Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications

Abstract

Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1–6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STR alleles and representative sequence configurations.
Fig. 2: Structural heterogeneity of representative FMR1, ATXN1, ATXN8OS/ATXN8, SAMD12 and RFC1 repeats.
Fig. 3: Detecting STR sequence composition changes with RP-PCR, optical genome mapping, short-read sequencing and long-read sequencing.
Fig. 4: Effect of sequence composition changes on repeat DNA structure, methylation, stability and gene expression.
Fig. 5: Effect of sequence composition changes on repeat mRNA-mediated and protein-mediated toxicities.

Similar content being viewed by others

References

  1. Mousavi, N., Shleizer-Burko, S., Yanicky, R. & Gymrek, M. Profiling the genome-wide landscape of tandem repeat expansions. Nucleic Acids Res. 47, e90 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shortt, J. A., Ruggiero, R. P., Cox, C., Wacholder, A. C. & Pollock, D. D. Finding and extending ancient simple sequence repeat-derived regions in the human genome. Mob. DNA 11, 11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Willems, T. et al. The landscape of human STR variation. Genome Res. 24, 1894–1904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Halman, A., Dolzhenko, E. & Oshlack, A. STRipy: a graphical application for enhanced genotyping of pathogenic short tandem repeats in sequencing data. Hum. Mutat. 43, 859–868 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou, Z.-D., Jankovic, J., Ashizawa, T. & Tan, E.-K. Neurodegenerative diseases associated with non-coding CGG tandem repeat expansions. Nat. Rev. Neurol. 18, 145–157 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Hannan, A. J. Tandem repeats mediating genetic plasticity in health and disease. Nat. Rev. Genet. 19, 286–298 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Depienne, C. & Mandel, J.-L. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am. J. Hum. Genet. 108, 764–785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gall-Duncan, T., Sato, N., Yuen, R. K. C. & Pearson, C. E. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res. 32, 1–27 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Malik, I., Kelley, C. P., Wang, E. T. & Todd, P. K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 22, 589–607 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Opal, P. & Ashizawa, T. Spinocerebellar ataxia type 1. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1184/ (2023).

  11. Wright, G. E. B. et al. Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease. Am. J. Hum. Genet. 104, 1116–1126 (2019). This study showed that the absence of CAA interruptions in the (CAG)nCAA CAG repeat segment of HTT alleles is associated with earlier onset of Huntington disease, while duplication of the CAA CAG sequence is associated with later onset.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wright, G. E. B. et al. Interrupting sequence variants and age of onset in Huntington’s disease: clinical implications and emerging therapies. Lancet Neurol. 19, 930–939 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Latham, G. J., Coppinger, J., Hadd, A. G. & Nolin, S. L. The role of AGG interruptions in fragile X repeat expansions: a twenty-year perspective. Front. Genet. 5, 244 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Perez, B. A. et al. CCG•CGG interruptions in high-penetrance SCA8 families increase RAN translation and protein toxicity. EMBO Mol. Med. 13, e14095 (2021). This study showed the association between CCG•CGG interruptions and higher SCA8 penetrance and earlier onset of symptoms, and outlined the effects of interruptions on repeat mRNA and protein-mediated toxicities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, X.-R., Tang, B.-S., Jin, P. & Guo, J.-F. The phenotypes and mechanisms of NOTCH2NLC-related GGC repeat expansion disorders: a comprehensive review. Mol. Neurobiol. 59, 523–534 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Schüle, B. et al. Parkinson’s disease associated with pure ATXN10 repeat expansion. NPJ Park. Dis. 3, 27 (2017).

    Article  Google Scholar 

  17. Stevanovski, I. et al. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci. Adv. 8, eabm5386 (2022). Using the Oxford Nanopore Technologies ReadUntil function, a single assay for parallel genotyping, repeat sequence composition and methylation analyses of all known disease-associated STR loci was developed and validated. This study reported several novel and complex sequence configurations of normal and pathogenic STR alleles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dolzhenko, E. et al. ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics 35, 4754–4756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dolzhenko, E. et al. REViewer: haplotype-resolved visualization of read alignments in and around tandem repeats. Genome Med. 14, 84 (2022). This study reports Repeat Expansion Viewer, a computational method for visualizing alignments of short (NGS) reads around STR regions. By generating haplotype-resolved alignments, this tool helps with the identification of sequence composition changes.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xi, J. et al. 5′ UTR CGG repeat expansion in GIPC1 is associated with oculopharyngodistal myopathy. Brain 144, 601–614 (2021).

    Article  PubMed  Google Scholar 

  21. Gymrek, M. & Goren, A. Missing heritability may be hiding in repeats. Science 373, 1440–1441 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Burgunder, J.-M. Mechanisms underlying phenotypic variation in neurogenetic disorders. Nat. Rev. Neurol. 19, 363–370 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. McGinty, R. J. & Mirkin, S. M. Cis- and trans-modifiers of repeat expansions: blending model systems with human genetics. Trends Genet. 34, 448–465 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cleary, J. D., Subramony, S. H. & Ranum L. P. W. Spinocerebellar ataxia type 8. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1268/ (2021).

  25. Paulson, H. & Shakkottai, V. Spinocerebellar ataxia type 3. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1196/ (2020).

  26. Bird, T. D. Myotonic dystrophy type 1. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1165/ (2021).

  27. Morales, F. et al. Longitudinal increases in somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 are associated with variation in age-at-onset. Hum. Mol. Genet. 29, 2496–2507 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Ishiura, H. et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat. Genet. 50, 581–590 (2018). This study identified the TTTCA repeat expansion in the SAMD12 gene and that the expansions of the same motif in TNRC6A and RAPGEF2 genes contribute to FAME.

    Article  CAS  PubMed  Google Scholar 

  29. Schoser, B. Myotonic dystrophy type 2. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1466/ (2020).

  30. Hunter, J. E., Berry-Kravis, E., Hipp, H. & Todd P. K. FMR1 disorders. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1384/ (2019).

  31. Flavell, J., Franklin, C. & Nestor, P. J. A systematic review of fragile X-associated neuropsychiatric disorders. J. Neuropsychiatry Clin. Neurosci. 35, 110–120 (2023).

    Article  PubMed  Google Scholar 

  32. Nolin, S. L. et al. Fragile X AGG analysis provides new risk predictions for 45-69 repeat alleles. Am. J. Med. Genet. A 161A, 771–778 (2013).

    Article  PubMed  Google Scholar 

  33. Alonso, I. et al. Reduced penetrance of intermediate size alleles in spinocerebellar ataxia type 10. Neurology 66, 1602–1604 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Pulst, S. M. Spinocerebellar ataxia type 2. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1275/ (2019).

