Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant pangenomes for crop improvement, biodiversity and evolution

Abstract

Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes — complete sequences of multiple individuals of a species or higher taxonomic unit — have now entered the geneticists’ toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pangenomics: assembly and comparison of genome sequences.
Fig. 2: Pangenomics in crop plants.
Fig. 3: A tiered strategy for pangenomics.
Fig. 4: Pangenomics at different taxonomic levels.

Similar content being viewed by others

References

  1. Brunner, S., Fengler, K., Morgante, M., Tingey, S. & Rafalski, A. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17, 343–360 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial ‘pan-genome’. Proc. Natl Acad. Sci. USA 102, 13950–13955 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023). This study showcases how pangenome graphs work in a case study of a model primate.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao, L. et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 1044–1051 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Jayakodi, M., Schreiber, M., Stein, N. & Mascher, M. Building pan-genome infrastructures for crop plants and their use in association genetics. DNA Res. 28, dsaa030 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA 108, 1513–1518 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davey, J. W. et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12, 499–510 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Hickey, G. et al. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol. 21, 35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. Nat. Rev. Genet. 22, 572–587 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Olson, N. D. et al. Variant calling and benchmarking in an era of complete human genome sequences. Nat. Rev. Genet. 24, 464–483 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Mahmoud, M. et al. Utility of long-read sequencing for All of Us. Preprint at bioRxiv 2023.2001.2023.525236 (2023).

  13. Sedlazeck, F. J., Lee, H., Darby, C. A. & Schatz, M. C. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 19, 329–346 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolmogorov, M. et al. Scalable nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylation. Nat. Methods 20, 1483–1492 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. [No authors listed] Method of the year 2022: long-read sequencing. Nat. Methods 20, 1 (2023).

  17. Chen, J. et al. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55, 1221–1231 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rabanal, F. A. et al. Pushing the limits of HiFi assemblies reveals centromere diversity between two Arabidopsis thaliana genomes. Nucleic Acids Res. 50, 12309–12327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Navrátilová, P. et al. Prospects of telomere-to-telomere assembly in barley: analysis of sequence gaps in the MorexV3 reference genome. Plant. Biotechnol. J. 20, 1373–1386 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Whibley, A., Kelley, J. L. & Narum, S. R. The changing face of genome assemblies: guidance on achieving high-quality reference genomes. Mol. Ecol. Resour. 21, 641–652 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Tay Fernandez, C. G. et al. Pangenomes as a resource to accelerate breeding of under-utilised crop species. Int. J. Mol. Sci. 23, 2671 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chapman, M. A., He, Y. & Zhou, M. Beyond a reference genome: pangenomes and population genomics of underutilized and orphan crops for future food and nutrition security. N. Phytol. 234, 1583–1597 (2022).

    Article  Google Scholar 

  24. Della Coletta, R., Qiu, Y., Ou, S., Hufford, M. B. & Hirsch, C. N. How the pan-genome is changing crop genomics and improvement. Genome Biol. 22, 3 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Article  Google Scholar 

  26. Sun, Y., Shang, L., Zhu, Q.-H., Fan, L. & Guo, L. Twenty years of plant genome sequencing: achievements and challenges. Trends Plant. Sci. 27, 391–401 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Jackson, S. A. Rice: the first crop genome. Rice 9, 14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li, Y.-H. et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32, 1045–1052 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Frankel, O. H. Genetic conservation: our evolutionary responsibility. Genetics 78, 53–65 (1974). This classic paper sets the conceptual and moral agenda for the discipline of conservation genetics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tanksley, S. D. Mapping polygenes. Annu. Rev. Genet. 27, 205–233 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Semagn, K., Bjørnstad, Å. & Ndjiondjop, M. Principles, requirements and prospects of genetic mapping in plants. Afr. J. Biotechnol. 5, 2569–2587 (2006).

    CAS  Google Scholar 

  32. Yan, L. et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bettgenhaeuser, J. et al. The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. Nat. Commun. 12, 6915 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crow, T. et al. Gene regulatory effects of a large chromosomal inversion in highland maize. PLoS Genet. 16, e1009213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Romero Navarro, J. A. et al. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 49, 476–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Thind, A. K. et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35, 793–796 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Y. et al. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat. Genet. 55, 914–920 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Athiyannan, N. et al. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 54, 227–231 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jayakodi, M. et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284–289 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ranallo-Benavidez, T. R. et al. Optimized sample selection for cost-efficient long-read population sequencing. Genome Res. 31, 910–918 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wu, Y. et al. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. Cell 186, 2313–2328.e15 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Li, N. et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat. Genet. 55, 852–860 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jain, R. et al. Genome sequence of the model rice variety KitaakeX. BMC Genomics 20, 905 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sato, K. et al. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’. DNA Res. 28, dsab008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schreiber, M. et al. A genome assembly of the barley ‘Transformation Reference’ cultivar golden promise. G3 Genes Genomes Genet. 10, 1823–1827 (2020).

    Article  CAS  Google Scholar 

  47. Lin, G. et al. Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome Biol. 22, 175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, Y. et al. Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69. Plant Commun. 5, 100646 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Hufford, M. B. et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655–662 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kale, S. M. et al. A catalogue of resistance gene homologs and a chromosome-scale reference sequence support resistance gene mapping in winter wheat. Plant Biotechnol. J. 20, 1730–1742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Springer, N. M. et al. The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat. Genet. 50, 1282–1288 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Sun, S. et al. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat. Genet. 50, 1289–1295 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, N. et al. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat. Genet. 51, 1052–1059 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Crossa, J. et al. Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant. Sci. 22, 961–975 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Bernardo, R. Bandwagons I, too, have known. Theor. Appl. Genet. 129, 2323–2332 (2016).

    Article  PubMed  Google Scholar 

  56. Barton, N. H., Etheridge, A. M. & Véber, A. The infinitesimal model: definition, derivation, and implications. Theor. Popul. Biol. 118, 50–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, H., Yin, L., Wang, M., Yuan, X. & Liu, X. Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations. Front. Genet. 10, 189 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lu, F. et al. High-resolution genetic mapping of maize pan-genome sequence anchors. Nat. Commun. 6, 6914 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Bradbury, P. J. et al. The practical haplotype graph, a platform for storing and using pangenomes for imputation. Bioinformatics 38, 3698–3702 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou, Y. et al. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606, 527–534 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wulff, B. B. H. & Krattinger, S. G. The long road to engineering durable disease resistance in wheat. Curr. Opin. Biotechnol. 73, 270–275 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Hafeez, A. N. et al. Creation and judicious application of a wheat resistance gene atlas. Mol. Plant 14, 1053–1070 (2021). This study provides a good example of resistance gene sequencing for crop improvement.

    Article  CAS  PubMed  Google Scholar 

  63. Jupe, F. et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant. J. 76, 530–544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dracatos, P. M., Lu, J., Sánchez-Martín, J. & Wulff, B. B. H. Resistance that stacks up: engineering rust and mildew disease control in the cereal crops wheat and barley. Plant Biotechnol. J. 21, 1938–1951 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tamborski, J. & Krasileva, K. V. Evolution of plant NLRs: from natural history to precise modifications. Annu. Rev. Plant Biol. 71, 355–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Kourelis, J. & van der Hoorn, R. A. L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30, 285–299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Van de Weyer, A. L. et al. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260–1272.e14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Michelmore, R. W. & Meyers, B. C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 1113–1130 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Steuernagel, B. et al. The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 183, 468–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Förderer, A. et al. A wheat resistosome defines common principles of immune receptor channels. Nature 610, 532–539 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  73. Bayer, P. E. et al. Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. Plant Biotechnol. J. 17, 789–800 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Fan, P. et al. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. eLife 9, e56717 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Halstead-Nussloch, G. et al. Multiple wheat genomes reveal novel gli-2 sublocus location and variation of celiac disease epitopes in duplicated α-gliadin genes. Front. Plant Sci. 12, 715985 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Flint-Garcia, S., Feldmann, M. J., Dempewolf, H., Morrell, P. L. & Ross-Ibarra, J. Diamonds in the not-so-rough: wild relative diversity hidden in crop genomes. PLoS Biol. 21, e3002235 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao, L. et al. The Aegilops ventricosa 2NvS segment in bread wheat: cytology, genomics and breeding. Theor. Appl. Genet. 134, 529–542 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. van Rengs, W. M. J. et al. A chromosome scale tomato genome built from complementary PacBio and Nanopore sequences alone reveals extensive linkage drag during breeding. Plant J. 110, 572–588 (2022).

    Article  PubMed  Google Scholar 

  79. Harlan, J. R. & de Wet, J. M. J. Toward a rational classification of cultivated plants. Taxon 20, 509–517 (1971). This classic paper informs which wild plant species to prioritize for today’s pangenomics from the perspective of the agricultural geneticist.

    Article  Google Scholar 

  80. Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Khan, A. W. et al. Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2019.10.012 (2019).

    Article  PubMed  Google Scholar 

  82. Stein, J. C. et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat. Genet. 50, 285–296 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Tang, D. et al. Genome evolution and diversity of wild and cultivated potatoes. Nature 606, 535–541 (2022). This study showcases the seemingly straight-forward implementation of what 3 years ago was beyond reach: genus-wide pangenomics.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, H. et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368 https://doi.org/10.1126/science.aba5435 (2020).

  85. Yu, G. et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 13, 1607 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, X. et al. A chromosome-scale genome assembly of Dasypyrum villosum provides insights into its application as a broad-spectrum disease resistance resource for wheat improvement. Mol. Plant 16, 432–451 (2023).

    Article  PubMed  Google Scholar 

  87. Niskanen, A. K. J., Niittynen, P., Aalto, J., Väre, H. & Luoto, M. Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Divers. Distrib. 25, 809–821 (2019).

    Article  Google Scholar 

  88. Lippmann, R., Babben, S., Menger, A., Delker, C. & Quint, M. Development of wild and cultivated plants under global warming conditions. Curr. Biol. 29, R1326–R1338 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Campbell, J. L. et al. Forest and freshwater ecosystem responses to climate change and variability at US LTER sites. BioScience 72, 851–870 (2022).

    Article  Google Scholar 

  90. Formenti, G. et al. The era of reference genomes in conservation genomics. Trends Ecol. Evol. 37, 197–202 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet. 39, 545–559 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Anderson, C. B. Biodiversity monitoring, earth observations and the ecology of scale. Ecol. Lett. 21, 1572–1585 (2018).

    Article  PubMed  Google Scholar 

  94. Cordier, T. et al. Ecosystems monitoring powered by environmental genomics: a review of current strategies with an implementation roadmap. Mol. Ecol. 30, 2937–2958 (2021).

    Article  PubMed  Google Scholar 

  95. Bieker, V. C. & Martin, M. D. Implications and future prospects for evolutionary analyses of DNA in historical herbarium collections. Bot. Lett. 165, 409–418 (2018).

    Article  CAS  Google Scholar 

  96. Mascher, M. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 51, 1076–1081 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, W. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Romay, M. C. et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 14, R55 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sansaloni, C. et al. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat. Commun. 11, 4572 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Milner, S. G. et al. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 51, 319–326 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Tripodi, P. et al. Global range expansion history of pepper (Capsicum spp.) revealed by over 10,000 genebank accessions. Proc. Natl Acad. Sci. USA 118 https://doi.org/10.1073/pnas.2104315118 (2021).

  102. Sun, H. et al. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nat. Genet. 54, 342–348 (2022).

    Article  Google Scholar 

  103. Zhang, Q. et al. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nat. Genet. 54, 885–896 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Darrier, B. et al. A comparison of mainstream genotyping platforms for the evaluation and use of barley genetic resources. Front. Plant Sci. 10 https://doi.org/10.3389/fpls.2019.00544 (2019).

  105. Leggett, R. M. & MacLean, D. Reference-free SNP detection: dealing with the data deluge. BMC Genomics 15, S10 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. van Hintum, T. J. L. & Visser, D. L. Duplication within and between germplasm collections. Genet. Resour. Crop Evol. 42, 135–145 (1995).

    Article  Google Scholar 

  107. Kirsche, M. et al. Jasmine and Iris: population-scale structural variant comparison and analysis. Nat. Methods https://doi.org/10.1038/s41592-022-01753-3 (2023).

  108. Hehir-Kwa, J. Y. et al. A high-quality human reference panel reveals the complexity and distribution of genomic structural variants. Nat. Commun. 7, 12989 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Voichek, Y. & Weigel, D. Identifying genetic variants underlying phenotypic variation in plants without complete genomes. Nat. Genet. 52, 534–540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Young, A. D. & Gillung, J. P. Phylogenomics—principles, opportunities and pitfalls of big-data phylogenetics. Syst. Entomol. 45, 225–247 (2020).

    Article  Google Scholar 

  111. Huelsenbeck, J. P., Bull, J. J. & Cunningham, C. W. Combining data in phylogenetic analysis. Trends Ecol. Evol. 11, 152–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Solís-Lemus, C., Yang, M. & Ané, C. Inconsistency of species tree methods under gene flow. Syst. Biol. 65, 843–851 (2016).

    Article  PubMed  Google Scholar 

  113. Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. Darwin Tree of Life Project Consortium. Sequence locally, think globally: the Darwin Tree of Life Project. Proc. Natl Acad. Sci. USA 119, e2115642118 (2022). This paper reviews the practicalities of tree-of-life projects.

    Article  Google Scholar 

  115. Mazzoni, C. J., Ciofi, C. & Waterhouse, R. M. Biodiversity: an atlas of European reference genomes. Nature 619, 252 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Shaffer, H. B. et al. Landscape genomics to enable conservation actions: the California Conservation Genomics Project. J. Hered. 113, 577–588 (2022).

    Article  PubMed  Google Scholar 

  117. Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).

    Article  Google Scholar 

  118. Cheng, S. et al. 10KP: a phylodiverse genome sequencing plan. GigaScience 7 https://doi.org/10.1093/gigascience/giy013 (2018).

  119. Brassac, J. & Blattner, F. R. Species-level phylogeny and polyploid relationships in Hordeum (Poaceae) inferred by next-generation sequencing and in silico cloning of multiple nuclear loci. Syst. Biol. 64, 792–808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Glémin, S. et al. Pervasive hybridizations in the history of wheat relatives. Sci. Adv. 5, eaav9188 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  121. Nemati, Z., Harpke, D., Gemicioglu, A., Kerndorff, H. & Blattner, F. R. Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Mol. Phylogenet. Evol. 136, 14–20 (2019).

    Article  PubMed  Google Scholar 

  122. Doolittle, W. F. Phylogenetic classification and the universal tree. Science 284, 2124–2128 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. McInerney, J., Pisani, D. & O’Connell, M. J. The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140323 (2015).

    Article  Google Scholar 

  124. Ma, J. et al. Major episodes of horizontal gene transfer drove the evolution of land plants. Mol. Plant 15, 857–871 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Mahelka, V. et al. Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages. Proc. Natl Acad. Sci. USA 114, 1726–1731 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Udall, J. A. & Wendel, J. F. Polyploidy and crop improvement. Crop. Sci. 46, S-3–S-14 (2006).

    Article  Google Scholar 

  127. Soltis, P. S., Marchant, D. B., Van de Peer, Y. & Soltis, D. E. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 35, 119–125 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).

    Article  PubMed  Google Scholar 

  129. Dvorak, J., McGuire, P. E. & Cassidy, B. Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30, 680–689 (1988).

    Article  CAS  Google Scholar 

  130. Ramírez-González, R. H. et al. The transcriptional landscape of polyploid wheat. Science 361 https://doi.org/10.1126/science.aar6089 (2018).

  131. Wang, Z. et al. Genomic evidence for homoploid hybrid speciation between ancestors of two different genera. Nat. Commun. 13, 1987 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sun, Y., Lu, Z., Zhu, X. & Ma, H. Genomic basis of homoploid hybrid speciation within chestnut trees. Nat. Commun. 11, 3375 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wolf, J. B. W. & Ellegren, H. Making sense of genomic islands of differentiation in light of speciation. Nat. Rev. Genet. 18, 87–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Burri, R. et al. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 25, 1656–1665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Huang, K., Andrew, R. L., Owens, G. L., Ostevik, K. L. & Rieseberg, L. H. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. Mol. Ecol. 29, 2535–2549 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Ross-Ibarra, J., Morrell, P. L. & Gaut, B. S. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc. Natl Acad. Sci. USA 104, 8641–8648 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schreiber, M., Stein, N. & Mascher, M. Genomic approaches for studying crop evolution. Genome Biol. 19, 140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Savolainen, O., Lascoux, M. & Merilä, J. Ecological genomics of local adaptation. Nat. Rev. Genet. 14, 807–820 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Lovell, J. T. et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590, 438–444 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Parker, J. et al. Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502, 228–231 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  141. Schlüter, P. M. et al. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids. Proc. Natl Acad. Sci. USA 108, 5696–5701 (2011).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  142. Breitkopf, H., Onstein, R. E., Cafasso, D., Schlüter, P. M. & Cozzolino, S. Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive Ophrys orchids. N. Phytol. 207, 377–389 (2015).

    Article  Google Scholar 

  143. Baguette, M., Bertrand, J. A. M., Stevens, V. M. & Schatz, B. Why are there so many bee-orchid species? Adaptive radiation by intra-specific competition for mnesic pollinators. Biol. Rev. 95, 1630–1663 (2020).

    Article  PubMed  Google Scholar 

  144. Weigel, D. Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant. Physiol. 158, 2–22 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Alonso-Blanco, C. et al. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481–491 (2016).

    Article  Google Scholar 

  146. De Wet, J. M. J. & Harlan, J. R. Weeds and domesticates: evolution in the man-made habitat. Econ. Bot. 29, 99–108 (1975).

    Article  Google Scholar 

  147. Hammer, K. Das domestikationssyndrom [German]. Die Kulturpflanze 32, 11–34 (1984).

    Article  Google Scholar 

  148. Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Clark, R. M., Wagler, T. N., Quijada, P. & Doebley, J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat. Genet. 38, 594–597 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Doebley, J., Stec, A. & Hubbard, L. The evolution of apical dominance in maize. Nature 386, 485–488 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  151. Soyk, S. et al. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169, 1142–1155.e12 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Alonge, M. et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182, 145–161.e23 (2020). This work is a tour de force of pangenomics and classical genetics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. McGuigan, K., Hoffmann, A. A. & Sgrò, C. M. How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20200119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Gao, Y. et al. Complementary genomic and epigenomic adaptation to environmental heterogeneity. Mol. Ecol. 31, 3598–3612 (2022).

    Article  PubMed  Google Scholar 

  155. Soyk, S., Benoit, M. & Lippman, Z. B. New horizons for dissecting epistasis in crop quantitative trait variation. Annu. Rev. Genet. 54, 287–307 (2020). This review includes a proposal on how to harness induced structural variation in the study of gene by gene interactions.

    Article  CAS  PubMed  Google Scholar 

  156. Lloyd, J. P. B. & Lister, R. Epigenome plasticity in plants. Nat. Rev. Genet. 23, 55–68 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Zhao, L. et al. Integrative analysis of reference epigenomes in 20 rice varieties. Nat. Commun. 11, 2658 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bräutigam, K. et al. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol. Evol. 3, 399–415 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Greally, J. M. Population epigenetics. Curr. Opin. Syst. Biol. 1, 84–89 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Walker, A. Adding genomic ‘foliage’ to the tree of life. Nat. Rev. Microbiol. 12, 78 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. McKain, M. R., Johnson, M. G., Uribe-Convers, S., Eaton, D. & Yang, Y. Practical considerations for plant phylogenomics. Appl. Plant. Sci. 6, e1038 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kress, W. J. et al. Green plant genomes: what we know in an era of rapidly expanding opportunities. Proc. Natl Acad. Sci. USA 119, e2115640118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Trigodet, F. et al. High molecular weight DNA extraction strategies for long‐read sequencing of complex metagenomes. Mol. Ecol. Resour. 22, 1786–1802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Al’Khafaji, A. M. et al. High-throughput RNA isoform sequencing using programmable cDNA concatenation. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01815-7 (2023).

  167. Cai, Z.-F. et al. Long amplicon HiFi sequencing for mitochondrial DNA genomes. Mol. Ecol. Resour. 23, 1014–1022 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Heslop-Harrison, J. S. P., Schwarzacher, T. & Liu, Q. Polyploidy: its consequences and enabling role in plant diversification and evolution. Ann. Bot. 131, 1–10 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Klau, G.W. & Marschall, T. A Guided Tour to Computational Haplotyping. In CiE 2017: Unveiling Dynamics and Complexity vol 10307 (eds Kari, J., Manea, F. & Petre, I.) 50–63 https://doi.org/10.1007/978-3-319-58741-7_6 (Springer Cham, 2017).

  170. Song, B., Buckler, E. S. & Stitzer, M. C. New whole-genome alignment tools are needed for tapping into plant diversity. Trends Plant. Sci. https://doi.org/10.1016/j.tplants.2023.08.013 (2023).

    Article  PubMed  Google Scholar 

  171. Eizenga, J. M. et al. Pangenome graphs. Annu. Rev. Genomics Hum. Genet. 21, 139–162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Andreace, F., Lechat, P., Dufresne, Y. & Chikhi, R. Comparing methods for constructing and representing human pangenome graphs. Genome Biol. 24, 274 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yates, A. D. et al. Ensembl Genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Res. 50, D996–D1003 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Contreras-Moreira et al. in Plant Bioinformatics: Methods and Protocols (ed. David E.) 27–55 (Springer, 2022).

  175. [No authors listed] Democratizing sequencing. Nat. Methods 2, 633 (2005).

  176. Gui, S. et al. A pan-Zea genome map for enhancing maize improvement. Genome Biol. 23, 178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Portwood, J. L. II et al. MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Res. 47, D1146–D1154 (2018).

    Article  PubMed Central  Google Scholar 

  178. Cochrane, G., Karsch-Mizrachi, I., Takagi, T. & International Nucleotide Sequence Database Collaboration. The International Nucleotide Sequence Database Collaboration. Nucleic Acids Res. 44, D48–D50 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Lawniczak, M. K. N. et al. Standards recommendations for the Earth BioGenome Project. Proc. Natl Acad. Sci. USA 119, e2115639118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Marden, E., Sackville Hamilton, R., Halewood, M. & McCouch, S. International agreements and the plant genetics research community: a guide to practice. Proc. Natl Acad. Sci. USA 120, e2205773119 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Watanabe, M. E. The Nagoya Protocol: the conundrum of defining digital sequence information. BioScience 69, 480–480 (2019).

    Article  Google Scholar 

  182. Scholz, A. H. et al. Multilateral benefit-sharing from digital sequence information will support both science and biodiversity conservation. Nat. Commun. 13, 1086 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhou, P. et al. Exploring structural variation and gene family architecture with de novo assemblies of 15 Medicago genomes. BMC Genomics 18, 261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Gordon, S. P. et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 8, 2184 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  185. Zhao, Q. et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278–284 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Zhou, Y. et al. A platinum standard pan-genome resource that represents the population structure of Asian rice. Sci. Data 7, 113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Song, J.-M. et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6, 34–45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liu, Y. et al. Pan-genome of wild and cultivated soybeans. Cell 182, 162–176.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Campoy, J. A. et al. Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes. Genome Biol. 21, 306 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Qin, P. et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184, 3542–3558.e16 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Tao, Y. et al. Extensive variation within the pan-genome of cultivated and wild sorghum. Nat. Plants 7, 766–773 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Zhang, X. et al. Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. Mol. Plant 14, 2032–2055 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Li, H. et al. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nat. Commun. 13, 682 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hoopes, G. et al. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Mol. Plant. 15, 520–536 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Zhuang, Y. et al. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. Nat. Plants 8, 233–244 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Wang, M. et al. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium. Nat. Genet. 54, 1959–1971 (2022).

    Article  CAS  PubMed  Google Scholar 

  197. Liang, Q. et al. A view of the pan-genome of domesticated Cowpea (Vigna unguiculata [L.] Walp.). Plant Genome 2023, e20319 (2023).

  198. Kang, M. et al. The pan-genome and local adaptation of Arabidopsis thaliana. Nat. Commun. 14, 6259 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yan, H. et al. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nat. Genet. 55, 507–518 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wang, B. et al. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nat. Genet. 55, 312–323 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Huang, Y. et al. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nat. Genet. https://doi.org/10.1038/s41588-023-01516-6 (2023).

  202. He, Q. et al. A graph-based genome and pan-genome variation of the model plant Setaria. Nat. Genet. 55, 1232–1242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Liu, F. et al. Genomes of cultivated and wild Capsicum species provide insights into pepper domestication and population differentiation. Nat. Commun. 14, 5487 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lian, Q. et al. A pan-genome of 72 Arabidopsis thaliana accessions reveals a conserved genome structure throughout the global species range. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2976609/v1 (2023).

  205. Food and Agricultural Organization. Agricultural Production Statistics 20002020 (FAO, 2022).

  206. Bao, Z. et al. Genome architecture and tetrasomic inheritance of autotetraploid potato. Mol. Plant. 15, 1211–1226 (2022).

    Article  CAS  PubMed  Google Scholar 

  207. Jansky, S. H. et al. Reinventing potato as a diploid inbred line-based crop. Crop. Sci. 56, 1412–1422 (2016).

    Article  CAS  Google Scholar 

  208. Zhang, C. et al. Genome design of hybrid potato. Cell 184, 3873–3883.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  209. Ye, M. et al. Generation of self-compatible diploid potato by knockout of S-RNase. Nat. Plants 4, 651–654 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Ma, L. et al. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes. Nat. Commun. 12, 4142 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ research activities in barley and its wild relatives are supported by grants from, respectively, the German Federal Ministry of Education and Research (BMBF) (SHAPE-P3, 031B1302A to N.S. and M.M.) and the European Research Council (Starting Grant TRANSFER, action number 949873 to M.M.). M.J.’s work on faba bean genomics is funded by the Leibniz Association (REPLACE, J118/2021).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Martin Mascher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

10,000 Plant Genome Project: https://db.cngb.org/10kp/

Darwin Tree of Life: https://www.darwintreeoflife.org/

Earth BioGenome Project: https://www.earthbiogenome.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreiber, M., Jayakodi, M., Stein, N. et al. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00691-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00691-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research