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Thejoint analysis of the genome, epigenome, transcriptome, proteome
and/or metabolome from single cells is transforming our understanding
of cell biology in health and disease. In less than a decade, the field

has seen tremendous technological revolutions that enable crucial
new insights into the interplay between intracellular and intercellular
molecular mechanisms that govern development, physiology and
pathogenesis. In this Review, we highlight advances in the fast-
developing field of single-cell and spatial multi-omics technologies
(also known as multimodal omics approaches), and the computational
strategies needed to integrate information across these molecular
layers. We demonstrate their impact on fundamental cell biology

and translational research, discuss current challenges and provide
anoutlook to the future.
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Introduction

Humans and many other Eukaryota are composed of billions of cells,
belongingto vastly heterogeneous cell types and functional cell states
determined by both cell-intrinsic and cell-extrinsic factors. Intrinsically,
there is a complex interactive molecular hierarchy of the different
‘omics’ layers within a cell: from genome and epigenome to transcrip-
tome, proteome and metabolome, and back. Extrinsically, the func-
tional state of acell canbe modulated by its neighbouring cells through
direct physical interaction (such as receptor-ligand interactions),
through signalling molecules secreted by one cell that can act through
receptors on remote cells (such as morphogen signalling pathways),
or by other microenvironmental factors (such as chemical compound
gradients)’. Consequently, investigating how multicellular organisms
develop from a totipotent single cell and subsequently function, age
and develop disease, necessitates single-cell and spatial multi-omics
approaches (also known as multimodal omics approaches).

Robust technologies for unimodal (mono-omics) measurements of
individual cells, such as single-cell RNA sequencing (scRNA-seq) meth-
ods?, have already evolved to revolutionize the discovery and under-
standing of cell types as well as their different functional cell states, cell
plasticity uponexposure to external stimuliand drugs, and cell differen-
tiation or reprogramming trajectories’. The power of these technolo-
giesisunderscored by the instigation of the Human Cell Atlas (HCA)™*
and other consortium-based resources afterwards, which are primarily
aimed at creating cellular reference maps of organisms, including the
position, function and characteristics of every cell type. However, to
develop fundamental understanding of the molecular hierarchy from
genome to phenomeinindividual cells, multi-omics methodologies at
single-cell and spatial resolution are necessary. They enable investiga-
tion of the intermolecular dynamics between gene regulation on the
epigenome level and gene expression on the transcriptome and/or
proteome levels unambiguously in the same single cells across devel-
opment, ageing and disease. Additionally, these technologies enable
investigating the impact of acquired genetic variation in the genome
of single cells on their own function and phenotypic features, as well
as (surrounding) tissue function and more, as exemplified throughout
this Review. Inrecentyears, this field hasadvanced phenomenally and is
rapidly maturing both technologically and computationally, enabling
broad applications to understand cell biology (Fig.1).

In this Review, we discuss the fundamental technological and
computational principles, state of the art and applicative value of
modern single-cell and spatial multi-omics. We focus on methods
that provide a comprehensive ‘omics’ view of at least one molecular
analyte, and for single-cell multi-omics are based on next-generation
sequencing (NGS), whereas for spatial multi-omics we highlight both
NGS-based and imaging-based methods. Although many algorithms
have been tailored to analyse the individual molecular layers, here we
primarily focus on computational techniques for the integration of
information across the different data modalities to maximally lever-
age the potential of these multi-omics technologies. We end with an
outlook to the future.

Single-cell multi-omics methods

Multi-ome measurements from single cells are enabled by different
methodological approaches, which can be categorized according to
whether the distinct molecular analytes are uncoupled before, dur-
ing or after sequencing library preparation. As described in Fig. 2 and
further below for specific methods, each of these different principles
comes with specific advantages and limitations.

Single-cell genomics-plus-transcriptomics

Soon after the establishment of single-cell DNA sequencing (scDNA-
seq) and single-cell RNA sequencing (scRNA-seq) protocols®®, meth-
ods for genome-plus-transcriptome sequencing of individual cells
were developed (Fig. 1) that rely on one of the four basic principles for
multi-ome analysis (Fig. 2).

A first set of methods applies physical separation of DNA and
RNA before sequencing library preparation (Fig. 2a). In G&T-seq®’
(Supplementary Fig. 1a), oligo-dT bead-mediated precipitation of
polyadenylated (poly(A)) RNA molecules enables their physical sepa-
ration from the remaining molecules in the cell’s lysate, including
the nuclear and mitochondrial DNA, either manually or robotically.
Captured transcripts are then on-bead primed for full-length cDNA
amplification through reverse transcription (RT), template switching
and PCR using a Smart-seq?2-like reaction®, allowing for both short-
read and long-read sequencing’. Long-read sequencingis preferred for
transcriptisoformdetection. The genomic DNA (gDNA) in the collected
supernatantis subjected to whole-genome amplification (WGA) using
amethod of choice: multiple displacement amplification (MDA), PCR
or displacement preampilification followed by PCR (DA-PCR). Single-
cell transcriptogenomics applies asimilar principle as G&T-seq and is
compatible with targeted DNA exome sequencing following MDA’. The
freedom of choice for downstream processing of the separated poly(A)
RNA and gDNA presents a major advantage. Indeed, WGA isnot error-
free,and different WGA methods present different biases, making some
more suitable for the detection of specific classes of genetic variants,
asreviewed previously'®". Similarly, different scRNA-seq methodolo-
gies present different performancesin sensitivity, transcript coverage
and throughput®.

Asalternativesto oligo-dT bead-based separation of poly(A) RNA
and gDNA, multiple methods partition cytosolic RNA from nuclear
DNA using a two-step cell lysis (Fig. 2b). In SIDR-seq" (Supplementary
Fig.1b), single cells are first subjected to hypotoniclysis, enabling the
nucleus to be isolated from the supernatant containing RNA using
antibody-conjugated magnetic microbeads. Then, the nucleusis lysed
and subjected to MDA-based scDNA-seq, and the supernatant RNA is
subjected to Smart-seq2-based scRNA-seq.In DNTR-seq" (Supplemen-
tary Fig.1c), the nuclei of single cells are precipitated by centrifugation
after cell membrane lysis. While the supernatant cytosol is isolated
for Smart-seq2-like scRNA-seq, the nuclear DNA is subjected to direct
tagmentation. The latter enables direct PCR-based library preparation
for scDNA-seq, thereby circumventing the classic approach of WGA
before scDNA-seq library preparation and in part the resulting artefacts
associated with it'"">. However, these nuclear-cytosolic partitioning
methods are lessamenable to comprehensive characterization of mito-
chondrialDNAandnuclear RNA, and theyare confined to the use ofintact
cellsasinput. Furthermore, plate-based assays such as G&T-seq, tran-
scriptogenomics, SIDR-seqand DNTR-seq areinherently low through-
putand, despite (partial) automation on liquid-handling robotics, still
require up to afew days’ time®. To circumvent this, integrated on-chip
microfluidics approaches have been devised that enable separation
and parallel processing of cytosolic RNA and nuclear DNA'*". Such
systems largely avoid theintroduction of operator bias, can miniaturize
thereactions and hencereduce reagent costs, and have the capacity to
increase throughput, although this remains to be shown.

Another set of methods relies on a preamplification-and-split
approach for uncoupling DNA and RNA molecular analytes (Fig. 2c).
In DR-seq"® (Supplementary Fig. 1d), poly(A) RNA-derived first-strand
cDNAissubjected to quasilinear amplification together with the gDNA
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Fig.1| Timeline of single-cell and spatial multimodal methods. In addition

to the year of publication, other key features of the methods are indicated.

For single-cell multi-omics assays, this includes the nature of molecular analytes
they analyse as well as the method used for cell barcoding. For spatial multi-omics
assays, thisincludes the resolution, sample type, order and number of analytes

that can be profiled simultaneously. FFPE, formalin-fixed paraffin-embedded;
IVT, invitro transcription; MATQ, multiple annealing and dC-tailing-based
quantitative single-cell RNA-seq; STRT: single-cell tagged reverse transcription
sequencing; RT, reverse transcription; TdT, terminal deoxynucleotidyl
transferase; TELP, tailing extension ligation and PCR.

inasingle tube. This reactionis then split, with both aliquots containing
preamplified cDNA and gDNA. Inone, the preamplified gDNA s further
PCR-amplified and converted to a sequencing library, with the caveat
that contaminating cDNA will be co-amplified and sequencedintoreads
indistinguishable from the gDNA sequences. In the sister reaction, the
cDNA is further amplified using in vitro transcription (IVT), followed
by RT and PCR. Because only the cDNA is tagged with T7 promoter
sequence for IVT, gDNA will not be co-amplified, resulting in a 3-end
scRNA-seq library. In the more recently developed TARGET-seq",
amethod for targeted mutation detection and parallel transcriptome
characterization of the same single cells, poly(A) cDNA is co-amplified
withamutation ofinterest targeted by cDNA primers and gDNA primers
inasinglereaction. This potisthensplitto prepare the genotyping and
transcriptome sequencing libraries separately. Although DR-seq
and TARGET-seq minimize therisk of losing (deoxy)ribonucleicacidsin
comparisontoabove-described methods relying on physical separation
of DNAand RNA, they can suffer from RNA-derived reads contaminating
the gDNA analysis, and are also plate-based and low throughput.

Instead, scONE-seq” (Supplementary Fig. 1e) follows the prin-
ciple of seq-split (Fig. 2d) and differentially barcodes gDNA and RNA
through, respectively, tagmentation with a 6-nucleotide DNA-barcode-
containing adaptor and reverse transcription with a 6-nucleotide
RNA-barcode-containing RT-primer. Differentially labelled gDNA and
cDNA is then co-amplified and converted to a sequencing library in a
single-tube reaction. Following NGS, gDNA-derived and RNA-derived
reads are distinguished by their barcode sequence. This methodology
hampers sequencing RNA-seq and DNA-seq libraries separately to
optimal depths and is plate-based and low throughput, but indicates
that relatively simple one-tube reactions are possible for multi-omics
measurements of single cells.

Recently, ahighly scalable plate-based technology was established
based on the principle of single-cell combinatorial indexing (Fig. 2e)
withathree-levelindexing scheme and combined with linear IVT-based
amplification of the cells’genome and transcriptome (Supplementary
Fig.1f). This sci-L3-RNA/DNA co-assay enables analysis of at least tens of
thousands of single nuclei, with the possibility toincrease the through-
put to more than 1 million cells profiled per experiment?. Proof of
conceptof sci-L3-RNA/DNA was presented on mixtures of male mouse
andfemale human cell lines, proving that the single-cell transcriptomes
wereorganized into the two expected cell clusters and that the matching
single-cell genomes were of the correct sex, although high-sensitivity
and high-resolution profiling per cell was not demonstrated.

The study of both the genome and the transcriptome of the same
cell enables one to unambiguously investigate theimpact of acquired
DNA mutations, such as DNA copy number aberrations, on gene
expressioninthe same cell. This hasimportant applications for under-
standing intratumoural heterogeneity, enabling the investigation of
the development of different phenotypic cancer cell statesamongthe
different genetic subclones that arise, or even within a single genetic
subclone. For instance, DNTR-seq identified minor subclones having
genetic copy number alterations with associated transcriptional per-
turbations in paediatric acute lymphoblastic leukaemia'*. Additionally,

transcriptional signatures of the WNT pathway activation learned from
scRNA-seq could be explained by mutations detected in the scDNA-seq
data from the same cells”. Furthermore, using tumour model sys-
tems exposed to treatment, or direct longitudinal sampling of patient
tumour specimens before and during treatment, and analysing them
by single-cell genome-plus-transcriptome sequencing will allow inves-
tigation of which genetic subclones are more fit to tolerate the drug
selection. Additionally, it will allow the study of how cells within these
genetic subclones putatively apply cell plasticity to change their gene
expressionrepertoire and accommodate different phenotypic cancer
cell states able to withstand drug treatment and, eventually, acquire
resistance”. Inturn, these approaches might enable the identification
of potential cancer cell vulnerabilities, such as druggable molecular
playersinvolvedinthe acquisition of drug tolerance.

Beyond the field of oncology, these multi-omics methods are
important for understanding the pathogenesis of other disorders in
whichsomaticgeneticvariation playsaputativerole, includinginneuro-
logical disorders such as Alzheimer disease, Parkinson disease and
others* . With therecent discovery that normal tissues are also sub-
jectedtoanextraordinary amount of mutation, technologies enabling
the analysis of the genome and transcriptome of the same single cells
willbeimportant to study therole orimpact of acquired mutations on
phenotypicand functional cellular states, and how these in turnimpact
development?®, cellular competition between normal and genetically
aberrant cells”, tissue homeostasis, normal phenotypic variationand
ageing”. The power of multi-omics methods inthis respectisillustrated
by the detection of different transcriptional responses to acquired
DNA copy number aberrations®”'*'® and other forms of mutations’.
Forinstance, it was shown using DNTR-seq that structural DNA imbal-
anceslead tobothlinear and nonlinear transcriptional dosage effects,
whereby several genes important for cancer cell growth, such as MYC
and TCF7L2, demonstrated strong dosage compensation and were
shown to be mostly unaffected by copy number alterations™.

Single-cellgenome-plus-transcriptome sequencingisalso a valu-
abletool to study the efficacy and safety of genome editing in germline
therapy. CRISPR-Cas9 genome editing has potential as a therapeutic
tool for the correction of disease-causing mutations. Genome editing
of human embryos or germ cells provides the means for introducing
heritable genetic alterations, which may reduce the burden of genetic
disease in specific familial situations®. Its use is currently a hot topic
of international debate around ethics, safety and efficacy. Single-cell
genome-plus-transcriptome sequencing approaches will be pivotal
to assess on-target and off-target genome edits plus cell phenotypic
consequences, as only a few cells are available for analysis from the
treated and subsequently in vitro-cultured human embryo. Recently,
OCTH4 (also known as POUSFI) CRISPR-Cas9-targeted and control
human preimplantation embryos were investigated using single-cell
G&T-seq’** as well as single-cell or low-input mono-omics DNA-seq.
Regions of loss of heterozygosity in genome-edited cells that spanned
beyond the OCT4 on-targetlocus, as well as segmental loss and gain of
the OCT4-containing chromosome 6, were detected in the genomic
data, which collectively resulted in unintended genome edits being

Nature Reviews Genetics | Volume 24 | August 2023 | 494-515

497


http://www.nature.com/nrg

Review article

a Single cell b Single cell Cc Single cell
Complete cell lysis Lysis of the cell membrane, Complete cell lysis
DNA and RNA released but not of the nuclear membrane DNA and RNA released
DNA
,r\/v ~ ~— —~ ~—
RNA ™y & b

Physical separation of
poly(A) RNA from dsDNA
using oligo-dT-coated beads

7\

~——

~——
~—

Supernatant aliquot

| ! |

RNA-seq library DNA-seq library RNA-seq library

Principle 1: physical separation

G&T-seq; transcriptogenomics; scChaRM-seq; scNMT-seq

d Single cell

DNA and RNA released

DNA
‘»““““ﬁi& RS

RNA & ™ s

l Whole-cell lysis

Differential barcoding of DNA and
RNA and joint library preparation

DNA barcode —smmmms—DNA
RNA barcode —smmmms—RNA

NGS

Sequencing reads

RNA barcode DNA barcode

RNA reads DNA reads

Principle 3: seqg-split
scONE-seq; scDam&T

identified in ~16% of the human embryo cells analysed. The transcrip-
tome data suggested that the loss of heterozygosity does not lead to
the misexpression of other genes adjacent to the OCT4locus.
Furthermore, genome-plus-transcriptome sequencing
approaches allow genetic variation detected in DNA sequences to be
confirmed in the RNA sequences of the same cell, increasing the reli-
ability of the genotyping call’>*, This principle has been shown for the
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detection of single nucleotide variants contained within expressed
genes, forms of structural variation resulting in the expression of
fusion genes, and copy number variants resulting in gene expres-
sion dosage effects. The genomic and mitochondrial DNA variants
detected by genome-plus-transcriptome sequencing approaches,
considering potential imperfections”, can furthermore be leveraged
for the construction of a genetic lineage tree of the cells, which can
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Fig.2| The four general principles for multi-ome measurements from

single cells. All principles are visualized with RNA and DNA as example analytes.
Principle 1is based on physical separation of the distinct molecular analytes
(partsa,b). a, Following complete lysis of the isolated cell or nucleus, poly(A)
RNA hybridizes to oligo-dT-coated paramagnetic beads, and following magnetic
pulldown, the supernatant that contains the genomic DNAis transferred to a
new reaction vessel”. Alternatively, biotinylated nucleotides are incorporated
into RNA-derived cDNA, allowing their capture with streptavidin-coated
paramagnetic beads (not shown)*’. Advantages include flexibility in down-
stream processing of DNA and/or RNA and compatibility with intact cells and
nuclei from fresh and frozen tissue. Disadvantages include potential loss of
RNA and/or DNA molecules during physical separation. b, Inan alternative
approach, lysis conditions that rupture the cell but not the nuclear envelope
allow separation of nuclear from cytoplasmic molecular analytes, either by
precipitating the nucleus with centrifugation or magnetic pulldown followed
by aspiration of the cytosolic supernatant™'* or by microfluidic-controlled
nucleus-from-cytoplasm separation'®”. Advantages include flexibility in
downstream processing of DNA and RNA and availability of non-poly(A) RNA.
Disadvantages include loss of nuclear RNA plus some cytoplasmic RNA during
nuclear-cytoplasmic separation, loss of mitochondrial analytes, need for intact
single cells, incompatibility with frozen tissue and likely incompatibility with
mitotic cells (in which the nuclear envelope disaggregates). ¢, In principle 2,
termed preamplification and split, distinct analytes are differentially tagged
andjointly preamplified, followed by splitting the preamplification reaction for

analyte-specific sequencing library preparations'®. Advantages include minimal
risk of analyte loss and compatibility with intact cells and nuclei from fresh and
frozentissue. Disadvantages include limited flexibility, as the preamplification
protocol needs to be suitable for all analytes of interest, and risk of cross-
contaminating molecular analytes. d, Principle 3, termed seq-split, involves
analyte-specific barcoding and sequencing library preparation in a single-pot
reaction’’. Multi-omicinformation is uncoupled computationally following
sequencing. Advantages include minimal risk of analyte loss and compatibility
withintact cells and nuclei from fresh and frozen tissue. Disadvantages include
that libraries cannot be sequenced separately to optimal depth for each modality,
and potential risk of cross-contaminating molecular analytes. e, In principle 4,
termed combinatorial indexing, molecular analytes of single cells are tagged
without isolating single cells*. Multiple cells or nuclei are deposited per well of a
multi-well plate, whereby each cell or nucleus serves as areaction container. Each
receives an analyte-specific tag and a well-specific barcode. By pooling, mixing
and randomly re-distributing the cells or nuclei in subsequent rounds of well-
specific barcoding, molecular analytes uniquely barcoded per cell are obtained.
Combination with concepts of principle 2 and/or 3 achieves single-cell or single-
nucleus multi-omics. Advantages include that there is no need for isolating
single cells, ability to achieve extremely high throughput, and compatibility with
intact cells and nuclei from fresh and frozen tissue. Disadvantages include typically
lower sensitivity, risk of analyte loss and limited flexibility in whole-genome and
whole-transcriptome amplification protocols. dsSDNA, double-stranded DNA;
NGS, next generation sequencing; poly(A), polyadenylated.

be annotated with cell type and functional phenotypic states of cells
using the RNA sequencing data of the same cells. As an alternative to
analysing naturally occurring somatic mutations, high-throughput
methods relying on CRISPR-scarring are available in model sys-
tems’?, which through recent improvements may enable accurate
lineage recording as well as the capturing of ancestral transcriptional
states®**. In combination with scRNA-seq readouts, these promise to
revolutionize our understanding of cellular differentiation trajectories.

Single-cell epigenomics-plus-transcriptomics

Advances in the past few years have also moved the mark for meth-
ods that can profile a cell’s epigenome and transcriptome in parallel
(Fig.1). Aswithmethods analysing the genome and transcriptome, their
original designs relied on the physical separation of RNA from DNA
or the nucleus, and the subsequent profiling of these separated frac-
tions. Morerecently, methods for the differential marking of RNA and
epigeneticinformationencoded in DNA have been described, relying
on the separation of reads originating from both through restriction
digestion, PCR or molecular barcoding. These later methods do not
require upfront separation and are therefore more readily parallel-
ized in higher throughput, via preamplification and split, seq-split or
combinatorial indexing principles (Figs. 2 and 3).

Most known layers of epigeneticinformation, including DNA meth-
ylation, chromatin accessibility, histone modifications, and binding
oftranscription factors (TFs) and chromatin remodelling complexes,
can be recovered from single cells in parallel to the transcriptome.
Such methods abound but range in sensitivity, specificity and ease of
use (Fig.1). The presence of epigenetic modifications canbe read either
directly from the DNA sequence, asis the case for DNA methylation, or
indirectly by first encoding themin the sequence through DNA methyl-
ationand/or tagmentation. We discuss the latter approach first, as this
strategy is most widely used.

Tagmentation-based methods come in a wide range of types.
Most common are methods thatjointly profile the transcriptome and

chromatin accessibility (Fig. 3). Here, accessible DNA is recovered as
transposon-insertion-flanked regions using an assay for transposase-
accessible chromatin (ATAC). Examples include scCAT-seq™ and
Smart3-ATAC*, which are plate-based; sci-CAR-seq*, SHARE-seq*®,
SNARE-seq2* and Paired-seq*° (Fig. 3a,b), which rely on combinatorial
indexing; SNARE-seq**, ASTAR-seq**and the commercially available
10x Genomics Multiome technology, which rely on microfluidics for
cell barcoding (Fig. 3c); and ISSAAC-seq, which is amenable to both
plate-based and microfluidics-based cell barcoding****. scGET-seq rep-
resents an unusual type of such methods, profiling both accessible and
inaccessible chromatin but not the transcriptome™®. Important features
tobe consideredin tagmentation-based method selectioninclude the
ease of use of commercially available methods, the higher throughput
of combinatorial indexing-based methods, the typical lower cost (but
difficulty of establishment) of non-commercial, laboratory-developed
methods, and the coverage, sensitivity and specificity obtained across
cellular modalities. A systematic benchmark of these methods is
unfortunately currently lacking. In most methods, transcriptome and
accessible chromatin libraries are prepared in a common reaction
andseparated after indexing using magnetic beads, restriction enzymes
or specific PCR primers (Fig. 3). A key advantage of the joint profiling
of transcriptome and chromatin accessibility is that the link between
gene expressionand TF binding is more readily evaluable. In hair follicle
cells, for example, SHARE-seq analyses of differentiation trajectories
revealed TFs becoming expressed, with their activity being revealed
in ATAC profiles later in pseudotime as binding sites became accessi-
ble, before expression of the associated target genes™. As such, these
multi-omic analyses in dynamic systems enable TF activity to be read-
ily assigned to target genes. The ease of use of some of these methods
hasspearheaded their applicationinbiomedicine and other domains.

However, the aforementioned methods quantify open chromatin
without addressing the causes of accessibility changes, such as shifts
in histone post-translational modifications (PTMs) or TF binding. To
tackle this limitation, other methods have been developed in which
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Fig.3|Selected tagmentation-based methods for single-cell multi-omic
analyses. Summaries of experimental workflows highlighting how and in what
order different modalities are probed and separated for analysis, while retaining
single-cell information. Shown are SHARE-seq’® (part a), Paired-seq2*° (partb,
left) and Paired-Tag*® (partb, right), SNARE-seq® (part ¢) and TEA-seq™ (part d).
In allmethods shown, an assay for transposase-accessible chromatin (ATAC)
precedes reverse transcription (RT) of polyadenylated RNA. Cell barcoding
canoccur through successive rounds of combinatorial indexing (parts a,b) or
by compartmentalizing cells and barcoded oligonucleotides in microdroplets
(parts c,d). DNA fragments originating from mRNA and DNA can be separated

by binding to paramagnetic beads (part a), differential restriction digestion
(partb) or using specific PCR primers (parts c¢,d). Part b illustrates how similar
workflows can either map accessible chromatin (left) and chromatin-associated
proteins or their post-translational modifications (right). TEA-seq illustrates
thatbarcoded oligonucleotides conjugated to antibodies can be detected using
approaches similar to those developed for measuring gene expression. cDNA,
complementary DNA; ChIP-seq, chromatinimmunoprecipitation followed

by sequencing; RNA-seq, RNA sequencing; TdT, terminal deoxynucleotidyl
transferase; TSO, template-switching oligonucleotide; UMI, unique molecular
identifier.

tagmentationis not randomly targeting accessible regions but directed
towards specific histone PTMs or TFs. Conjugating the transposase to
specific antibodies enables joint profiling of transcriptome and
epitopes. Cell and modality barcoding can also occur through DNA-
RNA separation, preamplification and split, seq-split or combinatorial
indexing principles (Fig.2), with transcriptome and DNA libraries being
separated by restriction enzymes, PCR or beads. Examples of such
methods include scPCOR-seq*¢, coTECH", Paired-Tag (Fig. 3b)** and
scSET-seq". scCUT&Tag2for1*° and scMulti-CUT&Tag" are distinct vari-
ations onthese methods, involving two epitopes being targeted using
differentantibody-conjugated transposases. The distribution of both
epitopesinasingle cell canbelearned fromtheir different genomic dis-
tributions (for example, broad or narrow peaks) in scCUT&Tag2for1*°,
or from epitope-specific barcoding enabled by transposases loaded
with different oligonucleotides in scMulti-CUT&Tag"'. A potent illus-
tration of these methods was the profiling of mouse brain cells for
both transcripts and different histone modifications using Paired-Tag,
whichidentified distinct categories of genes each regulated by different
epigenetic mechanisms*®.

Epigenetic information can also be read through DNA methyla-
tion profiling, relying either on 5-methylcytosine (5mC) or Né-meth-
yladenine (6mA) (Fig. 4). 5SmCis a prevalent endogenous epigenetic
modification of DNA, found almost exclusively in a CpG context, that
represses ectopic and heterochronic gene transcription initiation.
In the most basic approach, endogenous 5SmC DNA methylation is
quantified in single cells by bisulfite sequencing. Key issues preclud-
ing more widespread adoption of single-cell 5SmC analyses are the
costsassociated with library preparation and whole-genome sequenc-
ing, as well as the technical complexity. Indeed, bisulfite treatment
of DNA causes its denaturation and fragmentation, and comes with
aneed for purification, leading to DNA losses. Library preparation
can occur either through random-priming-based methods, such
as post-bisulfite adapter tagging (PBAT), which is costly but yields
genome-wide profiles covering 5-50% of the genome, or through
reduced-representation bisulfite sequencing (RRBS), which is more
cost-effective but only covers1-3% of the genome. Recent evolutionsin
less destructive DNA methylome analytics and target capture may serve
to develop more attractive workarounds®>**, DNA methylation profiled
on its own through single-cell DNA sequencing enables concomitant
chromosomal copy number profiling. More often, DNA methylomes
are profiled together withacell’s transcriptome, chromatin structure
and/or chromatin accessibility.

Methods that produce transcriptome profiles alongside targeted
DNA methylome profiles —asinscMT-seq, scTrio-seqand Smart-RRBS —
or genome-wide DNA methylome profiles —asin scM&T-seqand scTrio-
seq2 — have been established**®. These typically involve physical
separation of DNA and RNA (Fig. 2a,b).

Endogenous CpG DNA methylationis often assessed in conjunction
with chromatin accessibility. For this,a GpC methyltransferaseisadded
to isolated nuclei where it can methylate open-chromatin-associated
accessible DNA (Fig.4a,b). Subsequent bisulfite sequencing can disclose
the methylated GpC dinucleotides that mark these accessible regions,
in addition to the endogenous methylation that in most cell types is
nearly exclusive to CpG dinucleotides. GpC methylase-based meth-
ods show higher coverage per promoter than ATAC-based methods*,
albeit at substantially higher sequencing cost per cell, and make it easier
to distinguish open from truly closed regions, which are not directly
detectedinthe sparse scATAC-seqsignals. Alimitation relative toregular
DNA methylome analyses is that at cytosines flanked on bothsides by a
guanine, methylation can be attributed to endogenous as well as exog-
enous processes. These are discarded from analyses. Relevant methods
include scCOOL-seq®’, iscCOOL-seq®' and scNOME-seq®, which jointly
profile accessibility and DNA methylation, and trimodal methods such
as scNMT-seq’’, scNOMeRe-seq®, scChaRM-seq®* and snmCAT-seq®,
whichin addition uncover gene expression profiles from the same cell
(Fig.4a,b). Allare plate-based assays and based on DNA-RNA separation,
apart fromsnmCAT-seq, whichis seq-split based (Fig. 2d; Fig. 4b).

Noteworthy alternatives that do not profile transcriptomes are
snm3C-seq®® and scMethyl-HiC*, as they profile the DNA methylomein
parallelto higher-order chromatin structure (Fig.4c). Here,a3C or HiC-
like single-cell method to capture nuclear organization is combined
with bisulfite conversion, to enable joint profiling of DNA methylation
and chromatin structure®®®, Methods that jointly also capture the
transcriptome have yet to be described.

Despite being challenging techniques, the multi-omics nature of
the resultant data enables a very in-depth analysis of cells, revealing
hierarchies of changes to the epigenome and transcriptome during
development, differentiation or pathogenesis. For example, stages
of mouse gastrulation were profiled using scNMT-seq, which demon-
strated that DNA methylation and chromatin accessibility patterns at
ectodermal enhancers are pre-established in epiblast cells and stable
during ectoderm differentiation, whereas mesodermal and endoder-
mal enhancers are inactive in epiblast cells but actively remodelled
following differentiation to mesoderm or endoderm®®. Accessibility
and DNA methylation changes seemedto betightly coordinated. These
studies illustrate that multi-omics profiling of single cells for tran-
scriptomic and epigenetic layersis feasible and provides fundamental
insights unattainable using mono-omics methods.

Apart from methylated cytosines, methylation of adenines to
6mA can also be profiled in DNA (Fig. 4d). In contrast to 5SmC, 6mA is
an ultra-rare base in mammalian DNA® and can thus provide nearly
unambiguous DNA marking when artificially introduced. Typically,
a prokaryotic DNA adenine methyltransferase (Dam) is used to
methylate adenines in GATC context for DNA-sequence encoding of
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Fig. 4 |Selected DNA methylation-based methods for single-cell multi-

omic analyses. Summaries of experimental workflows highlighting how and
inwhat order different modalities are probed and separated for analysis, while
retaining single-cell information. Shown are scNMT-seq* (part a), snmCAT-seq®
(partb), scMethyl-HiC* (part ¢) and EpiDamID with scDam&T-seq” (partd). In all
methods shown, several types of epigenetic information can be discerned from
asingle sequencing library: DNA methylation and accessibility (part a), DNA
methylation, accessibility and gene expression (part b), DNA methylation and
chromatin conformation (part c), and histone modifications and transcription
(partd). These layers of information can be discriminated by analysing DNA
methylation patterns (parts a,b), DNA methylation and read-pair mapping
(partc) or read-associated barcode tags (part d). Only scNMT-seq (part a)

involves physical separation of modalities to be probed (mRNA from intact
cells). Each of these methods is plate-based and therefore restricted in its
throughput. DNA methylation patterns can be read using bisulfite conversion

of unmethylated cytosines to uracil (U) (parts a-c) or methylation-sensitive
restriction digestion (part d), and reflect endogenous methylation alone (partc),
endogenous methylation as well as exogenously added methylation reflecting
chromatin accessibility (parts a,b), or endogenous adenine methylation added
after genetic transformation (partd). cDNA, complementary DNA; Dam, DNA
adenine methyltransferase; FACS, fluorescence-activated cell sorting; gDNA,
genomic DNA; SmCTP: 5-methyl-deoxycytidine triphosphate; NGS, next-
generation sequencing; RT, reverse transcription; T7, T7 promoter; TdT, terminal
deoxynucleotidyl transferase; TSO, template-switching oligonucleotide.

epigenetic information. Dam can either be expressed to mark acces-
sible chromatin’”? or be tethered to endogenously expressed pro-
teins using insertion mutagenesis to mark their binding sites in live
cells. Two DNA-RNA separation-based methods applying adenine
methylation to 6mA have been described: scDam&T-seq, with Dam
tethered to chromatin-associated proteins to mark their nuclearloca-
tion (DamID)’°, and scDam&T-seq with EpiDamID, in which Dam is
tethered to protein domains or nanobodies that recognize PTMs”
(Fig. 4d). As 6mA cannot be detected directly through short-read
sequencing, quantification is relative, relying on Dam activity and a
6mA-specific restriction digest. In contrast to the other chromatin
profiling methods described above, the resulting profiles typically
reflect the aggregate of residence times of the proteins marked, lead-
ing to better signal-to-noise ratios but poorer temporal resolution. The
reliance on endogenous tethering limits the scope of these methods to
systems amenable to transgenesis. Interestingly, it extends their scope
beyond only those proteins for which a specific antibody is available,
and at least scDam&T-seq enables a method of analysing chromatin
occupancy that is orthogonal to antibody-based methods. Addition-
ally, these methods may suffer less from the bias towards accessible
chromatin that characterizes transposase-based tagging approaches.
Interestingly, these methods share several features with Fibre-seq-
based approaches™, inwhich chromatin patterns are read through 6mA
marking using single-molecule long-read sequencing. Combining both
methods may thus facilitate high-throughput, haplotype-resolved and
cell-type-specific characterization of chromatin structures in bulk.

Single-cell omics plus low-plex profiling of another analyte

Aside from profiling multiple comprehensive omics layers from the
same cell, substantial progress was recently made in profiling single
cells comprehensively for a single analyte and in a less comprehen-
sive (low-plex) manner for another analyte. Most common among these
methods are those quantifying the cell’s transcriptome and/or acces-
sible genome, alongside a limited set of cell surface or intranuclear
proteins. These methods typically rely on antibodies tagged with a spe-
cific barcoded oligonucleotide, which can be captured and amplified
alongside the transcriptome. Using mixes of dozens to hundreds of such
barcoded antibodies that each recognize specific epitopes, subsequent
barcode counting thus enables quantification of multiple proteins of
interestinsingle cells alongside true omics analysis. Such methods ena-
blethe profiling of proteinabundancesinadditionto gene expression or
other modalities, but canalso capture other information about proteins
such as protein stability, PTMs and protein isoform expression. Omics
layers shown tobe amenable to thisinclude the transcriptome (REAP-
seq”, CITE-seq”,inCITE-seq’’, SPARC’®, ECCITE-seq’” and RAID-seq®°),
open chromatin (ASAP-seq® and ICICLE-seq®) or both (DOGMA-seq®

and TEA-seq®), as well as chromatin modifications (scCUT&Tag-pro®)

(Fig.3d). Epitopes available for profiling are mostly limited to the cell
surface, although methods for intracellular (SPARC’ and RAID-seq*°)
andintranuclear (inCITE-seq”” and NEAT-seq®) epitopes have also been
developed. Note that any plate-based method can theoretically also
leverage antibody marking and cytometry to quantify a limited set of
proteins per cell. A notable alternative approach (PHAGE-ATAC) was
described recently inwhich barcoded phages that display ananobody
servetobind cell surface epitopes®. The barcoded phage genomes can
be quantified in conjunction with genome-wide chromatin accessibility
profiles. Each of these methodsiis currently limited by the availability of
specificantibodies or nanobodies, and although mass spectrometry-
based methods for proteome-wide analysis of single cells have been
developed®, such analyses alongside other omics layers are currently
lacking. A related method recently described is single-cell transcrip-
tome and translatome sequencing (T&T-seq), inwhich cells are sorted
into plates and lysates are distributed for total RNA-seq and for affinity
purification of actively translating ribosomes. T&T-seq thus enables
joint profiling of all transcripts and those transcripts that are being
translated into proteins®.

Finally, other molecular features have also been shown to accom-
modate barcoding, withguide RNAs as akey example. In cells express-
ing CRISPR-based gene editing, activation or inactivation systems,
feature barcoding methods enable high-throughput profiling of the
transcriptome or accessible chromatinin pools of single cells subjected
to high-throughput genetic perturbation screens. Examples include
CROP-seq, in which the guide RNA sequence is directly determined
alongside the cell’s transcriptome®®, and CRISP-seq® and Perturb-
seq’®”, inwhich eachguide RNA has aunique barcode that is sequenced
alongside the transcriptome. The latter two methods have lower speci-
ficity, as recombination can blur the link between barcode and guide
RNA, and more recentimplementations of Perturb-seq therefore apply
direct guide-RNA sequencing. Methods to profile the impact of such
perturbations on chromatin accessibility include CRISPR-sciATAC??,
Perturb-ATAC” and Spear-ATAC®. Recently, this approach was applied
at scale when millions of single-cell transcriptomes were analysed,
with each expressed gene inactivated in a subset of these cells. This
strategy revealed the effect of inactivation of each expressed gene
on the expression of all other genes, and thus represents a valuable
resource for theinsilico modelling of genetic perturbations’. Notably,
asimilar approach canbe deployed to characterize gene interactions”.
Here, cells are transfected with, on average, two different guide RNAs
fromapool, generating pools of double-knockout cells. The combined
impact of both perturbations can then be compared with the impact
of single perturbations, providing direct quantification of amatrix of
geneticinteractions.
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Box 1

Principles of spatial mono-omics methods for spatial multi-omics

developments

Methods for spatial mono-omics have progressed tremendously

in the last decade with excellent reviews existing for spatial
transcriptomics'®""""'3, (epi)genomics'®®"”, proteomics®*'®” and
metabolomics'®®'”®. Here, we briefly highlight the basic principles of
the approaches that currently form the basis for most ongoing spatial
multi-omics developments.

Array-based spatial transcriptomics

These approaches allow for transcriptome-wide profiling through
capturing of polyadenylated (poly(A)) RNA transcripts released from
fixed and permeabilized tissue sections, making use of thousands
of arrayed and spatially barcoded oligo-dT spots (for example,
Spatial Transcriptomics'’®’® and 10x Genomics Visium'®), uniquely
DNA-barcoded beads (for example, Slide-seq'”” and HDST"®) or
even barcoded DNA nanoballs (for example, Stereo-seq”’) on a
slide surface. Following reverse transcription into barcoded cDNA
and library preparation, gene expression is spatially profiled by
addressing the barcoded next-generation sequencing (NGS)
reads to specific locations within the imaged tissue section.

Microfluidic deterministic barcoding strategies

These methods (including DBiT-seq'?®, spatial-ATAC-seq'”’ and spatial-
Cut&Tag'®) allow high-resolution NGS-based spatial (multi-)omics
profiling. By serially attaching two polydimethylsiloxane (PDMS)
microfluidics chips with equidistant microchannels perpendicular to
each other on a pre-fixed tissue section, two sets of channel-specific
DNA barcodes (A1-N and B1-N) can be delivered to the tissue surface
for barcoding of captured poly(A) transcripts, proteins or epigenomic
information. This yields a 2D map of pixels on the tissue with unique
barcode combinations (AB) at the channel crossflows to spatially
allocate barcoded NGS reads for the analytes of interest.

DNA antibody tags

This approach allows protein targeting and spatial mapping via NGS
by using polyadenylated antibody-derived tag-conjugated antibodies,
derived from single-cell CITE-seq’®. These antibodies linked to DNA
sequences with an antibody-specific barcode and a poly(A) tail are
compatible with the capture-based array or microfluidic deterministic
barcoding approaches above, for spatial (co-)profiling of proteins

by NGS. Alternatively, next to the imaging-based methods that rely
on cyclic fluorescent antibody stains for the identification of up

~60 protein targets in tissue sections (such as seqlF'®°, CyclF’®' and
MILAN'®?), antibodies labelled with DNA barcodes can be identified

Spatial multi-omics methods

Methodologies for spatial multi-omics are developing rapidly to allow
the study of different molecular analytes at up to subcellular resolution
within their native tissue context (Fig. 1). Spatial multi-omics technolo-
gieswere listed by Nature as one of the seven technologies towatchin
2022°, with the basis for their development and ongoing innovations

through cyclic hybridization and imaging of fluorescent readout
sequences or with fluorescent detection during oligosequence
amplification (for example, CODEX™® and immuno-SABER'™®%).

Multiplex smFISH

Multiplex single-molecule fluorescent in situ hybridization (smFISH)
methods allow imaging of thousands of gene transcripts and
genomic loci in single cells with high accuracy and subcellular
resolution, to enable single-molecule detection of RNAs in their
native tissue context and characterize chromosomal structure and
organization. With the most advanced methods (such as MERFISH™"™
and seqFISH+"*"®%), predefined optical barcoding schemes are
assigned and imprinted onto oligonucleotide targets using a library
of encoding probes. Each encoding probe contains a region targeting
the sequence of interest and variable distinct readout sequences

in multiple copies. After encoding probe binding, detection of

the imprinted barcodes is achieved through multiple rounds

of fluorescent readout probe hybridization, high-resolution imaging
and signal quenching.

In situ sequencing

In situ sequencing (ISS) methods allow high-throughput spatial
mapping of transcripts and genomic loci in single cells. Both
targeted and untargeted approaches (for example, ISS'®, ExSeq'*
and FISSEQ'®"®%) exist for transcript identification, in which highly
specific padlock probes are hybridized to in situ-synthesized cDNA
sequences, followed by probe ligation and rolling circle amplification
(RCA) of either the barcoded probe sequences or short sequences
of the cDNASs, to generate micrometre-sized RCA products within
cells that are decoded using in situ imaging-based sequencing-by-
ligation. OligoFISSEQ"® methods also allow genome-wide targeting
of genomic loci.

Mass spectrometry imaging

Mass spectrometry imaging (MSI) is an alternative to the antibody-
based approaches for spatially characterizing not only proteins

or peptides but also other small biomolecules, such as lipids,
metabolites or sugars, in tissue sections. Samples are systematically
scanned by light or particle beams ionizing the surface biomolecules
and making them accessible to time-of-flight (TOF) mass
spectrometry for identification. Matrix-assisted laser desorption/
ionization (MALDI) MSI methods enable spatial metabolome
characterization in tissue sections at (near) single-cell resolution'”.

being arange of established spatial mono-omics methods (Box 1). Spa-
tialmulti-ome characterization of asample, usually afixed fresh-frozen
or formalin-fixed paraffin-embedded (FFPE) tissue section, is often
achieved by combining these spatial mono-omics methods. They can
beapplied separately on adjacent tissue sections, serially on the same
tissue sectionifthe quality of the different analytes can be maintained,
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orinparallel onthe sametissue sectionifjoint targeting and reading out
ofthedifferent analytesis possible. The number of target analytes that
canbeanalysed simultaneously at the different molecular levels varies
between methodologies (Fig.1). Often spatial omics measurements are
also supplemented with histological stains, such as H&E (haematoxylin
and eosin) staining, of the same or adjacent tissue sections, allowing
integration with additional morphological annotations.

Spatial multi-omics via adjacent-section strategies

The application of spatial assays for different mono-omics layers of
interest (Box 1) on adjacent or serial sections from the same tissue
sample enables these techniques to be assayed in their most optimal
setting and their data to be integrated computationally (Fig. 5a). This
requires sample collection and preparation procedures compatible
with all assays of interest, well-thought-out experimental design and
good assay coordination. This strategy is mostly required when multi-
omics readouts of interest are not possible yet or suboptimal on the
same section. Mass spectrometry imaging (MSI) methods”, for exam-
ple, canbe used for spatial metabolome characterization of small bio-
molecules such as lipids (Box 1), but cannot easily be combined with
other spatial genome, transcriptome or proteome readouts on the
same section owing to specific sample preparations and limitations
(forexample, the need for matrix depositionin MSI”7, OCT compound
embedding complicating mass spectrometry’® and inherent break-
down of lipids during potential upfront assays). Conversely, MSl is
compatible with H&E staining on the same section, which can also be
leveraged for computational integration with other spatial assays.
Additional serial sections can also be dissociated into single cells or
nuclei for generating matched single-cell sequencing data that can
be used for optimal deconvolution of the spatial data and additional
dataintegration (Fig. 5a). As such, acombination of different single-cell
sequencing and spatial transcriptomics and proteomics approaches
was applied and integrated to assemble an atlas of healthy and obese
murine and human livers and to map hepatic macrophage niches”.
Disadvantages of this approach are that not all assays are compatible
with all sample types (for example, fresh-frozen versus FFPE), that it
suffers from sample heterogeneity, as even adjacent sections will dif-
ferslightly as to structure and cellular composition, and that different
spatial assays may have different resolutions. Although computational
tools exist that can compensate for these challenges (see below), the
concordance between sections is never unambiguous. Hence, innova-
tive methods enabling spatial multi-omics measurements on the same
tissue sections have started to emerge.

Spatial (epi)genomics-plus-transcriptomics

The possibility for simultaneous unbiased profiling of chromatin acces-
sibility or specific histone modifications and gene expression on the
same tissue cryosections has been described for spatial ATAC&RNA-
seqand spatial CUT&Tag-RNA-seq, respectively'*’. These methods are
based on combining microfluidic deterministic barcoding in tissue
(DBIT) strategies (Box 1) for spatial-ATAC-seq'” or spatial-CUT&Tag'"*
with DBiT-seq poly(A) transcript profiling'*® (Fig. 5b). For capturing
chromatin accessibility, accessible gDNA is first tagmented in situ
with a universal ligation linker. For capturing specific histone modifi-
cations, the tissue is first incubated with primary antibodies against
the epigenetic marks, followed by a secondary antibody that allows
protein A-transposome tethering for tagmentation of the DNA at
these specific locations. Combined mapping of the transcriptome
is achieved by hybridizing a biotinylated oligo-dT that also contains

auniversal ligation linker and primes RT in situ'®® (Fig. 5b). DBiT-seq
barcoding with serial attachment to the tissue of two microfluidics
chips with equidistant channels perpendicular to each other is then
used to administer two sets of channel-specific barcodes (Box 1), with
the first set‘A’ligating with the universal ligation linkers present on the
tagmented DNA and poly(A) mRNA-derived cDNA, and the second
set ‘B’ ligating to the set ‘A’ barcodes, resulting inaninsitu2D grid with
uniquely barcoded AB crossroads (20-25-um pixels)'°°. The spatially
barcoded gDNA and cDNA fragments are collected by reverse crosslink-
ing, cDNAis enriched with streptavidin-coated magnetic beads, gDNA
isretained in the supernatant,and NGS libraries are constructed sepa-
rately for sequencing (Fig. 5b). Based on the spatial barcodes, sequenc-
ing reads are combined with microscopy images of the tissue section,
allowing the multi-omics sequence information to be mapped spa-
tially'®°. Limitations of these assays are the near-single-cell resolution
(20-25-pum pixel size), the small analysable area (2,500-10,000 pixels),
theuncharacterized spacesin between adjacent pixels (depending on
channel distances) and the expertise that is required in fabricating
and handling microfluidics chips for implementation. Nevertheless,
these methods were successfully applied to developing mouse and
adult humanbrains, revealing how epigenetic states or modifications
regulate cell type, states and dynamics'®.

Alternatively, microscopy-based methods canenable spatial profil-
ing of genome or epigenome information together with gene expres-
sionby directlyimaging DNA loci, chromosomal and nuclear structures,
and transcripts within single cells at up to subcellular resolution. Sev-
eral methods showing imaging-based multi-omic measurements for a
limited number of combined analytes exist'**"'°°, but we focus on those
that can characterize at least one analyte layer more comprehensively.
Multiplex single-molecule fluorescent in situ hybridization (smFISH)
methods, such as MERFISH'”'°® and seqFISH'**""° approaches (Box 1),
originally designed for targeted high-sensitivity spatial profiling of
thousands of transcripts at subcellular resolution, were adapted to
allow genome-scale chromatin tracing as in DNA-MERFISH™ and DNA-
seqFISH+"?, Combined RNA, chromatin and nuclear body imaging in
the samefibroblast cells was enabled by sequentially staining for >1,100
nascent transcripts using RNA-MERFISH, followed by DNA-MERFISH for
>1,000 genomic loci, and finally fluorescent antibody readouts for cell-
cycle-state determinationand landmark nuclear structures, including
nuclear speckles and nucleoli™ (Fig. 5¢). This approach allows for the
characterization of chromatin domains, compartments and trans-
chromosomal interactions and their relationship to transcription in
single cells™. Similarly, DNA-seqFISH+imaging of up to 3,660 chromo-
somallociin mouse embryonic stem cells was shown to be compatible
withRNA-seqFISHof 70 mRNAsandintron-seqFISHof1,000genesat their
nascenttranscription active sites, as well as sequentialimmunofluores-
cencetargeting of 17 nuclear structures, including the nuclear lamina,
nucleolus and histone modification marks, using primary antibodies
conjugated with DNA-oligonucleotides detectable by fluorescently
labelled readout probes™ (Fig. 5¢). In addition to identifying hetero-
geneity in chromosome structure, this study found that many active
gene loci reside at the surface of nuclear bodies and the presence of
persistent global chromatin states™. Also, OligoFISSEQ methods allow
rapidinsitu sequencing-based visualization (Box 1) of multiple genomic
loci in single cells, with the potential for genome-wide application
and being compatible with immunofluorescence and other FISSEQ-
based methods for protein and RNA characterization, respectively™.
Although these microscopy-based methods areimportant for studying
chromosomal and nuclear structures and organization linked to gene
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a Spatial multi-omics via adjacent or serial sections
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Fig. 5| Methods for spatial multi-omics. Spatial multi-ome profiling of tissue
samples can be achieved by applying spatial mono-omics assays separately
onadjacentor serial tissue sections (part a) or inacombined way on the same
tissue section (parts b-e). a, Serial fresh-frozen or formalin-fixed paraffin-
embedded (FFPE) tissue sections can be analysed using different spatial
mono-omic assays, potentially also combining with morphological stainings
and annotations on the same or adjacent sections, followed by computational
dataintegration. b, Microfluidic deterministic barcoding strategies in tissue
allow next-generation sequencing (NGS)-based spatial multi-omics profiling

of transcriptome-plus-proteins, as in DBiT-seq'* and Spatial-CITE-seq'?, and
epigenome-plus-transcriptome, as in ATAC&RNA-seq and CUT&Tag-RNAseq'*°.
Using dual microfluidic chip-based spatial barcoding of poly(A) RNAs together
with proteins or epigenome information at the crossroads of chip channels,
aspatially barcoded 2D pixel map of the tissue is created. ¢, Advanced fluorescence
insitu hybridization (FISH)-based methods, including MERFISH'*"'%!" and
seqFISH+'9%11%12 allow microscopy-based identification of thousands of
transcripts together with genomic loci in single cells, in addition to being
compatible with limited protein readouts using fluorescent or DNA-conjugated

antibody readout strategies. These high-resolution imaging methods leverage
predefined optical barcoding schemes and complex encoding and readout
probe designs. d, Array-based assays, including Spatial Transcriptomics'® (ST)
and 10x Genomics Visium'*, make use of slides with arrayed oligo-dT spots for
capturing and spatial barcoding of poly(A) RNAs followed by NGS profiling. This
canbe combined with upfront haematoxylin and eosin (H&E) staining or limited
protein antibody staining and tissue imaging for spatial mapping. In SM-Omics'”
and SPOTS"¢, these technologies have also been shown to be compatible with
antibody-derived tag (ADT)-conjugated antibody-based co-profiling of alarger
number of proteins. e, NanoString GeoMx digital spatial profiling (DSP)"'51%12!
allows quantification of RNAs and proteins in specific regions of interest (ROIs)
by counting uniquely barcoded oligonucleotides that are covalently linked
through a UV-photocleavable linker with probes or antibodies. Tissue marker
staining, imaging, ROl selection and illumination by directed UV light causes
disintegration of the photocleavable linkers that are collected and profiled by
NGS, followed by spatial mapping to the ROIs. cDNA, complementary DNA;
gDNA, genomic DNA; OCT, optimal cutting temperature compound; UMI, unique
molecularidentifier.

expression regulation at a single-cell level, they require expertise in
complex optical barcoding schemes and high-resolution imaging
modalities, are challenging to apply in complex tissue samples, are
costly and usually can only characterize a limited area.

Alternatively, by using laser capture microdissection (LCM)-based
isolation of specific (single) cells from tissue sections, single-cell
sequencing-based genome-plus-transcriptome or epigenome-plus-
transcriptome profiling methods as described above can be applied
at spatial resolution, as was done for analysing tumour development,

metastasisand prognosisin patients with triple-negative breast cancer™.

Spatial transcriptomics-plus-proteomics

Methodologies allowing parallel spatial interrogation of both the
transcriptome and proteome are currently still limited, are often
based on serial characterization of both modalities, mostly allow
co-characterization of only a limited number of proteins and often lack
single-cell resolution. For example, the commercial array-based 10x
Genomics Visium technology for poly(A) RNA capture and spatial bar-
coding at 55-pmresolution followed by NGS identification (Box 1) cur-
rently supportsimmunofluorescence protein detection of one or two
targets onthe same fresh-frozen or FFPE tissue section, although at the
cost of the otherwise applied H&E staining used for spatial mapping'”
(Fig. 5d). However, Spatial PrOtein and Transcriptome Sequencing
(SPOTS) demonstrates that Visiumis also compatible with co-profiling
ofalarger number of proteins using polyadenylated antibody-derived
tag (ADT)-conjugated antibodies (Box 1), as was shown for 21 proteinsin
mouse spleenand breast cancer tissue cryosections”®. Similarly, Spatial
Multi-Omics (SM-Omics) shows Spatial Transcriptomics (the forerunner
of Visium with 100-pmresolution) to be compatible with DNA-barcoded
antibody and/orimmunofluorescence co-mapping of six proteins, with
the added concept of full automation using liquid-handling robotics
achieving increased throughput and performance'.

Alternatively, NanoString GeoMx Digital Spatial Profiling (DSP)
allows quantification of the abundance of RNAs and/or proteins by
countinguniqueindexingoligonucleotides, which are covalently linked
via a UV-photocleavable linker with probes or antibodies that target
transcripts or proteins of interest, respectively"®" (Fig. 5e). Whole-
transcriptome DSP assays or DSP assays for >100 protein targets are
possible, although coupled toimage-based selection of specific regions

of interest following fluorescent antibody and/or RNAscope'?® marker

stainings. Selected regions of interest are illuminated by directed UV
light, which cleaves the photocleavable linkers and releases oligonu-
cleotideindices, enabling their collection and identification using NGS.
Achieving single-cell resolution is challenging with this technology, but
the combination of both transcriptome and protein readouts on the
same sample was shown in FFPE cell pellet array sections stained with
the GeoMx Human Whole Transcriptome Atlas (WTA) probe setand a
59 GeoMx antibody panel™’.

Chip-based DBiT-seq approaches (Box 1) also allow co-mapping
of poly(A) mRNAs with proteins in tissue cryosections, as shown in
the original DBiT-seq method with ~10-pum pixel resolution and tens
of proteins co-profiled'®®, but improved upon in spatial-CITE-seq
(spatial co-indexing of transcriptomes and epitopes), in whichwhole-
transcriptome and co-mapping of ~200-300 proteins was achieved at
20-um pixel resolution'? (Fig. 5b). Both these methods employ cock-
tails of ADT-conjugated antibodies (Box 1) each bearing a poly(A) oli-
gonucleotide withan antibody-specificbarcode. The channel-specific
set ‘A’ barcodes, delivered by the first chip with equidistant channels
placed on the tissue, consist of barcoded poly(T) DNA adapters also
containing a universal ligation linker that hybridizes to both poly(A)
ADT and mRNA molecules, and are thenincorporated duringinsitu RT.
The second chip introduces perpendicularly a set of channel-specific
set ‘B’ barcodes that are ligated to the ‘A’ barcodes and also contain
a PCR handle functionalized with biotin. The specific ‘AB’ barcoded
cDNA and ADTs at the channel crossroads (pixels) are collected, puri-
fied with streptavidin-coated magnetic beads and prepared for NGS,
after which reads for both mRNAs and proteins can be superimposed
on an image of the section'® (Fig. 5b). Spatial-CITE-seq was applied
forimproved tissue mapping to several mouse tissue types, as well as
human tonsillar and skin biopsy tissue at the COVID-19 mRNA-vaccine
injection site'”. Although limited by the same aspects as previously
mentioned for DBiT-based methods, including lack of single-cell
resolution, to date spatial-CITE-seq is the method that allows for the
highest number of proteins to be simultaneously spatially profiled
together with the poly(A) transcriptome, with potential for further
expansion.

As to microscopy-based approaches, several of the established
seqFISH-based, MERFISH-based and in situ sequencing (ISS)-based
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methods for spatial transcript profiling of hundreds to thousands of
targeted genes (Box 1) are also (sequentially) compatible withimmuno-
fluorescence or DNA-conjugated antibody proteinreadoutsinthe same
sample (Fig. 1). For the latter, oligonucleotide sequences compatible
with the specific fluorescent readout approaches of the transcriptome
profiling methods are mostly used (Fig. 5¢)'°1"1131237125 Staining and
localization of cell boundaries or other cellular, nuclear or subnuclear
markers in these ways can enable more accurate cell segmentation,
transcript allocation or resolution of nuclear organization. Addition-
ally, combined spatial transcriptome and protein readouts on the same
tissue section are crucial to correlate transcript with protein expres-
sion, localization and interactions, to help unravel the cellular mecha-
nisms that govern specific cell types and states. Several platforms that
recentlybecame commercially available for automated imaging-based
spatial transcriptome profiling of tissue sections at single-cell resolu-
tion, including the NanoString CosMx (smFISH-based)'*, Vizgen MER-
SCOPE (MERFISH-based)'” and 10x Genomics Xenium (ISS-based)"**
platforms, will allow for imaging-based co-profiling of afew to tens of
proteins, making these technologies more accessible.

Data integration

Awide variety of algorithms have been described for the tailored data
analysis of individual analytes insingle cells. Here, we focus on compu-
tational advances that allow the integration of measurements across
severalmodalities, as these algorithms leverage the multi-omic nature
of these technologies to enhance our understanding of complex cel-
lular states. Each modality covers different aspects of cellular identity
and has its strengths and weaknesses. A principal goal of multi-omics
dataintegrationis toachieve robust and sensitive cell type or cell state
identification'”. This integrated multi-omics view of cellular identity
can improve our understanding of differentiation trajectories, their
underlying gene regulatory networks, cell-cell interactions, micro-
environmental spatial organization, cellular lineages and clonal dynam-
ics. Ultimately, a holistic view of cellular identity disentangles causal
relationships between the different molecular layers that give rise to
the observed cellular phenotypes. However, to achieve meaningful
integration of high-dimensional data modalities, computational and
statistical models need to be developed that consider the technical
and biological intricacies of these technologies.

Recently, Argelaguet et al.”° defined three categories of datainte-
gration strategies depending on the anchor used to link the different
data modalities. Horizontal integration strategies use common data
features measured across different datasets tointegrate independently
assayed groups of cells, such as when assaying different batches with
the same technology or whenintegrating across different technologies
measuring the same molecular analyte. Inversely, vertical integra-
tion strategies use the cell as the anchoring unit to integrate non-
overlapping data features, such as when measuring multiple omics
layers of the same cells in parallel (Fig. 6a). The hardest integration
problememerges when neither cells nor common datafeatures canbe
used as anchors. In this case, diagonal integration strategies are used
to map separate groups of cells profiled by different molecular assays
(Fig. 6b). Many computational methods have already been developed
totackle horizontal integration problems, as cell atlas efforts require
the integration of many batches of single-cell data. For acomparison
of these approaches, we refer to recent reviews and benchmark stud-
ies”*"* Here, we focus primarily on vertical integration approaches as
these are applicable to most multi-omics technologies in which parallel
measurements are made of individual cells.

Linking molecular layers

When paired datamodalities can be unambiguously assigned to indi-
vidual cells, several integration strategies can be applied depending
on the end goal of the analysis. For finding significant cross-modal
associations between specific features (coined local integration meth-
odsby Argelaguet et al.”™), classic regression-based statistical models
can be fitted in a supervised way'**. These models can be expanded
to handle common confounders (such as population stratification
biases, sample-specific effects and sequence context-dependent
effects), which might inflate the resulting association statistics, by
explicitly modelling these confounders using linear hierarchical
mixed models™. However, hypothesis testing the very large num-
ber of possible correlations of analytes between different molecu-
lar layers would require unattainable sample sizes after multiple
testing correction. Therefore, the hypothesis search space is often
constrained by previous biological information (for example, the
distance from the epigenetic marker or accessible regulatory element
to the expressed gene). These approaches can be used to identify,
for example, cell-type-specific allelic effects of genetic variation on
gene expression (expression quantitative traitloci (eQTLs)) in differ-
entiating induced pluripotent stem cells (iPS cells)™*® or the effect of
genetic perturbations on gene expression using multiplexed CRISPR
technologies to identify cis-acting enhancer-gene pairs'”. Local inte-
grationapproaches canalso be used to facilitate the inference of gene
regulatory networks (GRNs). Classic GRN inference approaches, using
only scRNA-seq data, identify sets of co-expressed genes enriched
with particular upstream regulatory motifs™*s, However, this approach
is prone to false-positive gene associations as the presence of these
motifs does not necessarily guarantee the activity of the associated
TF. Using methods for simultaneous analysis of open chromatin
and gene expression with sequencing, it has been shown that chro-
matin accessibility at regulatory domains precedes gene expres-
sion’® and may thus outperform methods for GRN inference from
scRNA-seq alone.

In contrast tolocalapproaches, global integration strategies aim
to identify larger-scale patterns (hundreds to thousands of features)
of covariation across modalities to identify global shiftsin the cellular
statein anunsupervised way. To this end, linear matrix decomposition
approaches such as principal component analysis (PCA), canonical
correlation analysis (CCA)" and non-negative matrix factorization
(NMF)"%! have proven successful to identify latent factors underly-
ing cellular heterogeneity. For example, MOFA+"*? extends on this
principle and builds on the Bayesian Group Factor Analysis framework
to jointly model variation across spatial and temporal covariates and
employs a sparse hierarchical prior architecture that handles both
shared sources of variation and private variation that is particular
to individual modalities. This approach was used to integrate the
different modalities in scNMT-seq data to reveal lineage-specific
enhancers during embryo development®®. Although the linearity
of these approaches makes them inherently robust and results in
readily interpretable factors of variation, they suffer from a lack of
explanatory power when dealing with non-linearities that are com-
monly found in complex biological systems. Nonlinear multi-view
neural network architectures'*'** such as multimodal autoencoders
have been proposed to tackle this limitation. These neural networks
aim to learn simple (low-dimensional) representations of the data,
also known as an encoding, from complex (high-dimensional) input
datasets. Instead of learning individual representations for each
modality, these representations can be forced to be shared across
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different data modalities, thus forcing the neural network to implic-
itly learn common links between them. Several alternative architec-
tures have been proposed that optimize for different criteria such
as robustness to dropouts and batch effects, disentanglement of the
learned latent factors for improved interpretability and cross-modal
translation for missing modality imputation'>"*¢, For further details

we refer the reader to a recent overview of proposed deep learning
approaches'”’.

Dataintegration for spatial multi-omics
Spatial mono-omics and multi-omics technologies also ben-
efit from various data integration strategies. Before applying

a H&E Modality 1
9, g
m (w) ,
A g, 5 3 ] g,
verage 8 3 g
/) ' - o ST (0 &
> <Q - Benign Visualization
regions
, o~
9, 9, c
-% Tumour
< regions
Q
Image registration Shared representation - £  —
Clustering ke
) g
Biopsy ) T
m my Latent dimension 1
m o
m 5 ’
m > @® m
Average 2 o Q Q 2
—s 3 % — %
@
] @ =
) N N N
N my m’,
H&E Modality 2
b
Dataset 1 Shared latent space Dataset 2
( ® — @ )
/—> S o m 5 ° o o @ 4 '\
£ Q o
_—@® — = ¥ 3 g e g 8 2 |53—@——
- > o <3 g 9 <3 o z —
\—>u\\ ) —— |3 ol (g [} 5 «5: % d,o | ) —
x’ = 3 Y Q = o N o oN 8 - J
. (o] ) ]
Biopsy 1\ ——— (o) — X o) Biopsy
L 4 @ J
A 4 4
Cluster Cluster
5 £
b 5

Fig. 6 | Data integration strategies. Examples of different scenarios in which
various types of data integration strategies can be used. a, Vertical integration
strategies aim to integrate information from paired molecular layers to obtain
holistic representations of biological systems, at the single-cell level or at

the tissueregion level. Here, we illustrate an example of a spatial multi-omics
experimentin which mirrored tissue slices have been assayed by two different
spatial modalities (yellow and blue). To integrate both data sources, haematoxylin
and eosin (H&E) staining images of each modality are first registered to account
for deformations during sample preparation. Subsequently, to account for
differences in resolutions across modalities, data points are averaged in windows
of apredetermined region size™*. For every region the averaged regional profiles
canbe used as paired inputs for either linear or nonlinear vertical integration
approaches. In this example, weillustrate integration through the use of a
multi-view autoencoder neural network”. Each modality is used as inputintoa
dedicated encoder-decoder network that learns a shared data representation,

effectively integrating both data modalities. This shared representation can

be used for downstream analysis and/or visualization. The terms g;and m;
correspond to the measurements of region i for modality 1and modality 2,
respectively, with g’;and m’; being the molecular profiles reconstructed from

the shared representation by the decoder networks. b, Integration of datasets
from different experiments with independent observations of individual cells
and non-overlapping molecular features is the hardest integration problem and
requires diagonal integration approaches. Here, we illustrate this problem for the
integration of independently acquired single-cell RNA sequencing (scRNA-seq)
and single-cell assay for transposase-accessible chromatin (scATAC-seq) datasets
through the use of autoencoder neural networks with a probabilistic coupling to
map the different data modalities to a shared latent space'**. Although single-cell
resolution is lost in this coupling, clusters obtained in this shared latent space can
be used to ascertain correlations between molecular layers, discover multimodal
biomarkers and/or translate between the different modalities.
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Glossary

3CorHi-C

A class of methods uncovering
the higher-order chromosome
conformation and chromatin
interactions in the nucleus.

Autoencoders

A class of architectures of neural
networks that take a highly dimensional
input and encode into a low-
dimensional representation via an
encoder network. These networks

are trained in a self-supervised way

by reconstructing the original input
from the encoding using a decoder
network.

Bisulfite sequencing

A method in which bisulfite

treatment of DNA before sequencing
converts unmethylated cytosines

to uracil, while 5-methylcytosines

are protected from conversion.

This method hence discloses sites

in the genome where DNA methylation
is found.

Displacement preamplification
followed by PCR

(DA-PCR). A class of methods for whole-
genome amplification of single-cell
DNA using multiple rounds of strand
displacement ampilification, generating
amplicons with PCR-handles at both
ends, enabling molecules to be further
amplified by PCR.

DNA methylation

The deposition of methyl groups
onto DNA. In mammals, methylation
is predominantly found at cytosines
as 5-methylcytosine, and mostly ina
cytosine-guanine dinucleotide (CpG)
context.

Epigenome

The ensemble of modifications to

DNA and DNA-associated proteins that
signal and regulate gene expression and
other DNA-related processes. Examples
include DNA methylation, histone
post-translational modifications and
chromatin remodelling proteins.

Cell plasticity

The ability of a cell to remodel its
epigenomic, transcriptomic and

proteomic landscape, leading to
new phenotypic features.

Cell state

A specific stable or unstable functional
condition of a cell belonging to a
particular cell type.

Cell type

A categorization of cells by specific
morphological and/or phenotypic
characteristics.

Exome sequencing

A targeted next-generation sequencing
approach that enables sequencing

the coding exons, which can be
supplemented with flanking intronic
sequences as well as (part of) the gene
regulatory sequences, approximating
11% or more of the human genome.

FFPE

Formalin-fixed paraffin-embedded
(FFPE) tissues are preserved for
long-term archival storage by formalin
fixation followed by embedding in
paraffin wax blocks.

Chromatin accessibility

The structures of DNA wrapped

around histone octamer proteins
(nucleosomes) that make up
chromosomes. Chromatin can be highly
condensed with DNA inaccessible or
open with DNA accessible.

Genome

The genetic blueprint or DNA of an
organism established at fertilization,
which for humans normally consists

of 23 pairs of chromosomes contained
within the nucleus, plus the mitochondrial
DNA molecules present at multiple
copies in the mitochondria of the cell.

Hierarchical mixed models
Statistical regression models that model
nested hierarchies in the data taking

into account complex covariate data
structures.

Human Cell Atlas

The Human Cell Atlas (HCA) aims

to create a reference map of all
human cells, providing a basis for
understanding human health and for
diagnosing, monitoring and treating
diseases.

Linear matrix decomposition
Numerical analysis algorithms

that factorize observations into a
product of smaller matrices. These
matrices usually represent factors

or components of variation that are
easier to interpret (such as biological
processes) and their presence within
the observations (cells).

Phenome
The set of traits or characteristics
expressed by an organism or cell.

Proteome

The ensemble of proteins translated
from transcribed genes contained
within the genome, which can be highly
variable among different cell types.

Smart-seq2

Switching mechanism at the end

of the 5" end of the RNA transcript
(Smart)-based method for single-cell
cDNA generation, amplification and
sequencing library conversion.

Tagmentation

A method in which double-stranded
DNA is cleaved and tagged with adapter
sequences in a single step by using a
transposase complex loaded with these
adapter sequences.

Metabolome
The ensemble of metabolites present
within a cell or tissue.

Multiple displacement
amplification

(MDA). Anisothermal DNA amplification
method that applies DNA polymerase(s)
with strand displacement activity.

Neural networks

A class of algorithms that use densely
connected networks of artificial neurons
that are non-linearly activated given

a combination of input values from
connected input neurons, mimicking
the human brain.

OCT compound

Optimal cutting temperature (OCT)
compound is a standard type

of sample-embedding medium
used to embed fresh-frozen tissue
samples for optimal storage and
cryosectioning.

Template switching

A method in which Moloney murine
leukaemia virus (MMLV)-type reverse
transcriptases add non-templated
nucleotides (CCC) to first-strand
cDNA near the 5 end of the transcript,
enabling annealing of an rGrGrG-
containing template-switching
oligonucleotide and the reverse
transcriptase to switch templates

and copy the template-switching
oligonucleotide sequence to the cDNA.

Transcriptome

The ensemble of transcripts or RNA
molecules transcribed from genes
contained within the genome, which
can be highly variable among different
celltypes.

Unique molecular identifier
Short sequences that barcode

each molecule individually and are
added as tags to DNA fragments in
next-generation sequencing-based
approaches to identify molecules of
interest with increased accuracy.

vertical integration, horizontal integration algorithms can be used
to correct for technical variability between different sections of
the same or different samples, and can also be expanded to fully

utilize spatial correlations between sections'®. Additionally, for
spatial omics technologies that do not achieve single-cell resolu-
tion, deconvolution methods can be used to integrate non-spatial
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single-cell data to identify the cellular constituents of a particular
tissue region' ",

Vertical integration of non-spatial single-cell multi-omics data
followed by spatial deconvolution using the RNA modality allows other
molecular modalities to be indirectly spatially mapped. This approach
was used, for example, by Foster et al., using ArchR"**for scRNA-seq and
scATAC-seq integration, to identify spatial fibroblast epigenome pat-
terns during tissue repair'>®. Spatial multi-omics technologies also allow
for vertical integration, although few currently available technologies
allow for true multimodal assaying at single-cell resolution onthe same
tissue section. Hence, generating spatial multi-omics data often still
relies on the analysis of adjacent tissue sections and is thus limited
to studying correlations across modalities of tissue regions (Fig. 6a).
Linear approaches are suitable for theinference of these correlations,
although special care needs to be taken in the statistical analysis as
spatial autocorrelation can violate independence assumptions of the
observed datapoints®***, Although more spatial multi-omics technolo-
gies are emerging, spatial mono-omics assays can often also be com-
bined with simple histological stains, such as H&E staining, allowing
for the integration of cellular morphology and gene expression data.
Nonlinear neural networks have been proposed to map discrete spot-
based expression profiles onto high-resolution morphology images™®
ortolearnajoint cellmorphology-plus-expression representation for
theidentification of novel cellular subpopulations missed by individual
modalities™’. As more spatial multi-omics technologies become avail-
able that can characterize many analytes at single-cell resolution, we
expect rapid developments of vertical integration strategies based
on adaptations of currently available non-spatial single-cell meth-
odologies. By leveraging spatial information linking a cellular state
to its respective micro-environments and macro-environments (for
example, throughthe use of graph neural networks), more fine-grained
multimodal representations of cellular state should be obtainable.

Finally, approaches for the harder problem of diagonal integra-
tion of unpaired spatial and non-spatial data modalities have also
been proposed using autoencoder neural network architectures with a
probabilistic coupling between the different data modalities. For these
approaches, however, previous knowledge is generally required to
constrain the resulting shared representations to biologically accurate
alignments'*.

Current challengesin dataintegration

Despite extensive research, several challenges remain for computa-
tional data integration. These strategies make implicit assumptions
about the expected similarity of cellular states captured across dif-
ferent experiments and/or modalities. In the case of horizontal data
integration across different batches, this can lead to overcorrection
of true biological variation™®, especially when studying subtle shifts
in cellular state in different experimental conditions. This problem
is further exacerbated in vertical integration strategies when cor-
respondence between features is not immediately obvious and/or
whennon-linearities between the different layers might be biologically
relevant™. For example, gene expression changes have been shown
to be foreshadowed by chromatin priming, as seen in cell cycling via
SHARE-seq™*. Also, other biological phenomena such as alternative
splicing and/or PTMs are likely to influence the correlation structure
incellstate across the different molecular layers. Therefore, integration
methods need tobe developed that can not only identify the common
anchorsbetween the different samples and/or molecular layers but can
also account for sample-specific and modality-specific variationina

readily interpretable way. Such models have already been proposed in
other fields of multi-domain learning but have not yet been adapted
to cellular multi-omics datasets'’. The expansion of these models to
integrate paired, unpaired and multimodal spatial assays will require
robust data standards'®*'*' for scalable analysis of multimodal datain
addition to well-established benchmarks to evaluate their efficacy.

Perspectives

In the decades to come, multi-omics at single-cell and spatial resolu-
tion willinnovate further, leading to a more holistic understanding of
cellbiology. Advances can be anticipated on multiple fronts, including
improvementsinthroughput, reduction of cost and theincorporation
of more modalitiesin asingle assay. Additionally, we expectimprove-
ments of sensitivity and specificity in the detection and characteriza-
tion of each modality as part of multi-omic measurements. For example,
onthegenomelevel, fulland error-free characterization of all genetic
variants is still a challenge, which currently limits opportunities for
comprehensive somatic mutation profiling at single-cell resolution
andreconstructing phylogenetic cell lineages from naturally acquired
mutations. Similarly, measurements of the epigenome are severely lim-
ited for co-detection of the range of epigenomic features co-regulating
geneexpression and other DNA-related processes. For instance, histone
PTMs can currently be detected only a single or a few marks at a time;
hence, these methods would benefit from drastic increments in the
number of PTMs that can be co-detected, also together with other
epigenomic features. The characterization of the transcriptome is
often limited to poly(A) RNA rather than total RNA measurements;
hence, it would be beneficial to include both coding and (small) non-
coding RNAs as well as concurrent isoform detection. Proteome assays
are stillantibody-based and thus limited in how many proteins can be
profiled simultaneously. Unbiased low-input methods such as mass-
spectrometry-based approaches may circumvent this, but cannot cur-
rently be combined with assays for other molecular layers. This lack of
multimodalintegration also holds true for metabolome and lipidome
assays. In addition to such improvements for characterizing modali-
ties in multi-omics methods, we also anticipate the development of
multimodal assays that incorporate entirely new modalities that cur-
rently remain uncharted, such as the epitranscriptome (consisting of
base modifications to transcripts, some of which are known to affect
gene expression)'®, Furthermore, the field is likely to see a continued
strong technological push for spatial multi-omics, avoiding the need
for tissue dissociation and enabling concurrent multi-omic profiling
of cell-intrinsic and -extrinsic molecular features defining cell types
and states. Moreover, integration of phylogenetic cell lineages recon-
structed fromnaturally acquired or artificially induced DNA mutations
with other spatial or single-cell multi-ome information will transform
our understanding of organismal development, cell migration routes
and stemcell biology in health and disease. Finally, it willbe necessary
to develop methods that capture not only transient phenotypes but
also ancestral states, apply multi-omic technologies to serial measure-
mentsin live cells'®®, and computationally improve the accuracy of data
extraction from each molecular layer, as well asundertake integrative
analyses across modalities to unravel dependencies within and across
different data sources.

Toarrive at such holistic multi-ome profiling of single cells dissoci-
ated fromtissue or at spatial resolution will require many challenges to
be overcomeinthefollowing years. For aview on how challenges associ-
ated witheachmodality specifically couldbetackled, wereferto previous
reviews on single-cell and spatial mono-omic profiling!-8¢1647168,
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Optimization of low-input bulk molecular analysis tools to single-cell
and/or spatial resolution, like amplification-free long-read single-
molecule sequencing approaches, will enable the incorporation of
novel molecular readouts. In parallel, to enable integration of more
modalities per assay will require innovation in the principles presented
inFig.2, including expansion and combination of the different princi-
ples. Making various single-cell and spatial multi-omics assays com-
mercially available will also make them more accessible and applicable

for the wide research community, but we are already starting to see

this evolution'®.

All these technological and computational developments will
translate into a better understanding of development, organismal
function and functional decline of organs with ageing, and will be key
inunravelling the cellular pathogenesis of diseases, identifying more
effective stratification strategies of disease processes, devising novel
therapeutic modalities and guiding precision medicine.

Published online: 2 March 2023
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