  35. Caron, N. S., Wright, G. E. B. & Hayden, M. R. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1305/ (2020).

  36. Steely, C. J., Watkins, W. S., Baird, L. & Jorde, L. B. The mutational dynamics of short tandem repeats in large, multigenerational families. Genome Biol. 23, 253 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao, R. et al. Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur. J. Hum. Genet. 16, 215–222 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Gossye, H., Engelborghs, S., Van Broeckhoven, C. & van der Zee, J. C9orf72 frontotemporal dementia and/or amyotrophic lateral sclerosis. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK268647/ (2020).

  39. Nolin, S. L. et al. Expansions and contractions of the FMR1 CGG repeat in 5,508 transmissions of normal, intermediate, and premutation alleles. Am. J. Med. Genet. A 179, 1148–1156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nolin, S. L. et al. Expansion of the fragile X CGG repeat in females with premutation or intermediate alleles. Am. J. Hum. Genet. 72, 454–464 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nolin, S. L. et al. Fragile X full mutation expansions are inhibited by one or more AGG interruptions in premutation carriers. Genet. Med. 17, 358–364 (2015). Refs. 40–42 laid the basis for assessing the probability or risk of expansions during the transmission of maternal FMR1 intermediate and premutation alleles with varying numbers of CGG repeats and AGG interruptions.

    Article  CAS  PubMed  Google Scholar 

  42. Ciosi, M. et al. A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. EBioMedicine 48, 568–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maroilley, T. et al. A novel FAME1 repeat configuration in a European family identified using a combined genomics approach. Epilepsia Open 8, 659–665 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mizuguchi, T. et al. Complete sequencing of expanded SAMD12 repeats by long-read sequencing and Cas9-mediated enrichment. Brain J. Neurol. 144, 1103–1117 (2021).

    Article  Google Scholar 

  45. Cen, Z. et al. Intronic (TTTGA)n insertion in SAMD12 also causes familial cortical myoclonic tremor with epilepsy. Mov. Disord. 34, 1571–1576 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Corbett, M. A. et al. Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nat. Commun. 10, 4920 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Florian, R. T. et al. Unstable TTTTA/TTTCA expansions in MARCH6 are associated with familial adult myoclonic epilepsy type 3. Nat. Commun. 10, 4919 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Yeetong, P. et al. TTTCA repeat insertions in an intron of YEATS2 in benign adult familial myoclonic epilepsy type 4. Brain J. Neurol. 142, 3360–3366 (2019).

    Article  Google Scholar 

  49. Tsai, Y.-C. et al. Identification of a CCG-enriched expanded allele in patients with myotonic dystrophy type 1 using amplification-free long-read sequencing. J. Mol. Diagn. 24, 1143–1154 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Loureiro, J. R., Castro, A. F., Figueiredo, A. S. & Silveira, I. Molecular mechanisms in pentanucleotide repeat diseases. Cells 11, 205 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peric, S., Pesovic, J., Savic-Pavicevic, D., Rakocevic Stojanovic, V. & Meola, G. Molecular and clinical implications of variant repeats in myotonic dystrophy type 1. Int. J. Mol. Sci. 23, 354 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fan, Y., Xu, Y. & Shi, C. NOTCH2NLC-related disorders: the widening spectrum and genotype-phenotype correlation. J. Med. Genet. 59, 1–9 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Kunst, C. B. et al. FMR1 in global populations. Am. J. Hum. Genet. 58, 513–522 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Liang, Q. et al. Comprehensive analysis of fragile X syndrome: full characterization of the FMR1 locus by long-read sequencing. Clin. Chem. 68, 1529–1540 (2022).

    Article  PubMed  Google Scholar 

  55. Ardui, S. et al. Detecting AGG interruptions in females with a FMR1 premutation by long-read single-molecule sequencing: a 1 year clinical experience. Front. Genet. 9, 150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rajan-Babu, I.-S., Law, H.-Y., Yoon, C.-S., Lee, C. G. & Chong, S. S. Simplified strategy for rapid first-line screening of fragile X syndrome: closed-tube triplet-primed PCR and amplicon melt peak analysis. Expert Rev. Mol. Med. 17, e7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chung, M. Y. et al. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat. Genet. 5, 254–258 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Shao, Y.-R., Yu, J.-Y., Ma, Y., Dong, Y. & Wu, Z.-Y. CAT interruption as a protective factor in Chinese patients with spinocerebellar ataxia type 1. Cerebellum https://doi.org/10.1007/s12311-023-01586-6 (2023).

    Article  PubMed  Google Scholar 

  59. Zühlke, C. et al. Spinocerebellar ataxia type 1 (SCA1): phenotype-genotype correlation studies in intermediate alleles. Eur. J. Hum. Genet. 10, 204–209 (2002).

    Article  PubMed  Google Scholar 

  60. Sobczak, K. & Krzyzosiak, W. J. Patterns of CAG repeat interruptions in SCA1 and SCA2 genes in relation to repeat instability. Hum. Mutat. 24, 236–247 (2004).

    Article  PubMed  Google Scholar 

  61. Moseley, M. L. et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat. Genet. 38, 758–769 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Moseley, M. L. et al. SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum. Mol. Genet. 9, 2125–2130 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Hu, Y. et al. Sequence configuration of spinocerebellar ataxia type 8 repeat expansions in a Japanese cohort of 797 ataxia subjects. J. Neurol. Sci. 382, 87–90 (2017).

    Article  PubMed  Google Scholar 

  64. Mangin, A. et al. Robust detection of somatic mosaicism and repeat interruptions by long-read targeted sequencing in myotonic dystrophy type 1. Int. J. Mol. Sci. 22, 2616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leferink, M. et al. Robust and accurate detection and sizing of repeats within the DMPK gene using a novel TP-PCR test. Sci. Rep. 9, 8280 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Rasmussen, A. et al. High resolution analysis of DMPK hypermethylation and repeat interruptions in myotonic dystrophy type 1. Genes 13, 970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shoubridge, C. & Gecz, J. Polyalanine tract disorders and neurocognitive phenotypes. In Madame Curie Bioscience Database https://www.ncbi.nlm.nih.gov/books/NBK51932/ (2011).

  68. Pan, S. et al. Comprehensive genetic, clinical and electrophysiological studies of familial cortical myoclonic tremor with epilepsy 1 highlight the role of gene configurations. Seizure 87, 69–74 (2021).

    Article  PubMed  Google Scholar 

  69. Zhou, Y. et al. Clinical and genomic analysis of a large Chinese family with familial cortical myoclonic tremor with epilepsy and SAMD12 intronic repeat expansion. Epilepsia Open 6, 102–111 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yeetong, P. et al. Founder effect of the TTTCA repeat insertions in SAMD12 causing BAFME1. Eur. J. Hum. Genet. 29, 343–348 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Miyatake, S. et al. Repeat conformation heterogeneity in cerebellar ataxia, neuropathy, vestibular areflexia syndrome. Brain J. Neurol. 145, 1139–1150 (2022).

    Article  Google Scholar 

  72. Dominik, N. et al. Normal and pathogenic variation of RFC1 repeat expansions: implications for clinical diagnosis. Brain 146, 5060–5069 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Erdmann, H. et al. Parallel in-depth analysis of repeat expansions in ataxia patients by long-read sequencing. Brain J. Neurol. 146, 1831–1843 (2023). Using CRISPR–Cas9 enrichment and long-read sequencing, this study demonstrated the parallel analysis of ten known ataxia-associated STR loci and the identification of the pathogenic repeat expansion in 28 of 100 patients.

    Article  Google Scholar 

  74. Spector, E. et al. Laboratory testing for fragile X, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 23, 799–812 (2021).

    Article  PubMed  Google Scholar 

  75. Sequeiros, J., Seneca, S. & Martindale, J. Consensus and controversies in best practices for molecular genetic testing of spinocerebellar ataxias. Eur. J. Hum. Genet. 18, 1188–1195 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sequeiros, J., Martindale, J. & Seneca, S. EMQN best practice guidelines for molecular genetic testing of SCAs. Eur. J. Hum. Genet. 18, 1173–1176 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Krey, I. et al. Current practice in diagnostic genetic testing of the epilepsies. Epileptic. Disord. 24, 765–786 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tomé, S. & Gourdon, G. Fast assays to detect interruptions in CTG.CAG repeat expansions. Methods Mol. Biol. 2056, 11–23 (2020).

    Article  PubMed  Google Scholar 

  79. Jang, J.-H., Yoon, S. J., Kim, S.-K., Cho, J. W. & Kim, J.-W. Detection methods and status of CAT interruption of ATXN1 in Korean patients with spinocerebellar ataxia type 1. Ann. Lab. Med. 42, 274–277 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Loomis, E. W. et al. Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene. Genome Res. 23, 121–128 (2013). This is the first study to apply long-read sequencing to resolve the genotype and sequence of the FMR1 CGG repeats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Warner, J. P. et al. A general method for the detection of large CAG repeat expansions by fluorescent PCR. J. Med. Genet. 33, 1022–1026 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rajan-Babu, I.-S. & Chong, S. S. Triplet-repeat primed PCR and capillary electrophoresis for characterizing the fragile X mental retardation 1 CGG repeat hyperexpansions. Methods Mol. Biol. 1972, 199–210 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Nethisinghe, S. et al. Interruptions of the FXN GAA repeat tract delay the age at onset of Friedreich’s ataxia in a location dependent manner. Int. J. Mol. Sci. 22, 7507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Botta, A. et al. Identification and characterization of 5’ CCG interruptions in complex DMPK expanded alleles. Eur. J. Hum. Genet. 25, 257–261 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Lian, M., Law, H.-Y., Lee, C. G. & Chong, S. S. Defining the performance parameters of a rapid screening tool for myotonic dystrophy type 1 based on triplet-primed PCR and melt curve analysis. Expert Rev. Mol. Diagn. 16, 1221–1232 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Rajan-Babu, I.-S. & Chong, S. S. Molecular correlates and recent advancements in the diagnosis and screening of FMR1-related disorders. Genes 7, E87 (2016).

    Article  Google Scholar 

  87. Lian, M., Lee, C. G. & Chong, S. S. Robust preimplantation genetic testing strategy for myotonic dystrophy type 1 by bidirectional triplet-primed polymerase chain reaction combined with multi-microsatellite haplotyping following whole-genome amplification. Front. Genet. 10, 589 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Singh, S., Zhang, A., Dlouhy, S. & Bai, S. Detection of large expansions in myotonic dystrophy type 1 using triplet primed PCR. Front. Genet. 5, 94 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Radvansky, J., Ficek, A., Minarik, G., Palffy, R. & Kadasi, L. Effect of unexpected sequence interruptions to conventional PCR and repeat primed PCR in myotonic dystrophy type 1 testing. Diagn. Mol. Pathol. 20, 48 (2011).

    Article  PubMed  Google Scholar 

  90. Kamsteeg, E.-J. et al. Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur. J. Hum. Genet. 20, 1203–1208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Corbett, M. A. et al. Genetics of familial adult myoclonus epilepsy: from linkage studies to noncoding repeat expansions. Epilepsia 64, S14–S21 (2023).

    Article  PubMed  Google Scholar 

  92. Mantere, T. et al. Optical genome mapping enables constitutional chromosomal aberration detection. Am. J. Hum. Genet. 108, 1409–1422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Morato Torres, C. A. et al. ATTCT and ATTCC repeat expansions in the ATXN10 gene affect disease penetrance of spinocerebellar ataxia type 10. HGG Adv. 3, 100137 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ghorbani, F. et al. Prevalence of intronic repeat expansions in RFC1 in Dutch patients with CANVAS and adult-onset ataxia. J. Neurol. 269, 6086–6093 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yuan, Y., Chung, C. Y.-L. & Chan, T.-F. Advances in optical mapping for genomic research. Comput. Struct. Biotechnol. J. 18, 2051–2062 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dolzhenko, E. et al. ExpansionHunter denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. Genome Biol. 21, 102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Dolzhenko, E. et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res. 27, 1895–1903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rajan-Babu, I.-S. et al. Genome-wide sequencing as a first-tier screening test for short tandem repeat expansions. Genome Med. 13, 126 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dashnow, H. et al. STRetch: detecting and discovering pathogenic short tandem repeat expansions. Genome Biol. 19, 121 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tankard, R. M. et al. Detecting expansions of tandem repeats in cohorts sequenced with short-read sequencing data. Am. J. Hum. Genet. 103, 858–873 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dashnow, H. et al. STRling: a k-mer counting approach that detects short tandem repeat expansions at known and novel loci. Genome Biol. 23, 257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Taylor, A. S. et al. Repeat detector: versatile sizing of expanded tandem repeats and identification of interrupted alleles from targeted DNA sequencing. Nar. Genomics Bioinforma. 4, lqac089 (2022).

    Article  Google Scholar 

  103. Robinson, J. T., Thorvaldsdottir, H., Turner, D. & Mesirov, J. P. igv.js: an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics 39, btac830 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Chintalaphani, S. R., Pineda, S. S., Deveson, I. W. & Kumar, K. R. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol. Commun. 9, 98 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Su, Y. et al. Deciphering neurodegenerative diseases using long-read sequencing. Neurology 97, 423–433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. van Dijk, E. L. et al. Genomics in the long-read sequencing era. Trends Genet. 39, 649–671 (2023).

    Article  PubMed  Google Scholar 

  107. Chiara, M., Zambelli, F., Picardi, E., Horner, D. S. & Pesole, G. Critical assessment of bioinformatics methods for the characterization of pathological repeat expansions with single-molecule sequencing data. Brief. Bioinform. 21, 1971–1986 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Chiu, R., Rajan-Babu, I.-S., Friedman, J. M. & Birol, I. Straglr: discovering and genotyping tandem repeat expansions using whole genome long-read sequences. Genome Biol. 22, 224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mitsuhashi, S. et al. Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads. Genome Biol. 20, 58 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Liu, Q., Zhang, P., Wang, D., Gu, W. & Wang, K. Interrogating the ‘unsequenceable’ genomic trinucleotide repeat disorders by long-read sequencing. Genome Med. 9, 65 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Dolzhenko, E. et al. Characterization and visualization of tandem repeats at genome scale. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02057-3 (2024).

    Article  PubMed  Google Scholar 

  112. Jam, H. Z. et al. Genome-wide profiling of genetic variation at tandem repeat from long reads. Preprint at bioRxiv https://doi.org/10.1101/2024.01.20.576266 (2024).

  113. Ren, J., Gu, B. & Chaisson, M. J. P. vamos: variable-number tandem repeats annotation using efficient motif sets. Genome Biol. 24, 175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Miyatake, S. et al. Rapid and comprehensive diagnostic method for repeat expansion diseases using nanopore sequencing. NPJ Genom. Med. 7, 62 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Uppili, B. et al. Sequencing through hyperexpanded Friedreich’s ataxia-GAA repeats by nanopore technology: implications in genotype–phenotype correlation. Brain Commun. 5, fcad020 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Cumming, S. A. et al. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur. J. Hum. Genet. 26, 1635–1647 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ardui, S. et al. Detecting AGG interruptions in male and female FMR1 premutation carriers by single-molecule sequencing. Hum. Mutat. 38, 324–331 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Sone, J. et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat. Genet. 51, 1215–1221 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. DeJesus-Hernandez, M. et al. Long-read targeted sequencing uncovers clinicopathological associations for C9orf72-linked diseases. Brain 144, 1082–1088 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wieben, E. D. et al. Amplification-free long-read sequencing of TCF4 expanded trinucleotide repeats in Fuchs endothelial corneal dystrophy. PLoS One 14, e0219446 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Höijer, I. et al. Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing. Hum. Mutat. 39, 1262–1272 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. McFarland, K. N. et al. SMRT sequencing of long tandem nucleotide repeats in SCA10 reveals unique insight of repeat expansion structure. PLoS One 10, e0135906 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ichikawa, K., Kawahara, R., Asano, T. & Morishita, S. A landscape of complex tandem repeats within individual human genomes. Nat. Commun. 14, 5330 (2023).

    Article  Google Scholar 

  124. Marx, V. Method of the year: long-read sequencing. Nat. Methods 20, 6–11 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Domniz, N. et al. Absence of AGG interruptions is a risk factor for full mutation expansion among Israeli FMR1 premutation carriers. Front. Genet. 9, 606 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yrigollen, C. M. et al. AGG interruptions and maternal age affect FMR1 CGG repeat allele stability during transmission. J. Neurodev. Disord. 6, 24 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Yrigollen, C. M. et al. AGG interruptions within the maternal FMR1 gene reduce the risk of offspring with fragile X syndrome. Genet. Med. 14, 729–736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nolin, S. L. et al. Fragile X analysis of 1112 prenatal samples from 1991 to 2010. Prenat. Diagn. 31, 925–931 (2011).

    Article  PubMed  Google Scholar 

  129. Nolin, S. L. et al. Fragile X AGG analysis provides new risk predictions for 45–69 repeat alleles. Am. J. Med. Genet. A 0, 771–778 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  130. Fernandez-Carvajal, I. et al. Expansion of an FMR1 grey-zone allele to a full mutation in two generations. J. Mol. Diagn. 11, 306–310 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Haham, L. M. et al. Preimplantation genetic diagnosis versus prenatal diagnosis-decision-making among pregnant FMR1 premutation carriers. J. Assist. Reprod. Genet. 35, 2071–2075 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Johansen Taber, K., Lim-Harashima, J., Naemi, H. & Goldberg, J. Fragile X syndrome carrier screening accompanied by genetic consultation has clinical utility in populations beyond those recommended by guidelines. Mol. Genet. Genom. Med. 7, e1024 (2019).

    Article  Google Scholar 

  133. Strom, C. M. et al. Molecular testing for fragile X syndrome: lessons learned from 119,232 tests performed in a clinical laboratory. Genet. Med. 9, 46–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Rousseau, F., Rouillard, P., Morel, M. L., Khandjian, E. W. & Morgan, K. Prevalence of carriers of premutation-size alleles of the FMRI gene–and implications for the population genetics of the fragile X syndrome. Am. J. Hum. Genet. 57, 1006–1018 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kraus-Perrotta, C. & Lagalwar, S. Expansion, mosaicism and interruption: mechanisms of the CAG repeat mutation in spinocerebellar ataxia type 1. Cerebellum Ataxias 3, 20 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Menon, R. P. et al. The role of interruptions in polyQ in the pathology of SCA1. PLoS Genet. 9, e1003648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stevanin, G. et al. Are (CTG)n expansions at the SCA8 locus rare polymorphisms? Nat. Genet. 24, 213 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Worth, P. F., Houlden, H., Giunti, P., Davis, M. B. & Wood, N. W. Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat. Genet. 24, 214–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Miller, J. N. et al. Variant repeats within the DMPK CTG expansion protect function in myotonic dystrophy type 1. Neurol. Genet. 6, e504 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cumming, S. A. et al. Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort. Neurology 93, e995–e1009 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pešović, J. et al. Repeat interruptions modify age at onset in myotonic dystrophy type 1 by stabilizing DMPK expansions in somatic cells. Front. Genet. 9, 601 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Tomé, S. et al. Unusual association of a unique CAG interruption in 5’ of DM1 CTG repeats with intergenerational contractions and low somatic mosaicism. Hum. Mutat. 39, 970–982 (2018).

    Article  PubMed  Google Scholar 

  143. Pešović, J. et al. Molecular genetic and clinical characterization of myotonic dystrophy type 1 patients carrying variant repeats within DMPK expansions. Neurogenetics 18, 207–218 (2017).

    Article  PubMed  Google Scholar 

  144. Ashizawa, T. et al. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am. J. Hum. Genet. 54, 414–423 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Musova, Z. et al. Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene. Am. J. Med. Genet. A. 149A, 1365–1374 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Ballester-Lopez, A. et al. A DM1 family with interruptions associated with atypical symptoms and late onset but not with a milder phenotype. Hum. Mutat. 41, 420–431 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. McDaniel, D. O., Keats, B., Vedanarayanan, V. V. & Subramony, S. H. Sequence variation in GAA repeat expansions may cause differential phenotype display in Friedreich’s ataxia. Mov. Disord. 16, 1153–1158 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Stolle, C. A. et al. Novel, complex interruptions of the GAA repeat in small, expanded alleles of two affected siblings with late-onset Friedreich ataxia. Mov. Disord. 23, 1303–1306 (2008).

    Article  PubMed  Google Scholar 

  149. Bidichandani, S. I. & Delatycki, M. B. Friedreich ataxia. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1281/ (2017).

  150. Findlay Black, H. et al. Frequency of the loss of CAA interruption in the HTT CAG tract and implications for Huntington disease in the reduced penetrance range. Genet. Med. 22, 2108–2113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium. CAG repeat not polyglutamine length determines timing of Huntington’s disease onset. Cell 178, 887–900.e14 (2019).

    Article  Google Scholar 

  152. Bean, L. & Bayrak-Toydemir, P. American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories, 2014 edition: technical standards and guidelines for Huntington disease. Genet. Med. 16, e2 (2014).

    Article  PubMed  Google Scholar 

  153. Dawson, J. et al. A probable cis-acting genetic modifier of Huntington disease frequent in individuals with African ancestry. Hum. Genet. Genomics Adv. 3, 100130 (2022).

    Article  CAS  Google Scholar 

  154. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. Corrado, L. et al. ATXN-2 CAG repeat expansions are interrupted in ALS patients. Hum. Genet. 130, 575–580 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Lee, T. et al. Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum. Mol. Genet. 20, 1697–1700 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chio, A. et al. Exploring the phenotype of Italian patients with ALS with intermediate ATXN2 polyQ repeats. J. Neurol. Neurosurg. Psychiatry 93, 1216–1220 (2022).

    Article  PubMed  Google Scholar 

  158. Neuenschwander, A. G., Thai, K. K., Figueroa, K. P. & Pulst, S. M. Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. JAMA Neurol. 71, 1529–1534 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zhang, M. et al. C9orf72 and ATXN2 repeat expansions coexist in a family with ataxia, dementia, and parkinsonism. Mov. Disord. 32, 158–162 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Fournier, C. et al. Interrupted CAG expansions in ATXN2 gene expand the genetic spectrum of frontotemporal dementias. Acta Neuropathol. Commun. 6, 41 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Charles, P. et al. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology 69, 1970–1975 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Furtado, S. et al. SCA-2 presenting as parkinsonism in an Alberta family: clinical, genetic, and PET findings. Neurology 59, 1625–1627 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Modoni, A. et al. Prevalence of spinocerebellar ataxia type 2 mutation among Italian Parkinsonian patients. Mov. Disord. 22, 324–327 (2007).

    Article  PubMed  Google Scholar 

  164. Kim, Y. E. et al. SCA2 family presenting as typical Parkinson’s disease: 34 year follow up. Parkinsonism Relat. Disord. 40, 69–72 (2017).

    Article  PubMed  Google Scholar 

  165. Casse, F. et al. Detection of ATXN2 expansions in an exome dataset: an underdiagnosed cause of parkinsonism. Mov. Disord. Clin. Pract. 10, 664–669 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Tian, Y. et al. Clinical features of NOTCH2NLC-related neuronal intranuclear inclusion disease. J. Neurol. Neurosurg. Psychiatry 93, 1289–1298 (2022).

    Article  PubMed  Google Scholar 

  167. Tian, Y. et al. Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am. J. Hum. Genet. 105, 166–176 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chen, Z. et al. Phenotypic bases of NOTCH2NLC GGC expansion positive neuronal intranuclear inclusion disease in a Southeast Asian cohort. Clin. Genet. 98, 274–281 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  169. Ma, D. et al. Association of NOTCH2NLC repeat expansions with Parkinson disease. JAMA Neurol. 77, 1559–1563 (2020).

    Article  PubMed  Google Scholar 

  170. Shi, C.-H. et al. NOTCH2NLC intermediate-length repeat expansions are associated with Parkinson disease. Ann. Neurol. 89, 182–187 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Okubo, M. et al. GGC repeat expansion of NOTCH2NLC in adult patients with leukoencephalopathy. Ann. Neurol. 86, 962–968 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Sun, Q.-Y. et al. Expansion of GGC repeat in the human-specific NOTCH2NLC gene is associated with essential tremor. Brain J. Neurol. 143, 222–233 (2020).

    Article  Google Scholar 

  173. Kurosaki, T. & Ashizawa, T. The genetic and molecular features of the intronic pentanucleotide repeat expansion in spinocerebellar ataxia type 10. Front. Genet. 13, 936869 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Matsuura, T. & Ashizawa, T. Spinocerebellar ataxia type 10. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1175/ (2019).

  175. Domingues, B. M. D. et al. Clinical and genetic evaluation of spinocerebellar ataxia type 10 in 16 brazilian families. Cerebellum 18, 849–854 (2019).

    Article  PubMed  Google Scholar 

  176. Matsuura, T. et al. Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: repeat purity as a disease modifier? Am. J. Hum. Genet. 78, 125–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. McFarland, K. N. et al. Repeat interruptions in spinocerebellar ataxia type 10 expansions are strongly associated with epileptic seizures. Neurogenetics 15, 59–64 (2014).

    Article  PubMed  Google Scholar 

  178. Durr, A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 9, 885–894 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Klockgether, T., Mariotti, C. & Paulson, H. L. Spinocerebellar ataxia. Nat. Rev. Dis. Prim. 5, 24 (2019).

    Article  PubMed  Google Scholar 

  180. Groh, M., Lufino, M. M. P., Wade-Martins, R. & Gromak, N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 10, e1004318 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Swinnen, B., Robberecht, W. & Van Den Bosch, L. RNA toxicity in non-coding repeat expansion disorders. EMBO J. 39, e101112 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Miller, J. W. et al. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Green, K. M., Linsalata, A. E. & Todd, P. K. RAN translation — what makes it run? Brain Res. 1647, 30–42 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Castelli, L. M., Huang, W.-P., Lin, Y.-H., Chang, K.-Y. & Hautbergue, G. M. Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders. Biochem. Soc. Trans. 49, 775–792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Guo, S., Nguyen, L. & Ranum, L. P. W. RAN proteins in neurodegenerative disease: repeating themes and unifying therapeutic strategies. Curr. Opin. Neurobiol. 72, 160–170 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Zu, T. et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl Acad. Sci. USA 108, 260–265 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  187. Bunting, E. L., Hamilton, J. & Tabrizi, S. J. Polyglutamine diseases. Curr. Opin. Neurobiol. 72, 39–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Daughters, R. S. et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet. 5, e1000600 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Ayhan, F. et al. SCA8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF3F. EMBO J. 37, e99023 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Khristich, A. N. & Mirkin, S. M. On the wrong DNA track: molecular mechanisms of repeat-mediated genome instability. J. Biol. Chem. 295, 4134–4170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sakamoto, N. et al. GGA*TCC-interrupted triplets in long GAA*TTC repeats inhibit the formation of triplex and sticky DNA structures, alleviate transcription inhibition, and reduce genetic instabilities. J. Biol. Chem. 276, 27178–27187 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Krzyzosiak, W. J. et al. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res. 40, 11–26 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Pearson, C. E., Nichol Edamura, K. & Cleary, J. D. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6, 729–742 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Kim, N. & Jinks-Robertson, S. Transcription as a source of genome instability. Nat. Rev. Genet. 13, 204–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Slean, M. M. et al. Interconverting conformations of slipped-DNA junctions formed by trinucleotide repeats affect repair outcome. Biochemistry 52, 773–785 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Gambelli, A., Ferrando, A., Boncristiani, C. & Schoeftner, S. Regulation and function of R-loops at repetitive elements. Biochimie 214, 141–155 (2023).

    Article  CAS  PubMed  Google Scholar 

  197. Wang, Y. et al. RFC1 AAGGG pentanucleotide repeats form parallel G-quadruplex: structural implications for aberrant molecular cascades in CANVAS. Preprint at bioRxiv https://doi.org/10.1101/2023.08.06.552146 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Abdi, M. H., Zamiri, B., Pazuki, G., Sardari, S. & Pearson, C. E. Pathogenic CANVAS-causing but not non-pathogenic RFC1 DNA/RNA repeat motifs form quadruplex or triplex structures. J. Biol. Chem. 299, 105202 (2023). Refs. 195,196 are the first reports on the formation of G-quadruplex structures by the pathogenic RFC1 AAGGG motif.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Xu, P., Pan, F., Roland, C., Sagui, C. & Weninger, K. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts. Nucleic Acids Res. 48, 2232–2245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Pearson, C. E. et al. Slipped-strand DNAs formed by long (CAG)·(CTG) repeats: slipped-out repeats and slip-out junctions. Nucleic Acids Res. 30, 4534–4547 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Axford, M. M. et al. Detection of slipped-DNAs at the trinucleotide repeats of the myotonic dystrophy type I disease locus in patient tissues. PLoS Genet. 9, e1003866 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Pearson, C. E. et al. Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37, 2701–2708 (1998).

    Article  CAS  PubMed  Google Scholar 

  203. Pollard, L. M. et al. Replication-mediated instability of the GAA triplet repeat mutation in Friedreich ataxia. Nucleic Acids Res. 32, 5962–5971 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hwang, Y. H. et al. Both cis and trans-acting genetic factors drive somatic instability in female carriers of the FMR1 premutation. Sci. Rep. 12, 10419 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  205. Radvanszky, J., Surovy, M., Polak, E. & Kadasi, L. Uninterrupted CCTG tracts in the myotonic dystrophy type 2 associated locus. Neuromuscul. Disord. 23, 591–598 (2013).

    Article  PubMed  Google Scholar 

  206. Chong, S. S. et al. Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 10, 344–350 (1995).

    Article  CAS  PubMed  Google Scholar 

  207. Laffita-Mesa, J. M. et al. Unexpanded and intermediate CAG polymorphisms at the SCA2 locus (ATXN2) in the Cuban population: evidence about the origin of expanded SCA2 alleles. Eur. J. Hum. Genet. 20, 41–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Vetcher, A. A. et al. Sticky DNA, a long GAA.GAA.TTC triplex that is formed intramolecularly, in the sequence of intron 1 of the frataxin gene. J. Biol. Chem. 277, 39217–39227 (2002).

    Article  CAS  PubMed  Google Scholar 

  209. Zhang, J., Fakharzadeh, A., Pan, F., Roland, C. & Sagui, C. Atypical structures of GAA/TTC trinucleotide repeats underlying Friedreich’s ataxia: DNA triplexes and RNA/DNA hybrids. Nucleic Acids Res. 48, 9899–9917 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Yanovsky-Dagan, S. et al. Uncovering the role of hypermethylation by CTG expansion in myotonic dystrophy type 1 using mutant human embryonic stem cells. Stem Cell Rep. 5, 221–231 (2015).

    Article  CAS  Google Scholar 

  211. Yin, Q. et al. Dosage effect of multiple genes accounts for multisystem disorder of myotonic dystrophy type 1. Cell Res. 30, 133–145 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Santoro, M. et al. Expansion size and presence of CCG/CTC/CGG sequence interruptions in the expanded CTG array are independently associated to hypermethylation at the DMPK locus in myotonic dystrophy type 1 (DM1). Biochim. Biophys. Acta 1852, 2645–2652 (2015).

    Article  CAS  PubMed  Google Scholar 

  213. Hildonen, M., Knak, K. L., Dunø, M., Vissing, J. & Tümer, Z. Stable longitudinal methylation levels at the CpG sites flanking the CTG repeat of DMPK in patients with myotonic dystrophy type 1. Genes 11, 936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Hagerman, K. A. et al. The ATTCT repeats of spinocerebellar ataxia type 10 display strong nucleosome assembly which is enhanced by repeat interruptions. Gene 434, 29–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  215. Wang, Y.-H. Chromatin structure of repeating CTG/CAG and CGG/CCG sequences in human disease. Front. Biosci. J. Virtual Libr. 12, 4731–4741 (2007).

    Article  CAS  Google Scholar 

  216. Mulvihill, D. J., Nichol Edamura, K., Hagerman, K. A., Pearson, C. E. & Wang, Y.-H. Effect of CAT or AGG interruptions and CpG methylation on nucleosome assembly upon trinucleotide repeats on spinocerebellar ataxia, type 1 and fragile X syndrome. J. Biol. Chem. 280, 4498–4503 (2005).

    Article  CAS  PubMed  Google Scholar 

  217. Volle, C. B. & Delaney, S. AGG/CCT interruptions affect nucleosome formation and positioning of healthy-length CGG/CCG triplet repeats. BMC Biochem. 14, 33 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ruiz Buendía, G. A. et al. Three-dimensional chromatin interactions remain stable upon CAG/CTG repeat expansion. Sci. Adv. 6, eaaz4012 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  219. Ciesiolka, A., Jazurek, M., Drazkowska, K. & Krzyzosiak, W. J. Structural characteristics of simple RNA repeats associated with disease and their deleterious protein interactions. Front. Cell. Neurosci. 11, 97 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Stefl, R., Skrisovska, L. & Allain, F. H.-T. RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep. 6, 33–38 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Jolma, A. et al. Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences. Genome Res. 30, 962–973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Baud, A., Derbis, M., Tutak, K. & Sobczak, K. Partners in crime: proteins implicated in RNA repeat expansion diseases. Wiley Interdiscip. Rev. RNA 13, e1709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kearse, M. G. et al. CGG repeat-associated non-AUG translation utilizes a cap-dependent scanning mechanism of initiation to produce toxic proteins. Mol. Cell 62, 314–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Rousseaux, M. W. C. et al. ATXN1-CIC complex is the primary driver of cerebellar pathology in spinocerebellar ataxia type 1 through a gain-of-function mechanism. Neuron 97, 1235–1243.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Klement, I. A. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53 (1998).

    Article  CAS  PubMed  Google Scholar 

  226. Nethisinghe, S. et al. PolyQ tract toxicity in SCA1 is length dependent in the absence of CAG repeat interruption. Front. Cell. Neurosci. 12, 200 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Sobczak, K. & Krzyzosiak, W. J. CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J. Biol. Chem. 280, 3898–3910 (2005).

    Article  CAS  PubMed  Google Scholar 

  228. McGurk, L. et al. Toxicity of pathogenic ataxin-2 in Drosophila shows dependence on a pure CAG repeat sequence. Hum. Mol. Genet. 30, 1797–1810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Li, P. P. et al. RNA toxicity and perturbation of rRNA processing in spinocerebellar ataxia type 2. Mov. Disord. 36, 2519–2529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Li, L.-B., Yu, Z., Teng, X. & Bonini, N. M. RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453, 1107–1111 (2008). This study demonstrated the pathogenicity of CAG repeat mRNA in the SCA3 Drosophila model and that CAA interruptions alleviated repeat mRNA toxicity.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  231. Johnson, S. L. et al. Drosophila as a model of unconventional translation in spinocerebellar ataxia type 3. Cells 11, 1223 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wen, J. et al. Rare tandem repeat expansions associate with genes involved in synaptic and neuronal signaling functions in schizophrenia. Mol. Psychiatry 28, 475–482 (2023).

    Article  CAS  PubMed  Google Scholar 

  233. Trost, B. et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 185, 4409–4427.e18 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Mitra, I. et al. Patterns of de novo tandem repeat mutations and their role in autism. Nature 589, 246–250 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  235. Trost, B. et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature 586, 80–86 (2020). This study reported the contributions of different types of genetic variants to autism spectrum disorder in the MSSNG and Simons Simplex Collection cohorts and estimated that tandem repeat expansions contribute to autism in 9.2–17.4% of the cases.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  236. Fotsing, S. F. et al. The impact of short tandem repeat variation on gene expression. Nat. Genet. 51, 1652–1659 (2019). This study identified STRs whose repeat lengths showed associations with the expressions of neighbouring genes and highlighted their potential contributions to complex traits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Erwin, G. S. et al. Recurrent repeat expansions in human cancer genomes. Nature 613, 96–102 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  238. Margoliash, J. et al. Polymorphic short tandem repeats make widespread contributions to blood and serum traits. Cell Genomics 3, 100458 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Hannan, A. J. Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for ‘missing heritability’. Trends Genet. 26, 59–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  240. Maroilley, T. & Tarailo-Graovac, M. Uncovering missing heritability in rare diseases. Genes 10, 275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Fiszer, A. All roads lead to cure: diversity of oligonucleotides in DM1 therapy. Mol. Ther. Nucleic Acids 32, 898–899 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Zain, R. & Smith, C. I. E. Targeted oligonucleotides for treating neurodegenerative tandem repeat diseases. Neurother. J. Am. Soc. Exp. Neurother. 16, 248–262 (2019).

    CAS  Google Scholar 

  243. Hu, J. et al. Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat. Biotechnol. 27, 478–484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hauser, S. et al. Allele-specific targeting of mutant ataxin-3 by antisense oligonucleotides in SCA3-iPSC-derived neurons. Mol. Ther. Nucleic Acids 27, 99–108 (2022).

    Article  CAS  PubMed  Google Scholar 

  245. Prudencio, M. et al. Toward allele-specific targeting therapy and pharmacodynamic marker for spinocerebellar ataxia type 3. Sci. Transl. Med. 12, eabb7086 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Shin, J. W. et al. Allele-specific silencing of the gain-of-function mutation in Huntington’s disease using CRISPR/Cas9. JCI Insight 7, e141042 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Geoffroy, V. et al. AnnotSV: an integrated tool for structural variations annotation. Bioinformatics 34, 3572–3574 (2018).

    Article  CAS  PubMed  Google Scholar 

  248. Wallace, S. E. & Bean, L. J. H. Resources for genetics professionals — genetic disorders caused by nucleotide repeat expansions and contractions. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK535148/ (2022).

  249. Lehesjoki, A. E. & Kälviäinen, R. Progressive myoclonic epilepsy type 1. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1142/ (2020).

  250. Toyoshima, Y., Onodera, O., Yamada, M., Tsuji, S. & Takahashi, H. Spinocerebellar ataxia type 17. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1438/ (2022).

  251. Trollet, C. et al. Oculopharyngeal muscular dystrophy. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1126/ (2020).

  252. La Spada, A. Spinal and bulbar muscular atrophy. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1333/ (2022).

  253. Prades, S. et al. DRPLA. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1491/ (2023).

  254. La Spada, A. R. Spinocerebellar ataxia type 7. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1256/ (2020).

  255. Matilla-Dueñas, A. & Volpini, V. Spinocerebellar ataxia type 37. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK541729/ (2019).

  256. Cortese, A., Reilly, M. M. & Houlden, H. RFC1 CANVAS/spectrum disorder. In GeneReviews (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK564656/ (2020).

  257. Murray, A. et al. Population screening at the FRAXA and FRAXE loci: molecular analyses of boys with learning difficulties and their mothers. Hum. Mol. Genet. 5, 727–735 (1996).

    Article  CAS  PubMed  Google Scholar 

  258. Knight, S. J. L. et al. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74, 127–134 (1993).

    Article  CAS  PubMed  Google Scholar 

  259. Liu, T. et al. Simultaneous screening of the FRAXA and FRAXE loci for rapid detection of FMR1 CGG and/or AFF2 CCG repeat expansions by triplet-primed PCR. J. Mol. Diagn. 23, 941–951 (2021).

    Article  CAS  PubMed  Google Scholar 

  260. Watanabe, M. et al. Mitotic and meiotic stability of the CAG repeat in the X-linked spinal and bulbar muscular atrophy gene. Clin. Genet. 50, 133–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  261. Sato, T. et al. Transgenic mice harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients. Hum. Mol. Genet. 8, 99–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  262. Figueroa, K. P. et al. Genetic analysis of age at onset variation in spinocerebellar ataxia type 2. Neurol. Genet. 3, e155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Cancel, G. et al. Somatic mosaicism of the CAG repeat expansion in spinocerebellar ataxia type 3/Machado-Joseph disease. Hum. Mutat. 11, 23–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  264. Goswami, R. et al. The molecular basis of spinocerebellar ataxia type 7. Front. Neurosci. 16, 818757 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Matsuura, T. et al. Somatic and germline instability of the ATTCT repeat in spinocerebellar ataxia type 10. Am. J. Hum. Genet. 74, 1216–1224 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Almeida, T. et al. Ancestral origin of the ATTCT repeat expansion in spinocerebellar ataxia type 10 (SCA10). PLoS One 4, e4553 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  267. Sato, N. et al. Spinocerebellar ataxia type 31 is associated with “Inserted” penta-nucleotide repeats containing (TGGAA)n. Am. J. Hum. Genet. 85, 544–557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Day, J. W. et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 60, 657–664 (2003).

    Article  CAS  PubMed  Google Scholar 

  269. Pellerin, D. et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. N. Engl. J. Med. 388, 128–141 (2023).

    Article  CAS  PubMed  Google Scholar 

  270. Rafehi, H. et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am. J. Hum. Genet. 110, 105–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  271. Allen, E. G. et al. Refining the risk for fragile X-associated primary ovarian insufficiency (FXPOI) by FMR1 CGG repeat size. Genet. Med. 23, 1648–1655 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Martin, E. M. et al. Men with FMR1 premutation alleles of less than 71 CGG repeats have low risk of being affected with fragile X-associated tremor/ataxia syndrome (FXTAS). J. Med. Genet. 59, 706–709 (2022).

    Article  CAS  PubMed  Google Scholar 

  273. Monrós, E. et al. Phenotype correlation and intergenerational dynamics of the Friedreich ataxia GAA trinucleotide repeat. Am. J. Hum. Genet. 61, 101–110 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Brown, A. F. et al. Friedreich’s ataxia frequency in a large cohort of genetically undetermined ataxia patients. Front. Neurol. 12, 736253 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Deng, J. et al. Expansion of GGC repeat in GIPC1 is associated with oculopharyngodistal myopathy. Am. J. Hum. Genet. 106, 793–804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Kumutpongpanich, T. et al. Clinicopathologic features of oculopharyngodistal myopathy with LRP12 CGG repeat expansions compared with other oculopharyngodistal myopathy subtypes. JAMA Neurol. 78, 853–863 (2021).

    Article  PubMed  Google Scholar 

  277. Zou, J. et al. A Chinese SCA36 pedigree analysis of NOP56 expansion region based on long-read sequencing. Front. Genet. 14, 1110307 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Fukuda, H. et al. Father-to-offspring transmission of extremely long NOTCH2NLC repeat expansions with contractions: genetic and epigenetic profiling with long-read sequencing. Clin. Epigenetics 13, 204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Yu, J. et al. GGC repeat expansions in NOTCH2NLC causing a phenotype of distal motor neuropathy and myopathy. Ann. Clin. Transl. Neurol. 8, 1330–1342 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Yu, J. et al. The CGG repeat expansion in RILPL1 is associated with oculopharyngodistal myopathy type 4. Am. J. Hum. Genet. 109, 533–541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Rasmussen, A. et al. Anticipation and intergenerational repeat instability in spinocerebellar ataxia type 17. Ann. Neurol. 61, 607–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  282. Tan, D. et al. CAG repeat expansion in THAP11 is associated with a novel spinocerebellar ataxia. Mov. Disord. 38, 1282–1293 (2023).

    Article  CAS  PubMed  Google Scholar 

  283. Ananda, G. et al. Microsatellite interruptions stabilize primate genomes and exist as population-specific single nucleotide polymorphisms within individual human genomes. PLoS Genet. 10, e1004498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Mularoni, L., Guigó, R. & Albà, M. M. Mutation patterns of amino acid tandem repeats in the human proteome. Genome Biol. 7, R33 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Seixas, A. I. et al. A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am. J. Hum. Genet. 101, 87–103 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Loureiro, J. R. et al. Mutational mechanism for DAB1 (ATTTC)n insertion in SCA37: ATTTT repeat lengthening and nucleotide substitution. Hum. Mutat. 40, 404–412 (2019).

    Article  CAS  PubMed  Google Scholar 

  287. Loire, E., Higuet, D., Netter, P. & Achaz, G. Evolution of coding microsatellites in primate genomes. Genome Biol. Evol. 5, 283–295 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Shimada, M. K. et al. Selection pressure on human STR loci and its relevance in repeat expansion disease. Mol. Genet. Genomics 291, 1851–1869 (2016).

    Article  CAS  PubMed  Google Scholar 

  289. Verbiest, M. et al. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J. Evol. Biol. 36, 321–336 (2023).

    Article  CAS  PubMed  Google Scholar 

  290. Sulovari, A. et al. Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc. Natl Acad. Sci. USA 116, 23243–23253 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  291. Albà, M. M., Santibáñez-Koref, M. F. & Hancock, J. M. Conservation of polyglutamine tract size between mice and humans depends on codon interruption. Mol. Biol. Evol. 16, 1641–1644 (1999).

    Article  PubMed  Google Scholar 

  292. Wright, S. E. & Todd, P. K. Native functions of short tandem repeats. eLife 12, e84043 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Liquori, C. L. et al. Myotonic dystrophy type 2: human founder haplotype and evolutionary conservation of the repeat tract. Am. J. Hum. Genet. 73, 849–862 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by the Canadian Institutes of Health Research (CIHR) Project Grant (PJT-169074) to J.M.F. and I.-S.R.-B. I.-S.R.-B. is funded by the CIHR Research Excellence, Diversity, and Independence (REDI) Early Career Transition Award (DI2-190730). The authors thank the reviewers, S. Vij, G. L. Sequiera, C. Guimond, and S. Adam for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

I.-S.R.-B. and E.D. researched the literature and wrote the article. I.-S.R.-B. and J.M.F. provided substantial contributions to discussions of the content. I.-S.R.-B., M.A.E. and J.M.F. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Indhu-Shree Rajan-Babu.

Ethics declarations

Competing interests

I.-S.R.-B. and J.M.F. declare no competing interests. E.D. and M.A.E. are employees and shareholders of Pacific Biosciences.

Peer review

Peer review information

Nature Reviews Genetics thanks Vincent Dion, Anthony J. Hannan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Dominant-negative

Interference of mutant protein with the cellular functions of wild-type protein.

Gain-of-function

Repeat expansions lead to the production of expanded mRNA and/or protein with toxic properties.

Genetic anticipation

Earlier onset and more severe presentation of repeat expansion disorders with each passing generation.

Loss-of-function

Repeat expansions lead to the generation of non-functional gene product.

Non-reference expansions

Expansion of a previously unknown or unannotated repeat motif.

Paired-end reads

Reads (each 150–250 base pairs in length) generated from both ends of the DNA fragments (approximately 350–650 base pairs) in next-generation sequencing.

Repeat-associated non-AUG (RAN) translation

Translation initiated outside of the canonical AUG start codon that produces proteins corresponding to the different STR reading frames.

Soft-clipped

5′ and/or 3′ ends of reads that do not map to the reference sequence.

Somatic instability

Cell-specific or tissue-specific repeat length variations that are driven by age.

STR expansions

Repeat length at a disease-associated STR locus exceeds the known pathogenicity threshold.

STR genotyping

Determination of the number of repeat motifs in the STR locus.

Trans-acting genetic modifiers

Genetic variants that occur outside the implicated STR sequence and modify repeat expansion disorders.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan-Babu, IS., Dolzhenko, E., Eberle, M.A. et al. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00696-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00696-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing