3379 overcomes ErbB3-mediated resistance of BRaf/MEK inhibition in BRaf-mutated melanoma [abstract]. Mol. Cancer Ther. 14 (Suppl. 12), A154 (2015).

    Article  Google Scholar 

  233. Sherman, E. J. et al. Combination of dabrafenib (DAB) and lapatinib (LAP) for the treatment of BRAF-mutant thyroid cancer [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 6087 (2018).

    Article  Google Scholar 

  234. Tchekmedyian, V. et al. Enhancing radioiodine incorporation in BRAF-mutant, radioiodine-refractory thyroid cancers with vemurafenib and the anti-ErbB3 monoclonal antibody CDX-3379: results of a pilot clinical trial. Thyroid 32, 273–282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Garcia-Rendueles, M. E. R. et al. Yap governs a lineage-specific neuregulin1 pathway-driven adaptive resistance to RAF kinase inhibitors. Mol. Cancer 21, 213 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Lin, L. et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Cook, S. J., Stuart, K., Gilley, R. & Sale, M. J. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J. 284, 4177–4195 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Becker, T. M. et al. Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 transcription factor. Oncogene 33, 1158–1166 (2014).

    Article  CAS  PubMed  Google Scholar 

  239. Fofaria, N. M., Frederick, D. T., Sullivan, R. J., Flaherty, K. T. & Srivastava, S. K. Overexpression of Mcl-1 confers resistance to BRAFV600E inhibitors alone and in combination with MEK1/2 inhibitors in melanoma. Oncotarget 6, 40535–40556 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Kim, Y. J., Tsang, T., Anderson, G. R., Posimo, J. M. & Brady, D. C. Inhibition of BCL2 family members increases the efficacy of copper chelation in BRAFV600E-driven melanoma. Cancer Res. 80, 1387–1400 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Corcoran, R. B. et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 23, 121–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  242. Sale, M. J. et al. Targeting melanoma’s MCL1 bias unleashes the apoptotic potential of BRAF and ERK1/2 pathway inhibitors. Nat. Commun. 10, 5167 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  243. Chen, G. et al. Wnt/β-catenin pathway activation mediates adaptive resistance to BRAF inhibition in colorectal cancer. Mol. Cancer Ther. 17, 806–813 (2018).

    Article  CAS  PubMed  Google Scholar 

  244. Elez, E. et al. RNF43 mutations predict response to anti-BRAF/EGFR combinatory therapies in BRAFV600E metastatic colorectal cancer. Nat. Med. 28, 2162–2170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Kabiri, Z. et al. Wnt signaling suppresses MAPK-driven proliferation of intestinal stem cells. J. Clin. Invest. 128, 3806–3812 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Khaliq, M. & Fallahi-Sichani, M. Epigenetic mechanisms of escape from BRAF oncogene dependency. Cancers 11, 1480 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Russo, M. et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science 366, 1473–1480 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  248. Smith, M. P. et al. Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell 29, 270–284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Rambow, F., Marine, J. C. & Goding, C. R. Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities. Genes. Dev. 33, 1295–1318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Huang, F., Santinon, F., Flores Gonzalez, R. E. & Del Rincon, S. V. Melanoma plasticity: promoter of metastasis and resistance to therapy. Front. Oncol. 11, 756001 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Arozarena, I. & Wellbrock, C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat. Rev. Cancer 19, 377–391 (2019).

    Article  CAS  PubMed  Google Scholar 

  252. Zawistowski, J. S. et al. Enhancer remodeling during adaptive bypass to MEK inhibition is attenuated by pharmacologic targeting of the P-TEFb complex. Cancer Discov. 7, 302–321 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Vazquez, F. et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287–301 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Haq, R. et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 23, 302–315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Guo, W. et al. ATP-citrate lyase epigenetically potentiates oxidative phosphorylation to promote melanoma growth and adaptive resistance to MAPK inhibition. Clin. Cancer Res. 26, 2725–2739 (2020).

    Article  CAS  PubMed  Google Scholar 

  256. Waldschmidt, J. M. et al. Single-cell profiling reveals metabolic reprogramming as a resistance mechanism in BRAF-mutated multiple myeloma. Clin. Cancer Res. 27, 6432–6444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Brummer, C. et al. Metabolic targeting synergizes with MAPK inhibition and delays drug resistance in melanoma. Cancer Lett. 442, 453–463 (2019).

    Article  CAS  PubMed  Google Scholar 

  258. Proietti, I. et al. Mechanisms of acquired BRAF inhibitor resistance in melanoma: a systematic review. Cancers 12, 2801 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Jung, T., Haist, M., Kuske, M., Grabbe, S. & Bros, M. Immunomodulatory properties of BRAF and MEK inhibitors used for melanoma therapy – paradoxical ERK activation and beyond. Int. J. Mol. Sci. 22, 9890 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Hu, H. et al. Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell 39, 1531–1547.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  262. Fedorenko, I. V., Wargo, J. A., Flaherty, K. T., Messina, J. L. & Smalley, K. S. M. BRAF inhibition generates a host–tumor niche that mediates therapeutic escape. J. Invest. Dermatol. 135, 3115–3124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  264. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27, 574–588 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Girard, C. A. et al. A feed-forward mechanosignaling loop confers resistance to therapies targeting the MAPK pathway in BRAF-mutant melanoma. Cancer Res. 80, 1927–1941 (2020).

    Article  CAS  PubMed  Google Scholar 

  266. Caksa, S., Baqai, U. & Aplin, A. E. The future of targeted kinase inhibitors in melanoma. Pharmacol. Ther. 239, 108200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    Article  CAS  PubMed  Google Scholar 

  268. Ribas, A., Hodi, F. S., Callahan, M., Konto, C. & Wolchok, J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 368, 1365–1366 (2013).

    Article  CAS  PubMed  Google Scholar 

  269. Hellmann, M. D. et al. Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Ann. Oncol. 30, 1134–1142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Ribas, A. et al. PD-L1 blockade in combination with inhibition of MAPK oncogenic signaling in patients with advanced melanoma. Nat. Commun. 11, 6262 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  271. Gogas, H. et al. Cobimetinib plus atezolizumab in BRAFV600 wild-type melanoma: primary results from the randomized phase III IMspire170 study. Ann. Oncol. 32, 384–394 (2021).

    Article  CAS  PubMed  Google Scholar 

  272. Gutzmer, R. et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 395, 1835–1844 (2020).

    Article  CAS  PubMed  Google Scholar 

  273. Morris, V. K. et al. Phase I/II trial of encorafenib, cetuximab, and nivolumab in patients with microsatellite stable, BRAFV600E metastatic colorectal cancer [abtract]. J. Clin. Oncol. 40 (Suppl. 4), 12 (2022).

    Article  Google Scholar 

  274. Tian, J. et al. Combined PD-1, BRAF and MEK inhibition in BRAFV600E colorectal cancer: a phase 2 trial. Nat. Med. 29, 458–466 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Wang, Y. et al. Anti-PD-1/L1 lead-in before MAPK inhibitor combination maximizes antitumor immunity and efficacy. Cancer Cell 39, 1375–1387.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Hong, A. et al. Durable suppression of acquired MEK inhibitor resistance in cancer by sequestering MEK from ERK and promoting antitumor T-cell immunity. Cancer Discov. 11, 714–735 (2021).

    Article  CAS  PubMed  Google Scholar 

  277. Hugo, W. et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162, 1271–1285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Zhu, J. et al. Single-cell transcriptomic analysis reveals the crosstalk propensity between the tumor intermediate state and the CD8+ T exhausted state to be associated with clinical benefits in melanoma. Front. Immunol. 13, 766852 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Powles, T. et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 595, 432–437 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  281. Rose Brannon, A. et al. Enhanced specificity of clinical high-sensitivity tumor mutation profiling in cell-free DNA via paired normal sequencing using MSK-ACCESS. Nat. Commun. 12, 3770 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  282. Topham, J. T. et al. Circulating tumor DNA identifies diverse landscape of acquired resistance to anti-epidermal growth factor receptor therapy in metastatic colorectal cancer. J. Clin. Oncol. 41, 485–496 (2023).

    Article  CAS  PubMed  Google Scholar 

  283. Kopetz, S. et al. Evaluation of baseline BRAF V600E mutation in circulating tumor DNA and efficacy response from the BEACON study [abstract]. J. Clin. Oncol. 40 (Suppl. 4), 162 (2022).

    Article  Google Scholar 

  284. Planchard, D. et al. Phase 2 study of dabrafenib plus trametinib in patients with BRAF V600E-mutant metastatic NSCLC: updated 5-year survival rates and genomic analysis. J. Thorac. Oncol. 17, 103–115 (2022).

    Article  CAS  PubMed  Google Scholar 

  285. Long, G. V. et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 386, 444–451 (2015).

    Article  CAS  PubMed  Google Scholar 

  286. Whitlock, J. A. et al. Dabrafenib, alone or in combination with trametinib, in BRAF V600-mutated pediatric Langerhans cell histiocytosis. Blood Adv. 7, 3806–3815 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Jin, T. et al. RAF inhibitors promote RAS-RAF interaction by allosterically disrupting RAF autoinhibition. Nat. Commun. 8, 1211 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the Marie-Josée and Henry R. Kravis Center for Molecular Oncology (CMO), Cycle for Survival, the NIH (grants R01 CA229624 and P50 CA092629 to D.B.S.), and the NIH National Cancer Institute (Cancer Center Support Grant P30 CA008748). The authors acknowledge the Memorial Sloan Kettering Cancer Center (MSKCC) Diagnostic Molecular Pathology Service, and the American Association for Cancer Research (AACR) Project GENIE registry and consortium for their commitment to data sharing.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the preparation of this manuscript. D.B.S. supervised the entire process. N.R. and D.B.S. contributed their clinical and translational expertise on the topic.

Corresponding author

Correspondence to David B. Solit.

Ethics declarations

Competing interests

N.R. is on the scientific advisory board (SAB) and owns equity in Beigene, MapKure, Ribon and Zai Labs; is also on the SAB of AstraZeneca, Chugai, Concarlo and Ikena; is a past SAB member of Araxes, Kura, Novartis and Takeda (formerly Millennium); has equity in Effector, Fortress and Kura; is a consultant to Array/Pfizer, Boeringher Ingelheim, Eli Lilly, RevMed, Tarveda and Verustem; and receives research funding from Array/Pfizer, AstraZeneca, Boerhinger Ingelheim and Revmed. D.B.S. has served as a consultant and/or SAB member for BridgeBio, Elsie Biotherapeutics, Fog Pharma, Fore Therapeutics, Function Oncology, Lilly/Loxo Oncology, PaigeAI, Pfizer, Scorpion Therapeutics and Vividion Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. Herlyn, who co-reviewed with H. Mou, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

American Association for Cancer Research Project GENIE: genie.cbioportal.org/login.jsp

ClinicalTrials.gov: clinicaltrials.gov/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanrahan, A.J., Chen, Z., Rosen, N. et al. BRAF — a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 21, 224–247 (2024). https://doi.org/10.1038/s41571-023-00852-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00852-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer