Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting ATR in patients with cancer

Abstract

Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.

Key points

  • Ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR) has crucial and pleiotropic functions in the replication stress response. Small-molecule ATR inhibitors are actively being evaluated in the clinic for their single-agent activity, in rationally selected combinations, and for their capacity to overcome therapeutic resistance or promote antitumour immunity.

  • Currently available data from clinical trials of single-agent ATR inhibitors have revealed an emerging efficacy signal in patients with ovarian cancers resistant to platinum-based chemotherapy and/or poly(ADP-ribose) polymerase (PARP) inhibitors, most of whom had been heavily pretreated. Preclinical and clinical data suggest that ATR inhibitors have the potential to overcome resistance to PARP inhibitors.

  • The development of ATR inhibitors has been challenged by a narrow therapeutic index, mainly limited by dose-dependent myelosuppression, particularly anaemia. Intermittent dosing schedules could maximize target engagement while allowing sufficient time for erythroid precursor maturation and recovery.

  • Interesting and rational combinatorial partners for ATR inhibitors are increasingly being discovered, although optimizing the toxicity profile and therapeutic window of ATR inhibitors in such combinations remains a challenge, in particular with drug partners that share overlapping haematological toxicities.

  • No single integral biomarker of response to ATR inhibitors as monotherapy or in combination has been established to date; potential biomarkers include individual genomic alterations that predispose to replication stress accumulation, gene signatures indicating elevated replication stress and functional measures of replication stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological functions of ATR.
Fig. 2: Selective biomarkers and rational strategies relevant to the development of ATR inhibitors.
Fig. 3: ATR inhibitor-related anaemia.

Similar content being viewed by others

References

  1. da Costa, A., Chowdhury, D., Shapiro, G. I., D’Andrea, A. D. & Konstantinopoulos, P. A. Targeting replication stress in cancer therapy. Nat. Rev. Drug Discov. 22, 38–58 (2022).

    Article  PubMed  Google Scholar 

  2. Ngoi, N. Y. L., Pham, M. M., Tan, D. S. P. & Yap, T. A. Targeting the replication stress response through synthetic lethal strategies in cancer medicine. Trends Cancer 7, 930–957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Groelly, F. J. et al. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 23, 78–94 (2022).

    Article  PubMed  Google Scholar 

  4. Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kabeche, L., Nguyen, H. D., Buisson, R. & Zou, L. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation. Science 359, 108–114 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Flynn, R. L. & Zou, L. ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem. Sci. 36, 133–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Mutreja, K. et al. ATR-mediated global fork slowing and reversal assist fork traverse and prevent chromosomal breakage at DNA interstrand cross-links. Cell Rep. 24, 2629–2642.e2625 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barnieh, F. M., Loadman, P. M. & Falconer, R. A. Progress towards a clinically-successful ATR inhibitor for cancer therapy. Curr. Res. Pharmacol. Drug Discov. 2, 100017 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moiseeva, T. N. & Bakkenist, C. J. Dormant origin signaling during unperturbed replication. DNA Repair 81, 102655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lecona, E. & Fernandez-Capetillo, O. Targeting ATR in cancer. Nat. Rev. Cancer 18, 586–595 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Saldivar, J. C., Cortez, D. & Cimprich, K. A. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 18, 622–636 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saldivar, J. C. et al. An intrinsic S/G(2) checkpoint enforced by ATR. Science 361, 806–810 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buisson, R., Boisvert, J. L., Benes, C. H. & Zou, L. Distinct but concerted roles of ATR, DNA-PK, and Chk1 in countering replication stress during S phase. Mol. Cell 59, 1011–1024 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D’Angiolella, V. et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149, 1023–1034 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Leung, W. et al. ATR protects ongoing and newly assembled DNA replication forks through distinct mechanisms. Cell Rep. 42, 112792 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davies, S. L., North, P. S. & Hickson, I. D. Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat. Struct. Mol. Biol. 14, 677–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Hambarde, S. et al. EXO5-DNA structure and BLM interactions direct DNA resection critical for ATR-dependent replication restart. Mol. Cell 81, 2989–3006.e2989 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schlacher, K. A new road to cancer-drug resistance. Nature 563, 478–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sijacki, T. et al. The DNA-damage kinase ATR activates the FANCD2-FANCI clamp by priming it for ubiquitination. Nat. Struct. Mol. Biol. 29, 881–890 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andreassen, P. R., D’Andrea, A. D. & Taniguchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 18, 1958–1963 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shigechi, T. et al. ATR–ATRIP kinase complex triggers activation of the Fanconi anemia DNA repair pathway. Cancer Res. 72, 1149–1156 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Tan, W., van Twest, S., Murphy, V. J. & Deans, A. J. ATR-mediated FANCI phosphorylation regulates both ubiquitination and deubiquitination of FANCD2. Front. Cell Dev. Biol. 8, 2 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Saxena, S., Somyajit, K. & Nagaraju, G. XRCC2 regulates replication fork progression during dNTP alterations. Cell Rep. 25, 3273–3282. e3276 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Somyajit, K., Basavaraju, S., Scully, R. & Nagaraju, G. ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair. Mol. Cell Biol. 33, 1830–1844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahlskog, J. K., Larsen, B. D., Achanta, K. & Sorensen, C. S. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function. EMBO Rep. 17, 671–681 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vassin, V. M., Anantha, R. W., Sokolova, E., Kanner, S. & Borowiec, J. A. Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress. J. Cell Sci. 122, 4070–4080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saxena, S., Dixit, S., Somyajit, K. & Nagaraju, G. ATR signaling uncouples the role of RAD51 paralogs in homologous recombination and replication stress response. Cell Rep. 29, 551–559.e554 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Toledo, L. I. et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155, 1088–1103 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12, 385–392 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Klein, A. et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479–482 (2000).

    Article  PubMed  Google Scholar 

  36. Menolfi, D. et al. Kinase-dead ATR differs from ATR loss by limiting the dynamic exchange of ATR and RPA. Nat. Commun. 9, 5351 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. O’Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat. Genet. 33, 497–501 (2003).

    Article  PubMed  Google Scholar 

  38. Ogi, T. et al. Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel syndrome. PLoS Genet. 8, e1002945 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schlacher, K. PARPi focus the spotlight on replication fork protection in cancer. Nat. Cell Biol. 19, 1309–1310 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Feng, X. et al. ATR inhibition potentiates ionizing radiation-induced interferon response via cytosolic nucleic acid-sensing pathways. EMBO J. 39, e104036 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Emam, A. et al. Stalled replication fork protection limits cGAS-STING and P-body-dependent innate immune signalling. Nat. Cell Biol. 24, 1154–1164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bhattacharya, S. et al. RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Res. 45, 4590–4605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Coquel, F. et al. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557, 57–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Kidiyoor, G. R. et al. ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration. Nat. Commun. 11, 4828 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schoonen, P. M. et al. Premature mitotic entry induced by ATR inhibition potentiates olaparib inhibition-mediated genomic instability, inflammatory signaling, and cytotoxicity in BRCA2-deficient cancer cells. Mol. Oncol. 13, 2422–2440 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roulston, A. et al. RP-3500: a novel, potent, and selective ATR inhibitor that is effective in preclinical models as a monotherapy and in combination with PARP inhibitors. Mol. Cancer Ther. 21, 245–256 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Kwok, M. et al. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood 127, 582–595 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Min, A. et al. AZD6738, a novel oral inhibitor of ATR, induces synthetic lethality with ATM deficiency in gastric cancer cells. Mol. Cancer Ther. 16, 566–577 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Dunlop, C. R. et al. Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models. Br. J. Cancer 123, 1424–1436 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rafiei, S. et al. ATM loss confers greater sensitivity to ATR inhibition than PARP inhibition in prostate cancer. Cancer Res. 80, 2094–2100 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yap, T. A. et al. Phase I trial of first-in-class ATR inhibitor M6620 (VX-970) as monotherapy or in combination with carboplatin in patients with advanced solid tumors. J. Clin. Oncol. 38, 3195–3204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dillon, M. T. et al. Durable responses to ATR inhibition with ceralasertib in tumors with genomic defects and high inflammation. J. Clin. Invest. 134, https://doi.org/10.1172/JCI175369 (2024)

  54. Yap, T. A. et al. Phase I study of ATR inhibitor M1774 in patients with solid tumours (DDRiver solid tumours 301): part A1 results. Ann. Oncol. 33, S197-S224, (2022).

    Article  Google Scholar 

  55. Moore, K. et al. 680P first results from the phase I trial of the ATR inhibitor, ART0380, in advanced solid tumors. Ann. Oncol. 34, S475–S476 (2023).

    Article  Google Scholar 

  56. Yap, T. A. et al. Camonsertib in DNA damage response-deficient advanced solid tumors: phase 1 trial results. Nat. Med. 29, 1400–1411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murai, J. et al. Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget 7, 76534–76550 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ngoi, N. et al. Baseline predictors of hematological toxicity in patients with advanced cancer treated with ATR inhibitors in phase I/II clinical trials. J. Clin. Oncol. 40, 3111–3111 (2022).

    Article  Google Scholar 

  59. Yap, T. A. et al. First-in-human trial of the oral ataxia telangiectasia and RAD3-related (ATR) inhibitor BAY 1895344 in patients with advanced solid tumors. Cancer Discov. 11, 80–91 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Yap, T. A. et al. Abstract CT006: phase Ib expansion trial of the safety and efficacy of the oral ataxia telangiectasia and Rad3-related (ATR) inhibitor elimusertib in advanced solid tumors with DNA damage response (DDR) defects. Cancer Res. 82, CT006 (2022).

    Article  MathSciNet  Google Scholar 

  61. Levy, M. et al. ATR inhibitor camonsertib (RP-3500) suppresses early-stage erythroblasts by mediating ferroptosis. Eur. J. Cancer 174, S100 (2022).

    Article  Google Scholar 

  62. Zimmermann, M. et al. Guiding ATR and PARP inhibitor combinationswith chemogenomic screens. Cell Rep. 40, 111081 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Choudhury, A. D. et al. A phase 2 study of berzosertib (M6620) in combination with carboplatin compared with docetaxel in combination with carboplatin in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 39, 5034–5034 (2021).

    Article  Google Scholar 

  64. Telli, M. L. et al. Phase 1b study of berzosertib and cisplatin in patients with advanced triple-negative breast cancer. npj Breast Cancer 8, 45 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Konstantinopoulos, P. A. et al. Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 21, 957–968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pal, S. K. et al. Effect of cisplatin and gemcitabine with or without berzosertib in patients with advanced urothelial carcinoma: a phase 2 randomized clinical trial. JAMA Oncol. 7, 1536–1543, (2021).

    Article  PubMed  Google Scholar 

  67. Thomas, A. et al. Therapeutic targeting of ATR yields durable regressions in small cell lung cancers with high replication stress. Cancer Cell 39, 566–579 e567 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Villaruz, L. C. et al. NCI 9938: phase I clinical trial of ATR inhibitor berzosertib (M6620, VX-970) in combination with irinotecan in patients with advanced solid tumors. J. Clin. Oncol. 40, 3012–3012 (2022).

    Article  Google Scholar 

  69. Kim, R. et al. Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced/metastatic melanoma who have failed prior anti-PD-1 therapy. Ann. Oncol. 33, 193–203 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Koul, D. et al. EXTH-06. Atr inhibitors as monotherapy and combinatorial therapy with temozolomide in preclinical glioblastoma models. Neuro-Oncology 23, vi164 (2021).

    Article  Google Scholar 

  71. Mills, C. C., Kolb, E. A. & Sampson, V. B. Development of chemotherapy with cell-cycle inhibitors for adult and pediatric cancer therapy. Cancer Res. 78, 320–325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van Bijsterveldt, L., Durley, S. C., Maughan, T. S. & Humphrey, T. C. The challenge of combining chemo- and radiotherapy with checkpoint kinase inhibitors. Clin. Cancer Res. 27, 937–962 (2021).

    Article  PubMed  Google Scholar 

  73. Montano, R. et al. Cell cycle perturbation induced by gemcitabine in human tumor cells in cell culture, xenografts and bladder cancer patients: implications for clinical trial designs combining gemcitabine with a Chk1 inhibitor. Oncotarget 8, 67754–67768 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Konstantinopoulos, P. A. et al. A replication stress biomarker is associated with response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in ovarian cancer. Nat. Commun. 12, 5574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wilson, Z. et al. ATR inhibitor AZD6738 (ceralasertib) exerts antitumor activity as a monotherapy and in combination with chemotherapy and the PARP inhibitor olaparib. Cancer Res. 82, 1140–1152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takahashi, N. et al. Berzosertib plus topotecan vs topotecan alone in patients with relapsed small cell lung cancer: a randomized clinical trial. JAMA Oncol. 9, 1669–1677, (2023).

    Article  PubMed  Google Scholar 

  77. Kim, S. T. et al. Phase I study of ceralasertib (AZD6738), a movel DNA damage repair agent, in combination with weekly paclitaxel in refractory cancer. Clin. Cancer Res. 27, 4700–4709 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rottenberg, S., Disler, C. & Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 21, 37–50 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Pollard, J. et al. Defining optimal dose schedules for ATR inhibitors in combination with DNA damaging drugs: informing clinical studies of VX-970, the first-in-class ATR inhibitor. Cancer Res. 76, 3717–3717 (2016).

    Article  Google Scholar 

  80. Shapiro, G. I. et al. Phase 1 study of the ATR inhibitor berzosertib in combination with cisplatin in patients with advanced solid tumours. Br. J. Cancer 125, 520–527 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yap, T. A. et al. Ceralasertib (AZD6738), an oral ATR kinase inhibitor, in combination with carboplatin in patients with advanced solid tumors: a phase I study. Clin. Cancer Res. 27, 5213–5224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, H. et al. Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models. Clin. Cancer Res. 23, 3097–3108 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Lloyd, R. L. et al. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. Oncogene 39, 4869–4883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schoonen, P. M. et al. Progression through mitosis promotes PARP inhibitor-induced cytotoxicity in homologous recombination-deficient cancer cells. Nat. Commun. 8, 15981 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yazinski, S. A. et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 31, 318–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Buisson, R. et al. Coupling of homologous recombination and the checkpoint by ATR. Mol. Cell 65, 336–346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peasland, A. et al. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br. J. Cancer 105, 372–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Parsels, L. A. et al. Combinatorial efficacy of olaparib with radiation and ATR inhibitor requires PARP1 protein in homologous recombination-proficient pancreatic cancer. Mol. Cancer Ther. 20, 263–273 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Reichert, Z. R. et al. Targeting resistant prostate cancer, with or without DNA repair defects, using the combination of ceralasertib (ATR inhibitor) and olaparib (the TRAP trial). J. Clin. Oncol. 40, 88–88 (2022).

    Article  Google Scholar 

  90. Mahdi, H. et al. Ceralasertib-mediated ATR inhibition combined with olaparib in advanced cancers harboring DNA damage response and repair alterations (olaparib combinations). JCO Precis. Oncol. https://doi.org/10.1200/PO.20.00439 (2021).

  91. Shah, P. D. et al. Combination ATR and PARP inhibitor (CAPRI): a phase 2 study of ceralasertib plus olaparib in patients with recurrent, platinum-resistant epithelial ovarian cancer. Gynecol. Oncol. 163, 246–253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. George, E. et al. Improving the efficacy of PARP inhibition with a novel ATR inhibitor, ATRN119, in ovarian high-grade serous cancers. Gynecol. Oncol. 149, 45 (2018).

    Article  Google Scholar 

  93. Yap, T. A. et al. Phase I modular study of AZD6738, a novel oral, potent and selective ataxia telangiectasia Rad3-related (ATR) inhibitor in combination (combo) with carboplatin, olaparib or durvalumab in patients (pts) with advanced cancers. Eur. J. Cancer 69, 32607–32607 (2016).

    Article  Google Scholar 

  94. Yap, T. A. et al. Safety and efficacy of three PARP inhibitors (PARPi) combined with the ataxia telangiectasia- and Rad3-related kinase inhibitor (ATRi) camonsertib in patients (pts) with solid tumors harboring DNA damage response (DDR) alterations. Cancer Res. 83, CT018 (2023).

    Article  Google Scholar 

  95. Chabanon, R. M. et al. Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat. Rev. Cancer 21, 701–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Alimzhanov, M. et al. ATR inhibitor M6620 enhances anti-tumor efficacy of the combination of the anti-PD-L1 antibody avelumab with platinum-based chemotherapy. Cancer Res. 79, 2269 (2019).

    Article  Google Scholar 

  97. Vendetti, F. P. et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J. Clin. Invest. 128, 3926–3940 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Dillon, M. T. et al. ATR inhibition potentiates the radiation-induced inflammatory tumor microenvironment. Clin. Cancer Res. 25, 3392–3403 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sheng, H. et al. ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma. J. Immunother. Cancer 8, e000340 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tang, Z. et al. ATR inhibition induces CDK1-SPOP signaling and enhances anti-PD-L1 cytotoxicity in prostate cancer. Clin. Cancer Res. 27, 4898–4909 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ngoi, N. Y. L., Peng, G. & Yap, T. A. A tale of two checkpoints: ATR inhibition and PD-(L)1 blockade. Annu. Rev. Med. 73, 231–250 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Shen, J. et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 79, 311–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, J. et al. Cell cycle checkpoints cooperate to suppress DNA- and RNA-associated molecular pattern recognition and anti-tumor immune responses. Cell Rep. 32, 108080 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pham, M. M., Ngoi, N. Y. L., Peng, G., Tan, D. S. P. & Yap, T. A. Development of poly(ADP-ribose) polymerase inhibitor and immunotherapy combinations: progress, pitfalls, and promises. Trends Cancer 7, 958–970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nam, A. R. et al. ATR inhibition amplifies antitumor effects of olaparib in biliary tract cancer. Cancer Lett. 516, 38–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, J. et al. Author correction: Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 571, E10 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, X. et al. WEE1 inhibitor and ataxia telangiectasia and RAD3-related inhibitor trigger stimulator of interferon gene-dependent immune response and enhance tumor treatment efficacy through programmed death-ligand 1 blockade. Cancer Sci. 112, 4444–4456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kwon, M. et al. Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer. J. Immunother. Cancer 10, e005041 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Besse, B. et al. OA07.08 HUDSON: an open-label, multi-drug, biomarker-directed, phase II platform study in patients with NSCLC, who progressed on anti-PD(L)1 therapy. J. Thorac. Oncol. 16, S118–S119 (2021).

    Article  Google Scholar 

  111. Ngoi, N. et al. DNA damage response (DDR) Basket of Baskets (D-BOB) trial: phase 1/2 study of the ATR inhibitor (ATRi) berzosertib and PD-L1 inhibitor avelumab in patients (pts) with advanced solid tumors with DDR molecular alterations. Eur. J. Cancer 174, S10 (2022).

    Article  Google Scholar 

  112. Hernandez, M. et al. P16.07 immuno-modulatory effects of ceralasertib in combination with durvalumab in NSCLC with progression on anti-PD(L)1 treatment (HUDSON). J. Thorac. Oncol. 16, S350–S351 (2021).

    Article  Google Scholar 

  113. Iyer, S. et al. Immunomodulatory effects of ceralasertib in combination with durvalumab in patients with NSCLC and progression on anti-PD-(L)1 treatment (HUDSON, NCT03334617). Cancer Res. 83, CT039 (2023).

    Article  Google Scholar 

  114. Ramkumar, K. et al. AXL inhibition induces DNA damage and replication stress in non-small cell lung cancer cells and promotes sensitivity to ATR inhibitors. Mol. Cancer Res. 19, 485–497 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Muralidharan, S. V. et al. BET bromodomain inhibitors synergize with ATR inhibitors in melanoma. Cell Death Dis. 8, e2982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Inoue, A. et al. Sequential administration of XPO1 and ATR inhibitors enhances therapeutic response in TP53-mutated colorectal cancer. Gastroenterology 161, 196–210 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Roeschert, I. et al. Combined inhibition of Aurora-A and ATR kinase results in regression of MYCN-amplified neuroblastoma. Nat. Cancer 2, 312–326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun, Z., Zhang, Z., Wang, Q. Q. & Liu, J. L. Combined inactivation of CTPS1 and ATR Is synthetically lethal to MYC-overexpressing cancer cells. Cancer Res. 82, 1013–1024 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wengner, A. M. et al. The novel ATR inhibitor BAY 1895344 is efficacious as monotherapy and combined with DNA damage-inducing or repair-compromising therapies in preclinical cancer models. Mol. Cancer Ther. 19, 26–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Fuentes-Antras, J., Genta, S., Vijenthira, A. & Siu, L. L. Antibody–drug conjugates: in search of partners of choice. Trends Cancer 9, 339–354 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Mao, S. et al. Resistance to pyrrolobenzodiazepine dimers is associated with SLFN11 downregulation and can be reversed through inhibition of ATR. Mol. Cancer Ther. 20, 541–552 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Bradbury, A., Zenke, F. T., Curtin, N. J. & Drew, Y. The role of ATR inhibitors in ovarian cancer: investigating predictive biomarkers of response. Cells 11, 2361 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jo, U., Murai, Y., Takebe, N., Thomas, A. & Pommier, Y. Precision oncology with drugs targeting the replication stress, ATR, and Schlafen 11. Cancers 13, 4601 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Setton, J. et al. Synthetic lethality in cancer therapeutics: the next generation. Cancer Discov. 11, 1626–1635 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Weigelt, B. et al. The landscape of somatic genetic alterations in breast cancers from ATM germline mutation carriers. J. Natl Cancer Inst. 110, 1030–1034 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jensen, K. et al. Association of clonal hematopoiesis in DNA repair genes with prostate cancer plasma cell-free DNA testing interference. JAMA Oncol. 7, 107–110 (2021).

    Article  PubMed  Google Scholar 

  127. Serra, V. et al. Identification of a molecularly-defined subset of breast and ovarian cancer models that respond to WEE1 or ATR inhibition, overcoming PARP inhibitor resistance. Clin. Cancer Res. 28, 4536–4550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Williamson, C. T. et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 7, 13837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, X. D. et al. SETD2 loss and ATR inhibition synergize to promote cGAS signaling and immunotherapy response in renal cell carcinoma. Clin. Cancer Res. 29, 4002–4016 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Zhu, Q. et al. SETD2-mediated H3K14 trimethylation promotes ATR activation and stalled replication fork restart in response to DNA replication stress. Proc. Natl Acad. Sci. USA 118, e2011278118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chabanon, R. M. et al. PBRM1 deficiency confers synthetic lethality to DNA repair inhibitors in cancer. Cancer Res. 81, 2888–2902 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Zimmer, K. et al. PBRM1 mutations might render a subtype of biliary tract cancers sensitive to drugs targeting the DNA damage repair system. npj Precis. Oncol. 7, 64 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kurashima, K. et al. SMARCA4 deficiency-associated heterochromatin induces intrinsic DNA replication stress and susceptibility to ATR inhibition in lung adenocarcinoma. NAR Cancer 2, zcaa005 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Aggarwal, R. et al. 512O interim results from a phase II study of the ATR inhibitor ceralasertib in ARID1A-deficient and ARID1A-intact advanced solid tumor malignancies. Ann. Oncol. 32, S583 (2021).

    Article  Google Scholar 

  135. Stewart, J. et al. PPP2R1A missense mutations as a novel biomarker of response to ATR inhibitors in ARID1A mutant ovarian clear cell carcinoma. Eur. J. Cancer 174, S99 (2022).

    Article  Google Scholar 

  136. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Flynn, R. L. et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347, 273–277 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Garbarino, J., Eckroate, J., Sundaram, R. K., Jensen, R. B. & Bindra, R. S. Loss of ATRX confers DNA repair defects and PARP inhibitor sensitivity. Transl. Oncol. 14, 101147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Deeg, K. I., Chung, I., Bauer, C. & Rippe, K. Cancer cells with alternative lengthening of telomeres do not display a general hypersensitivity to ATR inhibition. Front Oncol. 6, 186 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. de Nonneville, A. & Reddel, R. R. Alternative lengthening of telomeres is not synonymous with mutations in ATRX/DAXX. Nat. Commun. 12, 1552 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Brosnan-Cashman, J. A. et al. ATRX loss induces multiple hallmarks of the alternative lengthening of telomeres (ALT) phenotype in human glioma cell lines in a cell line-specific manner. PLoS One 13, e0204159 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yuan, M. et al. Therapeutic vulnerability to ATR inhibition in concurrent NF1 and ATRX-deficient/ALT-positive high-grade solid tumors. Cancers 14, 3015 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Verma, P. et al. RAD52 and SLX4 act nonepistatically to ensure telomere stability during alternative telomere lengthening. Genes Dev. 33, 221–235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, C. et al. Genome-wide CRISPR screens reveal synthetic lethality of RNASEH2 deficiency and ATR inhibition. Oncogene 38, 2451–2463 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Hustedt, N. et al. A consensus set of genetic vulnerabilities to ATR inhibition. Open Biol. 9, 190156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Buisson, R., Lawrence, M. S., Benes, C. H. & Zou, L. APOBEC3A and APOBEC3B activities render cancer cells susceptible to ATR inhibition. Cancer Res. 77, 4567–4578 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nikkila, J. et al. Elevated APOBEC3B expression drives a kataegic-like mutation signature and replication stress-related therapeutic vulnerabilities in p53-defective cells. Br. J. Cancer 117, 113–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Murga, M. et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat. Struct. Mol. Biol. 18, 1331–1335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Al Zubaidi, T. et al. Targeting the DNA replication stress phenotype of KRAS mutant cancer cells. Sci. Rep. 11, 3656 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Setton, J. et al. CDK12 loss leads to replication stress and sensitivity to combinations of the ATR inhibitor camonsertib (RP-3500) with PARP inhibitors. Eur. J. Cancer 174, S99–S100 (2022).

    Article  Google Scholar 

  151. Mohni, K. N., Kavanaugh, G. M. & Cortez, D. ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency. Cancer Res. 74, 2835–2845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sultana, R. et al. Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS One 8, e57098 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nguyen, H. D. et al. Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes. Cancer Res 78, 5363–5374 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ma, J. et al. SPOP mutation induces replication over-firing by impairing geminin ubiquitination and triggers replication catastrophe upon ATR inhibition. Nat. Commun. 12, 5779 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dorado Garcia, H. et al. Therapeutic targeting of ATR in alveolar rhabdomyosarcoma. Nat. Commun. 13, 4297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mondal, G., Stevers, M., Goode, B., Ashworth, A. & Solomon, D. A. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers. Nat. Commun. 10, 1686 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Redwood, A. B. et al. The cytosolic iron-sulfur cluster assembly (CIA) pathway is required for replication stress tolerance of cancer cells to Chk1 and ATR inhibitors. npj Breast Cancer 7, 152 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dreyer, S. B. et al. Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology 160, 362–377 e313 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Guerrero Llobet, S. et al. An mRNA expression-based signature for oncogene-induced replication-stress. Oncogene 41, 1216–1224 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Takahashi, N. et al. Replication stress defines distinct molecular subtypes across cancers. Cancer Res. Commun. 2, 503–517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. McGrail, D. J. et al. Replication stress response defects are associated with response to immune checkpoint blockade in nonhypermutated cancers. Sci. Transl. Med. 13, eabe6201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hill, S. J. et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discov. 8, 1404–1421 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ruiz, S. et al. A genome-wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors. Mol. Cell 62, 307–313 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lloyd, R. L. et al. Loss of cyclin C or CDK8 provides ATR inhibitor resistance by suppressing transcription-associated replication stress. Nucleic Acids Res. 49, 8665–8683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Guo, Y. et al. Targeting CDC7 potentiates ATR-CHK1 signaling inhibition through induction of DNA replication stress in liver cancer. Genome Med. 13, 166 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Llorca-Cardenosa, M. J. et al. SMG8/SMG9 heterodimer loss modulates SMG1 kinase to drive ATR inhibitor resistance. Cancer Res 82, 3962–3973 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Schleicher, E. M. et al. Dual genome-wide CRISPR knockout and CRISPR activation screens identify mechanisms that regulate the resistance to multiple ATR inhibitors. PLoS Genet. 16, e1009176 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bauer, M. et al. Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc. Natl Acad. Sci. USA 108, 21105–21110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jacobsen, R. N., Perkins, A. C. & Levesque, J. P. Macrophages and regulation of erythropoiesis. Curr. Opin. Hematol. 22, 212–219 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Ngoi, N. Y. et al. Dynamic changes in monocyte and reticulocyte counts predict mechanism-based anemia development and recovery during ATR inhibitor treatment in phase I/II trials. Cancer Res. 83, 6181 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

K.S. receives support from the Cancer Prevention and Research Institute of Texas (RP180813) and the National Institute of Health (NIH) (1R01ES029680), and is a CPRIT scholar in Cancer Biology and a Rita Allen Foundation Fellow. T.A.Y. receives support from the Department of Defense (W81XWH-21-1-0282 and W81XWH-22-1-0502) and the NIH (1R01CA255074), and is a V Foundation Scholar (VC2020-001).

Author information

Authors and Affiliations

Authors

Contributions

N.Y.L.N., P.G.P., D.J.M., K.S. and T.A.Y. researched data for the article. All the authors contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Katharina Schlacher or Timothy A. Yap.

Ethics declarations

Competing interests

P.G.P. and D.J.M. are involved in a pending patent related to a replication stress response deficiency signature. M.Z. is an employee of Repare Therapeutics. T.A.Y. is Vice President and Head of Clinical Development in the Therapeutics Discovery Division at University of Texas MD Anderson Cancer Center, which has a commercial interest in DDR and other inhibitors; receives institutional research support funded by Acrivon, Artios, AstraZeneca, Bayer, Beigene, BioNTech, Blueprint, BMS, Clovis, Constellation, Cyteir, Eli Lilly, EMD Serono, Forbius, F-Star, GSK, Genentech, Haihe, Ideaya, ImmuneSensor, Ionis, Ipsen, Jounce, Karyopharm, KSQ, Kyowa, Merck, Mirati, Novartis, Pfizer, Ribon Therapeutics, Regeneron, Repare, Rubius, Sanofi, Scholar Rock, Seattle Genetics, Tesaro, Vivace and Zenith; is a consultant for AbbVie, AstraZeneca, Acrivon, Adagene, Aduro, Almac, Amphista, Artios, Athena, Atrin, Avoro, Axiom, Baptist Health Systems, Bayer, Beigene, Boxer, BMS, C4 Therapeutics, Calithera, Cancer Res. UK, Clovis, Cybrexa, Diffusion, EMD Serono, F-Star, Genmab, Glenmark, GLG, Globe Life Sciences, GSK, Guidepoint, Idience, Ignyta, I-Mab, ImmuneSensor, Impact, Institut Gustave Roussy, Intellisphere, Jansen, Kyn, MEI Pharma, Mereo, Merck, Natera, Nexys, Novocure, OHSU, OncoSec, Ono Pharma, Pegascy, PER, Pfizer, Piper Sandler, Prolynx, Repare, resTORbio, Roche, Schrodinger, Theragnostics, Varian, Versant, Vibliome, Xinthera, Zai Labs and ZielBio; and holds stock from Seagen. N.Y.L.N. and K.S. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks N. Curtin, Sophie Postal-Vinay, who co-reviewed with R. Chabanon, and L. Zhou for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngoi, N.Y.L., Pilié, P.G., McGrail, D.J. et al. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 21, 278–293 (2024). https://doi.org/10.1038/s41571-024-00863-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-024-00863-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer