Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamics of ER stress-induced gene regulation in plants

Abstract

Endoplasmic reticulum (ER) stress is a potentially lethal condition that is induced by the abnormal accumulation of unfolded or misfolded secretory proteins in the ER. In eukaryotes, ER stress is managed by the unfolded protein response (UPR) through a tightly regulated, yet highly dynamic, reprogramming of gene transcription. Although the core principles of the UPR are similar across eukaryotes, unique features of the plant UPR reflect the adaptability of plants to their ever-changing environments and the need to balance the demands of growth and development with the response to environmental stressors. The past decades have seen notable progress in understanding the mechanisms underlying ER stress sensing and signalling transduction pathways, implicating the UPR in the effects of physiological and induced ER stress on plant growth and crop yield. Facilitated by sequencing technologies and advances in genetic and genomic resources, recent efforts have driven the discovery of transcriptional regulators and elucidated the mechanisms that mediate the dynamic and precise gene regulation in response to ER stress at the systems level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The ER stress response in plants versus metazoans.
Fig. 2: Historical timeline of plant UPR research.
Fig. 3: Transcriptional coregulation of bZIP28 and bZIP60 in response to various stress conditions.
Fig. 4: Experimental designs for analysing responses to ER stress in Arabidopsis.
Fig. 5: A schematic model for gene regulation in plant UPR.

Similar content being viewed by others

References

  1. Darwin, C. On the Origin of Species (John Murray, 1859).

  2. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Park, C. J. & Park, J. M. Endoplasmic reticulum plays a critical role in integrating signals generated by both biotic and abiotic stress in plants. Front. Plant Sci. 10, 399 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Christianson, J. C., Jarosch, E. & Sommer, T. Mechanisms of substrate processing during ER-associated protein degradation. Nat. Rev. Mol. Cell Biol. 24, 777–796 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, M. H., Ploegh, H. L. & Weissman, J. S. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334, 1086–1090 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Yang, M. et al. ER-phagy: a new regulator of ER homeostasis. Front. Cell Dev. Biol. 9, 684526 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Crosti, P., Malerba, M. & Bianchetti, R. Tunicamycin and brefeldin A induce in plant cells a programmed cell death showing apoptotic features. Protoplasma 216, 31–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Zuppini, A., Navazio, L. & Mariani, P. Endoplasmic reticulum stress-induced programmed cell death in soybean cells. J. Cell Sci. 117, 2591–2598 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Pastor-Cantizano, N., Ko, D. K., Angelos, E., Pu, Y. & Brandizzi, F. Functional diversification of ER stress responses in Arabidopsis. Trends Biochem. Sci. 45, 123–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Angelos, E. & Brandizzi, F. The UPR regulator IRE1 promotes balanced organ development by restricting TOR-dependent control of cellular differentiation in Arabidopsis. Plant J. 109, 1229–1248 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Ruberti, C., Lai, Y. & Brandizzi, F. Recovery from temporary endoplasmic reticulum stress in plants relies on the tissue-specific and largely independent roles of bZIP28 and bZIP60, as well as an antagonizing function of BAX-Inhibitor 1 upon the pro-adaptive signaling mediated by bZIP28. Plant J. 93, 155–165 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Pu, Y., Ruberti, C., Angelos, E. R. & Brandizzi, F. AtIRE1C, an unconventional isoform of the UPR master regulator AtIRE1, is functionally associated with AtIRE1B in Arabidopsis gametogenesis. Plant Direct 3, e00187 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bao, Y., Bassham, D. C. & Howell, S. H. A functional unfolded protein response is required for normal vegetative development. Plant Physiol. 179, 1834–1843 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lisbona, F. et al. BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1alpha. Mol. Cell 33, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagano, M. et al. Arabidopsis Bax inhibitor-1 promotes sphingolipid synthesis during cold stress by interacting with ceramide-modifying enzymes. Planta 240, 77–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Godfray, H. C. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ko, D. K. & Brandizzi, F. Advanced genomics identifies growth effectors for proteotoxic ER stress recovery in Arabidopsis thaliana. Commun. Biol. 5, 16 (2022). Time-course RNA-seq analyses in UPR mutants under ER stress recovery reveal distinct transcriptional activities of UPR-bZIP TFs through coexpression network analyses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, J. S., Yamaguchi-Shinozaki, K. & Shinozaki, K. ER-anchored transcription factors bZIP17 and bZIP28 regulate root elongation. Plant Physiol. 176, 2221–2230 (2018). RNA-seq analyses in genetic mutants demonstrate that bZIP17 does not serve as a core regulator in plant UPR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, J. X. & Howell, S. H. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. Plant Cell 22, 782–796 (2010). This study illustrates that NF-Y factors amplify the transcriptional activities of bZIP28, marking NF-Y factors as the first reported coregulators of UPR-bZIP TFs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nawkar, G. M. et al. HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis. Proc. Natl Acad. Sci. USA 114, 2084–2089 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ko, D. K. & Brandizzi, F. Transcriptional competition shapes proteotoxic ER stress resolution. Nat. Plants 8, 481–490 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ko, D. K., Kim, J. Y., Thibault, E. A. & Brandizzi, F. An IRE1-proteasome system signalling cohort controls cell fate determination in unresolved proteotoxic stress of the plant endoplasmic reticulum. Nat. Plants 9, 1333–1346 (2023). An E3 ligase, PIR1, is identified as a pro-death effector downstream of IRE1, providing new insights in the mechanisms for cell-fate control in ER stress in plants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, J. S. et al. Arabidopsis TBP-ASSOCIATED FACTOR 12 ortholog NOBIRO6 controls root elongation with unfolded protein response cofactor activity. Proc. Natl Acad. Sci. USA 119, e2120219119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lai, Y. S. et al. Salicylic acid-independent role of NPR1 is required for protection from proteotoxic stress in the plant endoplasmic reticulum. Proc. Natl Acad. Sci. USA 115, E5203–E5212 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song, Z. T. et al. Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants. Proc. Natl Acad. Sci. USA 112, 2900–2905 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Howell, S. H. Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol. 64, 477–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Herath, V. et al. The plant endoplasmic reticulum UPRome: a repository and pathway browser for genes involved in signaling networks linked to the endoplasmic reticulum. Plant Direct 6, e431 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article  ADS  Google Scholar 

  29. Yamada, K. et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Martínez, I. M. & Chrispeels, M. J. Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell 15, 561–576 (2003). Together with Noh et al. (2003), the authors pioneer the documentation of ER stress-inducible transcriptomic alterations in Arabidopsis.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Noh, S.-J., Kwon, C. S., Oh, D.-H., Moon, J. S. & Chung, W.-I. Expression of an evolutionarily distinct novel BiP gene during the unfolded protein response in Arabidopsis thaliana. Gene 311, 81–91 (2003). Alongside Martínez and Chrispeels (2003), the authors contribute to the initial reporting of ER stress-inducible transcriptomic alterations in Arabidopsis.

    Article  CAS  PubMed  Google Scholar 

  32. Iwata, Y., Sakiyama, M., Lee, M.-H. & Koizumi, N. Transcriptomic response of Arabidopsis thaliana to tunicamycin-induced endoplasmic reticulum stress. Plant Biotechnol. 27, 161–171 (2010).

    Article  CAS  Google Scholar 

  33. Kamauchi, S., Nakatani, H., Nakano, C. & Urade, R. Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J. 272, 3461–3476 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Mishiba, K. et al. Defects in IRE1 enhance cell death and fail to degrade mRNAs encoding secretory pathway proteins in the Arabidopsis unfolded protein response. Proc. Natl Acad. Sci. USA 110, 5713–5718 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Srivastava, R. et al. Response to persistent ER stress in plants: a multiphasic process that transitions cells from prosurvival activities to cell death. Plant Cell 30, 1220–1242 (2018). Conducting time-course RNA-seq analyses in maize, the authors unveil multi-phasic transcriptomic waves during persistent ER stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Herath, V. & Verchot, J. Comprehensive transcriptome analysis reveals genome-wide changes associated with endoplasmic reticulum (ER) stress in potato (Solanum tuberosum L.). Int. J. Mol. Sci. 23, 13795 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, Z., Tang, J., Srivastava, R., Bassham, D. C. & Howell, S. H. The transcription factor bZIP60 links the unfolded protein response to the heat stress response in maize. Plant Cell 32, 3559–3575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lemon, B. & Tjian, R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14, 2551–2569 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Gaudinier, A. et al. Enhanced Y1H assays for Arabidopsis. Nat. Methods 8, 1053–1055 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Ko, D. K. & Brandizzi, F. A temporal hierarchy underpins the transcription factor-DNA interactome of the maize UPR. Plant J. 105, 254–270 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Deng, Y. et al. Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc. Natl Acad. Sci. USA 108, 7247–7252 (2011). Together with Nagashima et al. (2011), the authors reveal the unconventional splicing activity of IRE1 on bZIP60 mRNA under ER stress.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nagashima, Y. et al. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Sci. Rep. 1, 29 (2011). Together with Deng et al. (2011), the authors demonstrate the unconventional splicing activity of IRE1 on bZIP60 mRNA under ER stress.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Diwan, D., Liu, X., Andrews, C. F. & Pajerowska-Mukhtar, K. M. A quantitative Arabidopsis IRE1a ribonuclease-dependent in vitro mRNA cleavage assay for functional studies of substrate splicing and decay activities. Front. Plant Sci. 12, 707378 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bao, Y. et al. IRE1B degrades RNAs encoding proteins that interfere with the induction of autophagy by ER stress in Arabidopsis thaliana. Autophagy 14, 1562–1573 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, Y. & Brandizzi, F. AtIRE1A/AtIRE1B and AGB1 independently control two essential unfolded protein response pathways in Arabidopsis. Plant J. 69, 266–277 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Afrin, T., Costello, C. N., Monella, A. N., Kørner, C. J. & Pajerowska-Mukhtar, K. M. The interplay of GTP-binding protein AGB1 with ER stress sensors IRE1a and IRE1b modulates Arabidopsis unfolded protein response and bacterial immunity. Plant Signal. Behav. 17, 2018857 (2022).

    Article  PubMed  Google Scholar 

  48. Sun, L. et al. The lumen-facing domain is important for the biological function and organelle-to-organelle movement of bZIP28 during ER stress in Arabidopsis. Mol. Plant 6, 1605–1615 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, J. X., Srivastava, R., Che, P. & Howell, S. H. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell 19, 4111–4119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iwata, Y. et al. Activation of the Arabidopsis membrane-bound transcription factor bZIP28 is mediated by site-2 protease, but not site-1 protease. Plant J. 91, 408–415 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Lageix, S. et al. Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biol. 8, 134 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yang, Z. T. et al. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet. 10, e1004243 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yang, Z. T. et al. A plasma membrane‐tethered transcription factor, NAC 062/ANAC 062/NTL 6, mediates the unfolded protein response in Arabidopsis. Plant J. 79, 1033–1043 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Li, Y., Williams, B. & Dickman, M. Arabidopsis B-cell lymphoma2 (Bcl-2)-associated athanogene 7 (BAG7)-mediated heat tolerance requires translocation, sumoylation and binding to WRKY29. New Phytol. 214, 695–705 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Iwata, Y., Fedoroff, N. V. & Koizumi, N. Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell 20, 3107–3121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kokame, K., Kato, H. & Miyata, T. Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J. Biol. Chem. 276, 9199–9205 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Hayashi, S., Takahashi, H., Wakasa, Y., Kawakatsu, T. & Takaiwa, F. Identification of a cis-element that mediates multiple pathways of the endoplasmic reticulum stress response in rice. Plant J. 74, 248–257 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Sun, L. et al. The plant-specific transcription factor gene NAC103 is induced by bZIP60 through a new cis-regulatory element to modulate the unfolded protein response in Arabidopsis. Plant J. 76, 274–286 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, J. X., Srivastava, R., Che, P. & Howell, S. H. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J. 51, 897–909 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, J. X., Srivastava, R. & Howell, S. H. Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant Cell Environ. 31, 1735–1743 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Ishikawa, T., Watanabe, N., Nagano, M., Kawai-Yamada, M. & Lam, E. Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ. 18, 1271–1278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Watanabe, N. & Lam, E. BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J. Biol. Chem. 283, 3200–3210 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, L., Chen, H., Brandizzi, F., Verchot, J. & Wang, A. The UPR branch IRE1-bZIP60 in plants plays an essential role in viral infection and is complementary to the only UPR pathway in yeast. PLoS Genet. 11, e1005164 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Henriquez-Valencia, C. et al. bZIP17 and bZIP60 regulate the expression of BiP3 and other salt stress responsive genes in an UPR-independent manner in Arabidopsis thaliana. J. Cell. Biochem. 116, 1638–1645 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Sparks, E., Wachsman, G. & Benfey, P. N. Spatiotemporal signalling in plant development. Nat. Rev. Genet. 14, 631–644 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115–155 (1965).

    Article  Google Scholar 

  67. Deng, Y., Srivastava, R. & Howell, S. H. Protein kinase and ribonuclease domains of IRE1 confer stress tolerance, vegetative growth, and reproductive development in Arabidopsis. Proc. Natl Acad. Sci. USA 110, 19633–19638 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ruberti, C. & Brandizzi, F. Unfolded protein response in Arabidopsis. Methods Mol. Biol. 1691, 231–238 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu, C. Y. & Nakamura, Y. Smaller Trichomes With Variable Branches (SVB) and its homolog SVBL act downstream of transcription factor NAC089 and function redundantly in Arabidopsis unfolded protein response. J. Exp. Bot. 74, 5870–5880 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, Y. et al. Stress response proteins NRP1 and NRP2 are pro-survival factors that inhibit cell death during ER stress. Plant Physiol. 187, 1414–1427 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nagashima, Y., Iwata, Y., Ashida, M., Mishiba, K. & Koizumi, N. Exogenous salicylic acid activates two signaling arms of the unfolded protein response in Arabidopsis. Plant Cell Physiol. 55, 1772–1778 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Moreno, A. A. et al. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS ONE 7, e31944 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, S. S. et al. Tissue-specific transcriptomics reveals an important role of the unfolded protein response in maintaining fertility upon heat stress in Arabidopsis. Plant Cell 29, 1007–1023 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, B. et al. Ufmylation reconciles salt stress-induced unfolded protein responses via ER-phagy in Arabidopsis. Proc. Natl Acad. Sci. USA 120, e2208351120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reyes-Impellizzeri, S. & Moreno, A. A. The endoplasmic reticulum role in the plant response to abiotic stress. Front. Plant Sci. 12, 755447 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gao, H., Brandizzi, F., Benning, C. & Larkin, R. M. A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 105, 16398–16403 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaufmann, K., Pajoro, A. & Angenent, G. C. Regulation of transcription in plants: mechanisms controlling developmental switches. Nat. Rev. Genet. 11, 830–842 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, H., Zhu, J., Gong, Z. & Zhu, J. K. Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104–119 (2022).

    Article  PubMed  Google Scholar 

  79. Alvarez, J. M., Brooks, M. D., Swift, J. & Coruzzi, G. M. Time-based systems biology approaches to capture and model dynamic gene regulatory networks. Annu. Rev. Plant Biol. 72, 105–131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Roy, B. & Lee, A. S. Transduction of calcium stress through interaction of the human transcription factor CBF with the proximal CCAAT regulatory element of the grp78/BiP promoter. Mol. Cell. Biol. 15, 2263–2274 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ezer, D. et al. The G-box transcriptional regulatory code in Arabidopsis. Plant Physiol. 175, 628–640 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dröge-Laser, W., Snoek, B. L., Snel, B. & Weiste, C. The Arabidopsis bZIP transcription factor family—an update. Curr. Opin. Plant Biol. 45, 36–49 (2018).

    Article  PubMed  Google Scholar 

  83. Bailey, P. C. et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15, 2497–2502 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Osterlund, M. T., Hardtke, C. S., Wei, N. & Deng, X. W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462–466 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Song, L. et al. A transcription factor hierarchy defines an environmental stress response network. Science 354, eaag1550 (2016).

    Article  Google Scholar 

  86. Skubacz, A., Daszkowska-Golec, A. & Szarejko, I. The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front. Plant Sci. 7, 1884 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cao, H., Bowling, S. A., Gordon, A. S. & Dong, X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6, 1583–1592 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, L. Y. et al. Orosomucoid proteins limit endoplasmic reticulum stress in plants. New Phytol. 240, 1134–1148 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Robles, L. M., Wampole, J. S., Christians, M. J. & Larsen, P. B. Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response, including ERF1 induction. J. Exp. Bot. 58, 2627–2639 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Lämke, J. & Bäurle, I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 18, 124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Quint, M. et al. Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2, 15190 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat. Rev. Genet. 9, 15–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Oberkofler, V., Pratx, L. & Bäurle, I. Epigenetic regulation of abiotic stress memory: maintaining the good things while they last. Curr. Opin. Plant Biol. 61, 102007 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Lai, Y. S. et al. Systemic signaling contributes to the unfolded protein response of the plant endoplasmic reticulum. Nat. Commun. 9, 3918 (2018). This study highlights that plant UPR exhibits non-cell autonomous signalling partially reliant on the systematic movement of bZIP60.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  95. Eulgem, T. Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci. 10, 71–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Seyfferth, C. et al. Advances and opportunities in single-cell transcriptomics for plant research. Annu. Rev. Plant Biol. 72, 847–866 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ko, D. K. & Brandizzi, F. Network‐based approaches for understanding gene regulation and function in plants. Plant J. 104, 302–317 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Galante, E., Vitale, A., Manzocchi, L., Soave, C. & Salamini, F. Genetic control of a membrane component and zein deposition in maize endosperm. Mol. Genet. Genom. 192, 316–321 (1983).

    Article  CAS  Google Scholar 

  99. Boston, R. S., Fontes, E. B., Shank, B. B. & Wrobel, R. L. Increased expression of the maize immunoglobulin binding protein homolog b-70 in three zein regulatory mutants. Plant Cell 3, 497–505 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fontes, E. B. et al. Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant. Plant Cell 3, 483–496 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gething, M. J. & Sambrook, J. Protein folding in the cell. Nature 355, 33–45 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Coleman, C. E., Lopes, M. A., Gillikin, J. W., Boston, R. S. & Larkins, B. A. A defective signal peptide in the maize high-lysine mutant floury 2. Proc. Natl Acad. Sci. USA 92, 6828–6831 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Denecke, J., Goldman, M. H., Demolder, J., Seurinck, J. & Botterman, J. The tobacco luminal binding protein is encoded by a multigene family. Plant Cell 3, 1025–1035 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pedrazzini, E., Giovinazzo, G., Bollini, R., Ceriotti, A. & Vitale, A. Binding of BiP to an assembly‐defective protein in plant cells. Plant J. 5, 103–110 (1994).

    Article  CAS  Google Scholar 

  105. Pedrazzini, E. et al. Protein quality control along the route to the plant vacuole. Plant Cell 9, 1869–1880 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Page, D. R. & Grossniklaus, U. The art and design of genetic screens: Arabidopsis thaliana. Nat. Rev. Genet. 3, 124–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Somerville, C. & Koornneef, M. A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3, 883–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. O’Malley, R. C. & Ecker, J. R. Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J. 61, 928–940 (2010).

    Article  PubMed  Google Scholar 

  109. Koizumi, N. et al. Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases. Plant Physiol. 127, 949–962 (2001). This study identifies two genes, IRE1a and IRE1b, encoding IRE1 in the Arabidopsis genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Iwata, Y. & Koizumi, N. An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc. Natl Acad. Sci. USA 102, 5280–5285 (2005). This study was the first to demonstrate that bZIP60 induces the expression of ER stress-responsive genes.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Parra-Rojas, J., Moreno, A. A., Mitina, I. & Orellana, A. The dynamic of the splicing of bZIP60 and the proteins encoded by the spliced and unspliced mRNAs reveals some unique features during the activation of UPR in Arabidopsis thaliana. PLoS ONE 10, e0122936 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liou, H.-C. et al. A new member of the leucine zipper class of proteins that binds to the HLA DRα promoter. Science 247, 1581–1584 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  114. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Yoshida, H. et al. Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6α and 6β that activates the mammalian unfolded protein response. Mol. Cell. Biol. 21, 1239–1248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shoemaker, D. D. et al. Experimental annotation of the human genome using microarray technology. Nature 409, 922–927 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Hayashi, S., Wakasa, Y., Takahashi, H., Kawakatsu, T. & Takaiwa, F. Signal transduction by IRE1‐mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. Plant J. 69, 946–956 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Lu, S. J., Yang, Z. T., Sun, L., Song, Z. T. & Liu, J. X. Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Mol. Plant 5, 504–514 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, Q. L., Sun, A. Z., Chen, S. T., Chen, L. S. & Guo, F. Q. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice. Nat. Plants 4, 280–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Okushima, Y. et al. Isolation and characterization of a putative transducer of endoplasmic reticulum stress in Oryza sativa. Plant Cell Physiol. 43, 532–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Wakasa, Y., Hayashi, S., Ozawa, K. & Takaiwa, F. Multiple roles of the ER stress sensor IRE1 demonstrated by gene targeting in rice. Sci. Rep. 2, 944 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  122. Li, Y., Humbert, S. & Howell, S. H. ZmbZIP60 mRNA is spliced in maize in response to ER stress. BMC Res. Notes 5, 144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cavalcante, F. L. P. et al. Unveiling a differential metabolite modulation of sorghum varieties under increasing tunicamycin-induced endoplasmic reticulum stress. Cell Stress Chaperones 28, 889–907 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ye, C., Dickman, M. B., Whitham, S. A., Payton, M. & Verchot, J. The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol. 156, 741–755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Löchli, K. et al. Crosstalk between endoplasmic reticulum and cytosolic unfolded protein response in tomato. Cell Stress Chaperones 28, 511–528 (2023).

    Article  PubMed  Google Scholar 

  126. Michael, T. P. & VanBuren, R. Progress, challenges and the future of crop genomes. Curr. Opin. Plant Biol. 24, 71–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Zou, C., Lehti-Shiu, M. D., Thomashow, M. & Shiu, S. H. Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana. PLoS Genet. 5, e1000581 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Van de Peer, Y., Maere, S. & Meyer, A. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10, 725–732 (2009).

    Article  PubMed  Google Scholar 

  129. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Kimata, Y. et al. Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins. Mol. Biol. Cell 14, 2559–2569 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liu, Y. et al. EBS7 is a plant-specific component of a highly conserved endoplasmic reticulum-associated degradation system in Arabidopsis. Proc. Natl Acad. Sci. USA 112, 12205–12210 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhou, Y.-F., Qing, T., Shu, X.-L. & Liu, J.-X. Unfolded protein response and storage product accumulation in rice grains. Seed Biol. 1, 4 (2022).

    Article  Google Scholar 

  133. Valente, M. A. et al. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J. Exp. Bot. 60, 533–546 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Lee, Y. R. et al. CRISPR/Cas9-mediated HY5 gene editing reduces growth inhibition in Chinese cabbage (Brassica rapa) under ER stress. Int. J. Mol. Sci. 24, 13105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Herath, V. & Verchot, J. Comprehensive transcriptome analysis reveals genome-wide changes associated with endoplasmic reticulum (ER) stress in potato. Int. J. Mol. Sci. 23, 13795 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by the National Institutes of Health (R35GM136637) with contributing support from the Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (DE-SC0018409), Chemical Sciences, Geoscience and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DE-FG02-91ER20021), and MSU AgBioResearch (MICL02598).

Author information

Authors and Affiliations

Authors

Contributions

D.K.K. wrote the initial draft of the article. Both authors researched the literature, substantially discussed the content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Federica Brandizzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks June-Sik Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Expression Atlas: https://www.ebi.ac.uk/gxa/experiments

Glossary

Abscisic acid

A plant hormone that regulates numerous biological pathways, including growth, development and responses to environmental stress.

Chaperone

A group of functionally related proteins that facilitate and regulate polypeptide folding within cells, including the highly conserved heat shock protein 70 (HSP70), which is present in all cellular compartments.

Chromatin immunoprecipitation followed by sequencing

(ChIP–seq). The most popular in vivo technique to identify DNA sequences bound by a transcription factor of interest at genome scale.

DNA microarray

A technology utilizing over 20,000 DNA probes attached to a surface, which are hybridized with cDNA (reverse-transcribed from mRNA using reverse transcriptase), enabling simultaneous measurement of expression levels of numerous genes.

Endoplasmic reticulum

(ER). A cellular organelle composed of a membranous tubule network involved in the synthesis of protein and lipids and the export of secreted proteins.

ER-associated protein degradation

A cellular pathway that eliminates misfolded proteins in the ER via ubiquitination followed by degradation by a protein-degradation complex known as the proteasome.

ER-phagy

A mechanism that degrades portions of the ER in response to an excessive accumulation of misfolded proteins.

Foldase

A particular set of molecular chaperones that facilitate the non-covalent folding of proteins in an ATP-dependent manner.

Golgi apparatus

A cellular organelle where proteins and lipids are modified, packaged and transported to target destinations.

Nuclear localization signal

An amino acid sequence that serves as a ‘tag’ for directing a protein into the nucleus through nuclear transport.

Plasmodesmata

Small channels that connect plant cells to each other, providing living tubes between cells.

Salicylic acid

A plant hormone that is crucial for triggering plant defence against both biotic and abiotic stresses, using morphological, physiological and biochemical mechanisms.

Tunicamycin

A mixture of four homologous nucleoside antibiotics that inhibits N-linked glycosylation in the ER, thus disrupting protein folding and maturation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, D.K., Brandizzi, F. Dynamics of ER stress-induced gene regulation in plants. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00710-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00710-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing