
Tuberculosis (TB) is among the top ten causes of death 
overall and is the leading cause of death owing to infec-
tion with a single type of pathogen1. It is estimated that 
almost one-​quarter of the global population, between 
2 billion and 3 billion people, has been infected with 
Mycobacterium tuberculosis (Mtb) and may be at risk 
of progression to TB2. Up to 80% of the lifetime risk of 
progression to disease is thought to occur in the first 2 or 
3 years after infection3. In 2017, an estimated 10 million 
people developed TB and 1.6 million people died from 
the disease1.

It is now appreciated that Mtb infection does not rep-
resent a single, uniform state and that the historical divi-
sion of TB into either latent (latent TB infection (LTBI)) 
or active TB has gravely underappreciated the com-
plex and dynamic nature of the host–pathogen inter
actions4–6. Progression from Mtb infection to clinical 
disease appears to transition via a number of continuous 
asymptomatic infection states that have previously been 
classified as LTBI, which include the asymptomatic states 
recently termed incipient TB and subclinical TB, before 
active, clinical TB disease manifests7,8. Further, within 
an individual host, Mtb-​infected lesions in the lung 
or draining lymph nodes do not develop in a uniform 
synchronized manner but independently and there-
fore represent a spectrum of pathology that can span 
all stages from sterile, calcified granulomas through to 
caseous, necrotic lesions with exceedingly high bacterial 
burdens9. It is important to consider both the complex-
ity of the human–Mtb interactions and the magnitude 
and diversity of the global epidemic as a backdrop to 
the challenges faced by vaccine development. Given that 
in some high incidence areas the majority of the adult 
population is infected, classic prophylactic vaccination 
(before any exposure to the pathogen) is applicable for 
only a proportion of the individuals in need. Therefore, 
TB vaccine development efforts are currently focused 

on developing vaccines for the following administra-
tion regimens: prophylactic vaccination, which is a 
vaccine administered to individuals in order to prevent 
Mtb infection or clinical disease (prophylactic vaccines 
can be either priming vaccines such as Mycobacterium 
bovis bacillus Calmette–Guérin (BCG) (see Box 1) 
used in neonates or booster vaccines for later adminis-
tration); postexposure vaccination, which is a vaccine 
administered to Mtb-​infected individuals to prevent 
the development of active disease (many priming and 
booster vaccines are currently developed for postexpo-
sure administration owing to their ability to boost and 
supplement the naturally occurring infection-​promoted 
responses); and therapeutic vaccination, which is a vac-
cine administered to individuals with clinical disease in 
combination with or after antibiotic treatment to prevent 
recurrence of disease. Development of both prophylac-
tic and postexposure vaccines is actively being pursued 
with several candidates in clinical trials, but therapeutic 
vaccines are also receiving increasing attention.

Five years ago, the results of a large phase IIb efficacy 
trial of the first TB booster vaccine candidate tested in 
infants were published. Vaccination of 4–6-month-​old 
infants, who had received neonatal BCG vaccination, 
with MVA85A induced no additional protection against 
Mtb infection or active TB beyond that observed in the 
placebo arm of the study10. This result was a great dis-
appointment to both the TB vaccine research commu-
nity and funders and a call to action for researchers in  
basic and applied vaccine development. Today, we are 
witnessing immense progress in both preclinical and 
clinical TB vaccine research, including the first proof-​
of-concept study showing that revaccination with BCG 
can protect adolescents from sustained Mtb infection11 
and that the subunit vaccine M72/ASO1E provides pro-
tection against the development of TB disease in Mtb-​
infected adults12. Here, we discuss recent breakthroughs 

Incipient TB
A state of Mycobacterium 
tuberculosis infection in which 
the host is likely to progress 
to active tuberculosis (TB) 
disease but has not yet 
manifested clinical symptoms, 
radiographic abnormalities 
or microbiological evidence 
of active disease. Can be 
detected using transcriptomic 
or proteomic biomarkers 
of inflammation.
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in our understanding of the mechanism of protective 
immune responses, provide an overview of the vaccine 
candidates in clinical trials and discuss whether it is 
time to reconsider BCG revaccination as part of a future 
improved TB vaccine strategy.

Immune responses to Mtb
Mtb can establish infection in susceptible individuals 
after the inhalation of a single or a few bacteria that are 
taken up by alveolar macrophages. The pathogen has 
developed a refined set of evasion mechanisms that delay 
bacterial transport to the regional lymph node and allow 
it to evade host cellular immunity, giving it sufficient 
time to establish a productive infection13–15. The result is 
a delayed onset of the natural adaptive immune response 
observed both in animal models of TB16 and in human 
clinical TB17,18.

One of the primary roles of vaccination is to estab-
lish efficient and long-​lived immune memory in order 
to shorten the interval between infection and the onset 
of an adaptive immune response at the site of infection, 
such that the infection can be controlled rapidly and 
spreading to secondary sites is avoided. In humans, the 
first exposure to Mtb typically occurs after the immune 
response has been primed by other mycobacterial 

encounters, either in the form of BCG vaccination or 
environmental mycobacteria. As a result, TB vaccine 
strategies should consider how prior induction of T cells 
(and other immune responses) by these exposures 
may influence the function, trafficking and survival of 
vaccination-​induced responses and their effectiveness 
against Mtb. Furthermore, in settings with very high 
rates of Mtb infection, such responses must be able to 
resist the effects of repeated reinfection and long-​term 
continuous antigen exposure from this chronic infection.

The role of CD4+ T cells. Recent data in animal models 
suggest that vaccine-​induced CD4+ cells of the T helper 
17 (TH17) cell subtype, which naturally traffic to the 
airways, can accelerate the recruitment of protective 
TH1 cells19–21. In fact, a recent study of a rhesus macaque 
model of pulmonary vaccination showed that vaccina-
tion with BCG induces pulmonary TH1 cells and/or TH17 
cells, which co-​express IFNγ, TNF, IL-2 and IL-17 and 
protect against infection upon repeat low-​dose chal-
lenge with Mtb22. When CD4+ T cells arrive at the site 
of infection, they encounter aggregates of Mtb-​contain-
ing macrophages and other immune cells and together 
form the tight cellular structure referred to as the granu-
loma. The CD4+ T cells secrete cytokines, which activate 
infected macrophages to control bacterial growth and 
attract more immune cells to the granuloma (reviewed 
elsewhere23).

Most vaccine research has focused on TH1 cells 
and the effector cytokine IFNγ as a readout for suc-
cessful vaccination and a potential indicator of vaccine 
efficacy. However, it is clear from animal studies22,24,25 
that expansion beyond the narrow focus on IFNγ 
is necessary to identify new biomarkers (also called 
immune correlates of protection (COP); see Box 2) to 
support vaccine evaluation and optimization. This is 
also supported by conflicting data on the role of IFNγ 
in human studies. A study of COP in the participants 
of the MVA85A phase IIb trial suggested that higher 
frequencies of BCG-​reactive IFNγ-​secreting cells, 
as quantified by ELIspot assay, were associated with 
a reduced risk of developing TB26. By contrast, the 
MVA85A booster vaccine referred to above induced 
long-​lived CD4+ T cells that co-​expressed IFNγ, TNF 
and IL-2 (ref.27), a functional subset of cells termed 
polyfunctional by many in the field, but this subset did 
not afford protection10. Similarly, in a study of 10-week-​
old infants that were vaccinated with BCG at birth, 
there was no association between the frequencies of 
BCG-​reactive TH1 cells or the co-​expression patterns 
of IFNγ, TNF and IL-2 of these cells and subsequent 
risk of developing TB10,26–28. Collectively, these studies 
suggest that TH1 cell responses are necessary but not 
sufficient to mediate protection against Mtb and that 
other functions and characteristics of T cells, and per-
haps other arms of immunity, are involved in protection 
against TB.

Recently, the expression of CD153, a surface mol
ecule of the TNF superfamily that is expressed by Mtb-​
specific CD4+ T cells during infection, was suggested 
as a promising marker of protection in animal models. 
CD153 was also found to be expressed by Mtb-​specific 

Box 1 | The BCG vaccine and variation in its efficacy

Mycobacterium bovis bacillus Calmette–Guérin (BCG) has been in use for more than 
80 years and is the world’s most widely administered vaccine. BCG is the collective 
name for multiple daughter strains of an attenuated strain of Mycobacterium bovis88 
(the pathogen responsible for tuberculosis (TB) in cattle) that lacks the genetic 
segments encoding a number of virulence factors and important T cell antigens, such 
as ESAT6 and CFP10, which are part of the ESX1 secretion system89. Vaccination with 
BCG results in a localized and self-​limiting infection that exposes the immune system 
to a complex antigen repertoire including mycobacterial proteins, lipids and glycolipids 
and induces both conventional MHC-​restricted and unconventional T cell responses 
as well as antibody responses and trained immunity90–92. Vaccination with BCG 
consistently provides a high degree of protection in infants and toddlers against highly 
lethal meningeal TB and miliary TB93 and appears to last 10–15 years94, although a small 
number of studies show much longer persistence of protective effects, up to 40 or 
50 years after vaccination95,96. However, in the adult population, BCG vaccination 
provides only highly variable protection against pulmonary TB, ranging from 0% to 80%, 
which appears to correlate with geographical latitude (vaccination efficacy is poorest 
in the regions closest to the equator) and may be related to immunological sensitization 
to atypical, non-​tuberculous mycobacteria, which are particularly abundant in tropical 
environments97. A recent systematic review of randomized controlled trials of BCG 
vaccination shows that prior infection with Mycobacterium tuberculosis (Mtb) or 
sensitization with environmental mycobacteria is associated with a reduced efficacy 
of BCG vaccination against pulmonary TB98. Environmental mycobacteria are likely to 
induce a low level of anti-​Mtb immunity owing to homology between species within 
the genus Mycobacterium that can mask or block the replication of BCG necessary 
for sufficient induction of immunity76,99 (Fig. 2). There are hundreds of atypical 
mycobacteria with different levels of cross reactivity with BCG and with different 
geographical distributions100,101. Furthermore, the focus on these environmental 
mycobacteria as a reason for the sensitization has distracted the focus from Mtb 
infection as a source of prior immune sensitization with strong effects on BCG 
efficacy. In geographical regions with a high prevalence of mycobacteria, where the 
lowest efficacy of BCG has been reported, Mtb infection represents a very significant 
source of sensitization, with 50–80% of the population showing immunological 
sensitization suggestive of Mtb infection98. Despite decades of interest in the effects 
of environmental mycobacteria on BCG vaccine efficacy, this issue remains challenging 
to investigate given the large number of species in different parts of the world. 
The availability of well-​curated and standardized antigen preparations from different 
atypical mycobacteria should be prioritized to facilitate such research.

Subclinical TB
A state of Mycobacterium 
tuberculosis infection in which 
the host has radiographic 
abnormalities or microbiological 
evidence of active tuberculosis 
(TB) disease but has not yet 
manifested clinical symptoms of 
active disease.

Priming vaccines
Vaccines that mediate 
sensitization or stimulation of 
an immune response with 
antigen for the first time; that 
is, the vaccines prime the 
immune response.

Booster vaccines
Vaccines that are typically 
given after an earlier priming 
vaccine and further stimulate 
an immune response that 
already exists to an antigen to 
increase the response 
magnitude or modulate the 
function of the response; 
that is, the vaccines boost the 
pre-existing immune response.
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Correlates of protection
(COP). A measurable feature, 
often a functional characteristic 
of an immune response, that 
associates with protection 
against becoming infected  
and/or developing disease.

ELISpot assay
(Enzyme-​linked 
immunosorbent spot assay). 
A type of immune assay that 
quantifies the frequency of 
protein-​secreting single cells 
on the basis of enzyme-​linked 
detection of protein spots on 
immune-​absorbent 
membranes.

Box 2 | Immune correlates of vaccine protection

The discovery of vaccine-​associated correlates of protection (COP) is possible only if samples from successful placebo-​
controlled efficacy trials of a tuberculosis (TB) vaccine are available. This is because COP discovery requires the 
comparison of immune responses in vaccinated and unvaccinated individuals who are protected against Mycobacterium 
tuberculosis (Mtb) and in those who are not protected against Mtb (for example, individuals with active TB)102,103. The lack 
of such COP has been a major limitation in TB vaccine development. A robust and validated COP could predict vaccine 
efficacy and allow significantly more efficient testing of vaccine candidates while facilitating the rational design of 
improved vaccines and strategies104. The exciting efficacy signals provided by the phase IIb trial of the subunit vaccine 
H4:IC31 (ref.11) versus Mycobacterium bovis bacillus Calmette–Guérin (BCG) revaccination and the phase IIb trial of the 
subunit vaccine M72/ASO1E (ref.12) bring about a new phase in TB vaccinology, as they unlock the possibility of identifying 
vaccine-​associated COP against Mtb infection or TB disease.

In the phase IIb trial of MVA85A in infants, the frequency of HLA-​DR+ CD4+ T cells was identified as a correlate of risk 
of progression to TB, and the level of Ag85A-​specific IgG and frequencies of BCG-​reactive IFNγ-​secreting cells were 
identified as correlates of non-​progression26, demonstrating that the identification of COP is possible. The figure shows a 
suggested framework for utilizing newly identified immunological correlates of protection in TB vaccine development. 
Prospective validation of these COP in future efficacy trials (phase IIb/III) is necessary to confirm their validity as true 
predictors of vaccine protection (bottom). Translation of the COP to appropriate and highly tractable animal models of TB 
vaccination (for example, non-​human primates and mice), which should be done alongside infectious challenge studies 
to confirm in vivo protection, would allow the discovery of the mechanistic underpinnings of protective immunity against 
Mtb (see the figure, top) and faciliate the preclinical selection of vaccine candidates. Measurement of such COP in phase I 
or II clinical trials of novel vaccine candidates could also be used to accelerate selection of candidates for efficacy trials 
(see the figure, right). Similarly, the identification of COP will facilitate a more rapid and cheaper readout of efficacy in 
diverse geographical or epidemiological settings for vaccine candidates for which evidence of efficacy may be limited to 
one setting.

In the trials of H4:IC31–BCG and M72/ASO1E discussed above11,12, blood samples for the discovery of COP were collected 
and stored, and a consortium has been established to develop and execute the analyses. Universal application of newly 
identified COP may ultimately be more challenging than many expect; it is quite possible that mechanisms of protection 
induced by distinct vaccines are different or that the translation between species is problematic. Ultimately, newly 
discovered COP would require prospective validation in future efficacy trials to confirm their validity as predictors of 
vaccine protection, known as surrogates of protection (reviewed elsewhere102).
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CD4+ T cells in humans who successfully control Mtb 
infection29. This molecule is an example of the new can-
didate biomarkers of protective immunity that should be 
considered in analyses of immune COP in the context 
of vaccine trials.

The role of CD8+ cells. Mtb-​specific CD8+ T  cell 
responses increase during disease progression with 
kinetics that appear to positively correlate with the bac-
terial burden30,31, but their role in protective immunity 
to Mtb is unclear. Evidence that CD8+ cells may play 
a protective role comes from a non-​human primate 
(NHP) study in which CD8+ T cells were depleted, 
which resulted in compromised BCG vaccine-​induced 
immune control of Mtb32. However, recent data from 
murine models suggest that even very high numbers 
of vaccine-​induced CD8+ T cells that are specific for 
antigens involved in protective immunity fail to rec-
ognize Mtb-​infected macrophages or affect Mtb pro-
liferation in animal infection studies33,34. Similarly, 
antigen-​specific CD8+ T cells induced by an adenovirus- 
based TB vaccine in humans failed to recognize Mtb-​
infected dendritic cells in vitro35. Although the subject 
of numerous studies, the role of CD8+ T cell responses 
in protective immunity  against TB therefore still 
remains unresolved.

The role of B cells. Antigen-​specific antibodies, and 
their functional attributes in immunity against Mtb, 
have recently received increasing attention. Compelling 
evidence shows marked differences in the plasma levels 
of natural mycobacteria-​specific IgG or IgA and their 
glycosylation profiles and Fc functions when comparing 
individuals with LTBI and patients with active TB36,37. 
Further, a recent study of a rhesus macaque model of 
pulmonary BCG vaccination showed that high levels 
of antigen-​specific IgA in bronchoalveolar lavage fluid 
were associated with protection against Mtb infection 
and disease22.

Mtb escape mechanisms. In addition to delaying the 
onset of adaptive immune responses, Mtb has also 
evolved a set of escape mechanisms aimed at inhibiting 
CD4+ T cell activation during later stages of the infec-
tious process38. Examples include the downregulation 
of certain target antigens to very low levels39 and the 
active transfer of immunodominant antigens to unin-
fected bystander dendritic cells and macrophages40. The 
outcome of this host–pathogen stand-​off is bacterial 
survival in a state of latent infection. It is notable that 
established latent infection seems to provide significant 
protection against reinfection in classical epidemiolog-
ical studies41,42 and in NHP models43, a phenomenon 
that provides evidence for protective natural immunity 
against Mtb. We note that it is possible that immune 
mechanisms necessary for protection against the estab-
lishment of Mtb infection may be different from those 
required for successful long-​term containment of an 
established Mtb infection such that progression to dis-
ease is averted. Ongoing studies of vaccine-​induced 
COP, described below, will provide important insights 
into this.

The diversity of the CD4+ T cell response to tuberculosis.  
For protection against TB, the CD4+ T cell subset is of 
major interest. CD4+ T cells differentiate into T central 
memory (TCM) cells that home to secondary lymphoid 
organs and, on the basis of their expression of adhe-
sion molecules, most likely also to inducible bronchus-​
associated lymphoid tissue structures in the lung44. Upon 
antigen re-​exposure, TCM cells differentiate into T effec-
tor memory (TEM) cells and effector cells of either the TH1 
cell or TH17 cell lineage that migrate to and exert their 
effector functions in infected tissues (see Fig. 1). A pro-
portion of these T cells subsequently remains in the lung 
as T tissue-​resident memory (TRM) cells. An efficient 
frontline defence in the lung depends on both TRM cells 
localized in the lung before infection and newly recruited 
T effector (TEFF) cells that arrive after infection. How
ever, for a chronic infection such as Mtb, the longevity of  
the immune response, that is, the ability to withstand the 
continuous exposure to antigen for very long periods 
without exhaustion, is likely of equal importance. This is 
where T stem cell memory (TSCM) cells and TCM cells play 
a central role because their proliferative potential can 
maintain the supply of tissue-​homing T cells. Designing 
TB vaccine strategies therefore requires careful consid-
eration of the distribution of different subsets of CD4+ 
T cells, how they respond to repeated antigen exposure 
during persistent infection and their ability to traffic to 
and be retained within the lung, both before and during 
ongoing Mtb infection.

In humans, Mtb infection promotes the develop-
ment of CD4+ T cells that span a range of differentiation 
states, from the most early TSCM CD4+ cells45 through 
to fully differentiated TEFF cells that predominantly 
express IFNγ46–48. Many factors are likely to determine 
where in this range a given specific T cell response will 
lie, including the expression level of the particular Mtb 
antigen that is targeted, the stage of disease progression 
or host–pathogen interaction and the location of the 
T cell itself. In order to allow a conclusive interpretation 
of results, it is therefore essential that human studies of 
T cell function and differentiation clearly and carefully 
characterize the clinical phenotype of study partici-
pants to define infection stage. Overall, an increasing 
mycobacterial load correlates with progressive differ-
entiation of Mtb-​specific CD4+ T cell responses away 
from TCM cells that secrete IL-2 and towards TEFF cells 
that secrete predominantly IFNγ46–49. In animal models 
of Mtb infection, ongoing antigen exposure is a signifi-
cant challenge for the host immune system and results 
in CD4+ T cell exhaustion through inhibitory receptors 
such as TIM3 (also known as HAVCR2)50 and the upreg-
ulation of exhaustion markers such as killer-​like lectin 
receptor G1 (KLRG1)51. This results in the loss of self-​
renewing TCM cell subsets and in functional impairment, 
eventually resulting in uncontrolled growth of Mtb52. In 
TB vaccine studies in the mouse model, it has become 
clear that T cell responses promoted by an adjuvanted 
vaccine formulation typically differ from Mtb-​induced 
T cell responses in that they preferentially induce 
IL-2-producing TCM cells. Compared with TEM cells 
and TEFF cells induced by continuous exposure to Mtb, 
these TCM cells are less likely to become terminally 

Inducible bronchus-​
associated lymphoid tissue
A tertiary lymphoid structure 
that consists of lymphoid 
follicles in the lungs or 
bronchus and that is a site for 
priming immune responses.
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differentiated, predominantly IFNγ-​secreting KLRG1+ 
T cells (Fig. 1).

Such vaccine-​induced T cells therefore have the 
desirable ability to resist terminal differentiation, which 
would eventually result in functional impairment and 
depletion of the Mtb-​specific T cell pool48,49,52. Animal 
models of TB that investigated T cell differentiation 
have demonstrated that BCG vaccination, similarly to 
Mtb infection, pushes T cell differentiation towards 
TEFF cells, which results in a failure to efficiently maintain 
long-term protection against Mtb53,54.

Initially, the main role of less differentiated CD4+ 
T cells (such as TCM cells and TSCM cells) was thought to  
relate exclusively to their ability to resist differentiation, 
replenish TEM cells and maintain long-​lived memory 
both before and after infection. Recent insights into 
T cell migration patterns have added important new 
facets to this interpretation. Using an intravascular 
staining technique, a less differentiated memory sub-
set of T cells, which expresses the checkpoint molecule 
PD1 and the chemokine receptor CXCR3, was shown to 
enter the Mtb-​infected lung parenchyma55. By contrast, 
the more differentiated TEFF cell subsets, characterized 
by the expression of KLRG1 and the fractalkine receptor 
CX3CR1, lose their ability to enter the lung parenchyma 

and to protect against Mtb55. The negative influence of 
a highly differentiated and strongly TH1 cell-​polarized 
response on protection against Mtb is further supported 
by recent data from experimental animal models that 
investigate this question from different angles56–58.

Choosing the best antigens. Two critical and as yet 
unresolved questions in TB vaccinology are how to select 
the best antigens and how many antigens to include in 
a vaccine. The retrospective analysis of the phase IIb 
clinical trial of the MVA85A booster vaccine, which 
contains a single antigen (Ag85A), highlights this 
question59,60. Given that earlier studies had shown that 
Ag85A is expressed at only low levels during chronic 
Mtb infection in mouse models61,62, it is possible that 
the disappointing results were due to poor antigen 
choice61,62. Some of the most vaccine-​relevant T cell 
antigens are virulence factors such as those associated 
with the ESX1 protein secretion system, which is instru-
mental for pathogen survival and is expressed at high 
levels in vivo during both the acute and chronic phase 
of infection61–63. Although one might assume that this 
high level of expression might indicate suitability as an 
immune target, immune responses to highly expressed 
antigens may eventually become exhausted during 
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Fig. 1 | The balance between Mtb-​specific T cell differentiation into either T effector memory or T central memory 
cells. After Mycobacterium tuberculosis (Mtb) infection of alveolar macrophages (red arrows), Mtb is transported to lung-​
draining lymph nodes by infected dendritic cells, initiating T cell priming or triggering the activation of pre-​existing 
memory T cells, which appears to preferentially drive T cell differentiation towards late-​stage T effector memory (TEM) cell 
and T effector (TEFF) cell responses. Ongoing antigen expression is likely a driver of this T cell differentiation process, which 
favours primarily IFNγ -expressing and/or TNF-​expressing T cells and little IL-2 expression. Vaccine administration in the 
skin or muscle promotes antigen uptake by dendritic cells, which traffic to draining lymph nodes to prime or activate 
T cells (blue arrows). In the case of subunit protein-​adjuvant vaccines, the resulting T cell responses appear to be 
dominated by less differentiated T central memory (TCM) cell responses; these cells primarily express IL-2 and/or TNF. 
Achieving long-​lived protective immunity by vaccination may require the establishment of a careful balance between 
TCM cell and TEM cell responses, such that a durable pool of memory cells resides in secondary lymphoid tissues while an 
appropriate tissue-​resident population with rapid effector function is maintained in peripheral airway tissues.
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chronic infection. An unanswered question is whether 
repeated exposure or reinfection in humans who live 
in high-​transmission settings also drives T cell exhaus-
tion. Interestingly, most of the immunodominant anti-
gens are conserved, with minimal sequence variation 
among different clinical strains of Mtb, indicating that 
the induction of T cell exhaustion may be an integral 
part of the Mtb survival strategy64–66. In a direct com-
parison between T cell responses specific for the ESAT6 
antigen (which shows high and continuous expression 
during Mtb infection) and Ag85B (which is primarily 
expressed early during infection), the different expres-
sion profiles were found to have a profound influence 
on the quality of the immune response. Ag85B-​specific 
T cells developed into classical CCR7+KLRG1− TCM cells 
after primary Mtb infection in mice, whereas ESAT6-
specific T cells were maintained in an effector state and 
gradually increased their expression of KLRG1 and lost 
IL-2 expression54,63. Similar differences between the 
differentiation state and functional capacity of human 
ESAT6-specific and Ag85B-​specific CD4+ T cells were 
also observed in healthy trial participants with LTBI who 
were vaccinated with the H1:IC31 or H56:IC31 vaccines, 
which contain both antigens63.

These findings are in agreement with previous 
reports of the influence of antigen persistence and load 
on the distribution of different subsets of human mem-
ory T cells in clinical studies of other infections or vac-
cines67. A vaccine that provides a single exposure to an 
antigen followed by antigen clearance, such as the teta-
nus vaccine, primarily induces IL-2-producing TCM cells, 
whereas pathogens that cause contained infections that 
provide low but persistent antigen exposure, such as her-
pes simplex virus 1, induce TEM cells that express IFNγ, 
TNF and low levels of IL-2 (ref.67). TEFF cells that express 
only IFNγ on the other hand are induced by infections 
such as cytomegalovirus that provide high and persistent 
antigen exposure67.

Striking the balance to achieve longevity and efficacy. 
As discussed above, excessive induction of TEFF cells by a 
vaccine modality or its antigen components may lead to 
impaired maintenance of memory and functional abil-
ity of the immune response, and, in the most extreme 
case, with very high expression of effector cytokines, 
such as IFNγ or IL-17, the result can be immunopa-
thology68–71. TB vaccine strategies therefore need to 
strike an optimal balance between the self-​renewing 
TSCM cell and TCM cell subsets and the more differentiated 
TEM cell and TEFF cell subsets that provides an efficient 
first-​line defence in the lung (Fig. 1). This is complicated 
by the large proportion of individuals with LTBI (in 
some high-​endemic regions more than 50% of the pop-
ulation)2 and extensive reinfection in high-​transmission 
settings. Individuals with LTBI have an already estab-
lished T cell response and represent a challenging pop-
ulation in which vaccine modalities and doses intended 
for initial priming in naive hosts may be suboptimal72. 
A recent analysis of the literature on the pathogenesis of 
human TB before antibiotics were introduced further-
more suggests that immune responses required to pre-
vent progression to reactivation TB (that is, progression of 

established LTBI to active disease) are likely to be differ-
ent from those required to control or prevent the estab-
lishment of the primary infection9. This follows from the 
argument that, in the case of progression to reactivation 
TB, a successful immune response would need to protect 
against tissue damage and cavitation. A recent interim 
analysis of the ongoing phase IIb trial of the subunit 
vaccine M72/ASO1E as a postexposure vaccine, which 
showed a vaccine efficacy of 54% against progression to 
TB relative to placebo12, clearly shows that efficacious 
vaccine modalities in pre-​sensitized populations are pos-
sible. Delineating the functional, phenotypic and differ-
entiation characteristics of T cell responses induced by 
the two antigens in this vaccine (Mtb32A and Mtb39A) 
will be critical for our understanding of immune COP 
against TB.

Tuberculosis vaccines in clinical trials
The development of an efficacious TB vaccine strategy 
relies on a healthy pipeline of TB vaccine candidates 
that represent a diverse repertoire of formulations and 
mycobacterial antigens and that induce a broad range 
of immune responses with different characteristics. 
Eleven TB vaccine candidates (Table 1) are currently 
in clinical testing for prophylactic, postexposure or 
therapeutic indications.

Whole cell vaccines — live. Live, attenuated whole cell 
vaccines were initially developed as prophylactic, prim-
ing vaccines with the aim to replace BCG-​prime vacci-
nation in infants, but they are now also being assessed as 
postexposure vaccines in adolescents and adults. Two of 
these vaccines, the recombinant BCG vaccine VPM1002 
and the live, attenuated Mtb vaccine MTBVAC, are 
currently in clinical trials. Both induce a complex and 
diverse immune response to many antigens, which may 
offer an advantage over subunit vaccines that have a 
response restricted to a few antigens. However, such 
live vaccines are likely to be subject to the same inter-
ference caused by prior immunological sensitization by 
non-​tuberculosis mycobacteria (NTMs) as reported for 
BCG. VPM1002 is also being assessed as a postexposure 
vaccine for the prevention of recurrence of active TB.

Whole cell vaccines — inactivated. On the basis of a 
classical vaccine development paradigm, these products, 
which include RUTI, Mycobacterium vaccae-​based vac-
cines and the Mycobacterium obuense-​based DAR-901 
vaccine, utilize killed whole mycobacterial cells or myco-
bacterial cell extracts to safely induce complex immune 
subsets against multiple Mtb antigens. RUTI and 
M. vaccae-​based vaccines are primarily being pursued as 
therapeutic vaccines, while DAR-901 is being developed 
as both a prophylactic and a therapeutic vaccine.

Adjuvanted protein subunit vaccine. Subunit vaccines 
are based on protein antigens administered with adju-
vants. These are primarily developed as prophylactic or 
postexposure vaccines that boost responses that were 
initially primed by BCG or Mtb infection for prevent-
ing the establishment of Mtb infection, active TB or 
recurrent disease. Subunit vaccines that are currently in 

Reactivation TB
Also known as post-​primary 
tuberculosis (TB) or secondary 
TB; TB that typically occurs 
months to years after the initial 
infection and is associated with 
distinct disease manifestation 
compared to primary TB. 
Reactivation frequently occurs 
in the setting of weakened 
immunity and usually involves 
the lung apex.

Cavitation
The formation of a cavity in the 
centre of a tuberculosis (TB) 
nodule or area of 
consolidation, usually in the 
upper lung or apex. Cavities 
may be detected by chest 
radiography or computed 
tomography and are a 
characteristic feature of 
post-primary or adult type TB.
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Table 1 | Tuberculosis vaccine candidates that are currently in clinical trials or have recently completed clinical trials

Candidate and 
developers

Antigens (genes 
and function), 
vector or 
formulation

Mode of 
immunization

Vaccine-​
induced T cell 
response

Vaccine- 
induced 
antibody 
response

Efficacy Development 
status

Refs

Whole cell vaccines — live

VPM1002; Max 
Planck Institute, 
Vakzine Projekt 
Management, 
TBVI, Serum 
Institute of India

Recombinant BCG 
(BCG ΔureC::hly: 
expresses the 
listeriolysin gene to 
promote lysosome 
escape, while the 
urease C-​encoding 
gene ureC, 
which reduces 
acidification of 
the phagosomal 
compartment, has 
been deleted)

Prophylactic, 
postexposure 
and therapeutic

CD4+ and 
CD8+ T cells 
expressing 
different 
combinations 
of IFNγ, TNF or 
IL-2; unusual 
subset of 
IL-17-expressing 
CD8+ T cells

Not reported NA Phase II completed; 
phase III trial in 
newborn babies to 
commence soon

105,106

MTBVAC; 
Universidad 
de Zaragoza, 
BIOFABRI, TBVI

Live, attenuated 
Mtb vaccine with 
two independent 
and stable 
deletions in 
genes encoding 
the virulence 
factors phoP and 
fadD26

Prophylactic 
and 
postexposure

CD4+ and CD8+ 
T cells that 
express IFNγ, 
TNF and IL-2

Not tested NA Phase II trials in 
adults and newborn 
babies ongoing 
(ClinicalTrials.gov 
NCT02933281 and 
NCT03536117)

(Tameris et al., 
manuscript in 

preparation) 
107–109

Whole cell vaccines — inactivated

RUTI; Archivel 
Farma

Detoxified, 
fragmented Mtb 
cells delivered in 
liposomes

Therapeutic IFNγ-​expressing 
CD4+ T cells 
directed to 
different purified 
mycobacterial 
antigens

No changes 
observed in IgG 
responses to 
16 kDa or 38 kDa 
antigens

NA Phase II completed 110,111

M. vaccae-​based 
vaccines; Anhui 
Zhifei Longcom

Whole cell, heat-​
killed M. vaccae

Therapeutic Not reported Not reported Not known Phase III results 
expected in 2019 
(ClinicalTrials.gov 
NCT01979900)

DAR-901; 
Dartmouth, 
Geisel School 
of Medicine, 
Global Health 
Innovative 
Technology Fund

Whole cell, 
heat-​inactivated 
Mycobacterium 
obuense, a non-​
tuberculous 
mycobacterium 
closely related to 
M. vaccae

Prophylactic, 
postexposure 
and therapeutic

Elevated IFNγ 
levels and lym-
phoproliferative 
responses to 
stimulation 
with sonicated 
M. vaccae

IgG responses 
to lipoarabino
mannan

39% (95% 
CI 4–61%) 
against TB in 
HIV-​positive 
patients 
with CD4+ 
count 
>200 cells 
per μl and 
BCG scar

Phase II; phase IIb 
trial of DAR-901 
for prevention of 
infection ongoing 
(ClinicalTrials.gov 
NCT02712424)

112,113

MIP; Cadila, 
Indian Council 
of Medical 
Research

Whole cell, 
heat-​inactivated 
Mycobacterium 
indicus pranii

Therapeutic Not known Not known Not known; 
no efficacy 
against 
pericardial 
TB

Phase III 114,115

Adjuvanted protein subunit vaccine

M72/AS01E; 
GlaxoSmithKline, 
Aeras

Mtb39A (Rv0125; 
serine protease), 
Mtb32A (Rv1196; 
belongs to the 
PPE family of 
proteins), adjuvant 
consisting of 
liposomes, 
monophosphoryl 
lipid A and Quillaja 
saponaria fraction 
(QS-21)

Booster, 
prophylactic 
and 
postexposure

Efficient 
induction of 
CD4+ T cells co-​
expressing IFNγ, 
TNF and IL-2; 
detectable CD8+ 
T cell responses

High-​level 
antigen-​specific 
IgG

54.0% 
(95% CI 
13.9–75.4%) 
against 
pulmonary 
TB in IGRA-​
positive 
adults

Phase IIb ongoing 
(ClinicalTrials.gov 
NCT01755598)

12,81,116
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clinical testing include H4:IC31, H56:IC31, ID93 + GLA-​
SE and M72/AS01E. Some of these vaccines are also 
tested as therapeutic vaccines (for example, H56:IC31 
and ID93 + GLA-​SE) to prevent recurrence in patients 
who have completed chemotherapy for active TB.

Viral vectored vaccines. Live, attenuated, non-​
replicating viruses can be engineered to deliver genes 
encoding the antigens of interest into host cells. Such 
vaccines allow for the intracellular production of the 
antigen in vivo and activate cells of the innate immune 

Candidate and 
developers

Antigens (genes 
and function), 
vector or 
formulation

Mode of 
immunization

Vaccine-​
induced T cell 
response

Vaccine- 
induced 
antibody 
response

Efficacy Development 
status

Refs

Adjuvanted protein subunit vaccine (cont.)

H4:IC31; Sanofi, 
Statens Serum 
Institut, Valneva, 
Aeras

Ag85B (Rv1886c; 
mycolyl 
transferase) and 
TB10.4 (Rv0288; 
ESAT family 
protein) and 
IC31 adjuvant, 
consisting of 
positively charged 
peptide-​based 
particles and 
the non-​CpG 
immunostimulatory 
oligonucleotide 
ODN1a

Prophylactic 
and 
postexposure

CD4+ T cells co-​
expressing TNF 
and IL-2 or IFNγ, 
TNF and IL-2; 
absent or very 
low CD8+ T cell 
responses

Not reported 30.5% (95% 
CI –15.8% 
to 58.3%) 
against 
sustained 
IGRA 
conversion

Phase IIb trials 
completed

11,117,118

H56:IC31; 
Statens Serum 
Institut, Valneva, 
Aeras

Ag85B (Rv1886c; 
mycolyl 
transferase), ESAT6 
(Rv3875; ESAT 
family protein) 
and Rv2660c 
(hypothesized to 
be a stress-​related 
protein and IC31 
adjuvant)

Prophylactic, 
postexposure 
and therapeutic

CD4+ T cells co-​
expressing TNF 
and IL-2 or IFNγ, 
TNF and IL-2. In 
Mtb-​infected 
individuals, IFNγ, 
TNF and IL-2 co-​
expressing CD4+ 
T cells; absent or 
very low CD8+ 
T cell responses

Not reported NA Phase II prevention 
of TB recurrence 
trial ongoing 
(ClinicalTrials.gov 
NCT03512249)

79,119–122

ID93 + GL A-​
SE; Infectious 
Disease 
Research 
Institute, 
Quratis, 
Wellcome Trust

Rv1813 
(hypothesized to be 
a secreted protein), 
Rv2608 (belongs to 
the PE and/or PPE 
family of proteins), 
Rv3619 and Rv3620 
(ESAT6 family 
members) and GL A-​
SE (TLR4 agonist) 
in a squalene-​
in-water emulsion

Prophylactic, 
postexposure 
and therapeutic

CD4+ T cells 
expressing IFNγ, 
TNF and IL-2; 
absent or very 
low CD8+ T cell 
responses

High levels of 
IgG1 and IgG3 
responses to 
Rv1813 (most 
immunogenic) as 
well as the other 
three antigens

NA Phase II trial in 
adults with cured TB 
disease completed 
(ClinicalTrials.gov 
NCT02465216)

123,124

Viral vectored vaccines

MVA85A ; Oxford 
University , Aeras

Ag85A (Rv3804c; 
mycolyl 
transferase) and 
recombinant 
vaccinia virus

Prophylactic, 
prophylactic 
and 
postexposure

CD4+ T cells co-​
expressing IFNγ, 
TNF and IL-2; 
absent or very 
low CD8+ T cell 
responses

Not reported 17.3% (95% 
CI –31.9% 
to 48.2%) 
against TB 
disease; 
–3.8% (95% 
CI –28.1% 
to 15.9%) 
against IGRA 
conversion

Phase II aerosol 
administration 
trials ongoing 
(ClinicalTrials.gov 
NCT02532036)

10,27,125,126

Ad5Ag85A ; 
McMaster 
University , 
CanSino

Ag85A (Rv3804c; 
mycolyl 
transferase) and 
recombinant 
adenovirus 
serotype 5

Prophylactic 
and 
postexposure

CD4+ and 
CD8+ T cells 
expressing 
TH1-type 
cytokines

Not reported NA Phase I/II 
trials ongoing 
(ClinicalTrials.gov 
NCT02337270)

127

BCG, Mycobacterium bovis bacillus Calmette–Guérin; IGRA , IFNγ release assay ; M. vaccae, Mycobacterium vaccae; Mtb, Mycobacterium tuberculosis; NA , not 
available; TB, tuberculosis; TBVI, Tuberculosis Vaccine Initiative; TH1, T helper 1.

Table 1 (cont.) | Tuberculosis vaccine candidates that are currently in clinical trials or have recently completed clinical trials
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system and therefore do not need to be adjuvanted. Viral 
vectored vaccines are being developed as both prophy-
lactic vaccines and postexposure vaccines that boost 
responses primed by BCG or Mtb infection. A potential 
problem with viral delivery is the induction of vector-​
specific immunity that can interfere with subsequent 
booster vaccinations. Two viral vectored TB vaccine 
candidates, MVA85A and Ad5Ag85A, are currently in 
clinical testing in prime–boost combinations, including 
trials of the MVA85A candidate administered by aerosol 
to the airways.

BCG revaccination — time to reconsider?
Revaccination with BCG at different ages, but primar-
ily in children, was practised for decades in several 
countries with limited evidence for its clinical value or 
cost-​effectiveness73. Two large cluster-​randomized con-
trolled trials conducted in Brazil and Malawi evaluated 
BCG revaccination for the prevention of TB disease. 
Neither demonstrated efficacy74,75, resulting in World 
Health Organization (WHO) recommendations against 
this policy. Subsequent follow-​up studies conducted as 
part of the REVAC study in Brazil have added a new 
layer of understanding to this disappointing result 
and suggest that prior mycobacterial sensitization is 
a major factor in preventing BCG revaccination effi-
cacy in regions with a high prevalence of environmen-
tal mycobacteria exposure76 (Fig. 2). In the recent trial 
with the H4:IC31 subunit vaccine or BCG revaccina-
tion in Cape Town, South Africa, BCG revaccination 
provided significant protection (45% efficacy) against 
sustained Mtb infection (measured as prevention of 
sustained IFNγ release assay (IGRA) conversion for a 
follow-​up period of 24 months in healthy adolescents 
who received a BCG prime in infancy)11. The readout of 
prevention of sustained IGRA conversion may be inter-
preted in different ways, which are all indicative of pro-
tective immunity: the prevention of primary infection, 
the accelerated clearance of the bacilli after infection, the 
long-​term containment of the primary infection below 
the IGRA cut-​off level or even the prevention of rein-
fection during the observation period. Regardless of the 
mechanistic interpretation of this readout, BCG revac-
cination resulted in a surprisingly high efficacy signal in 
this study. A plausible explanation for this observation 
most likely relates to the fact that individuals with Mtb-​
specific responses at enrolment, as measured by IGRA, 
were rigorously excluded11,77 and that Cape Town is 
thought to be an area with low to modest NTM expo-
sure levels78. Compared with the REVAC study in Brazil, 
the main source of potential sensitization in this trial 
population therefore most likely came from remain-
ing immune responses to neonatal BCG vaccination 
12–16 years previously. So, even though pre-​existing 
mycobacteria-​specific T cell responses were found to 
be common in trial participants in the H4:IC31–BCG 
revaccination study, the results suggest that, without 
continuous high-​level exposure from environmental 
mycobacteria or LTBI, the levels of immunity that persist 
from neonatal BCG vaccination are modest and do not 
block the efficacy of BCG revaccination significantly in 
adolescents (Fig. 2).

This efficacy signal therefore opens up consideration 
of BCG revaccination in certain settings as part of an 
overall improved TB vaccination strategy as previously 
suggested78. Samples collected in the H4:IC31–BCG 
revaccination trial provide a unique opportunity to 
investigate whether the level of immune sensitization 
to NTMs at enrolment is associated with differences 
in the quality of the immune responses to the vaccine  
and/or protection against Mtb infection.

Building on recent subunit vaccine success
For the first time since the introduction of universal 
BCG vaccination into the WHO expanded programme 
for immunization in 1974, we have encouraging efficacy 
signals in trials of a TB vaccine11,12. In a phase IIb trial 
of healthy adolescents who received BCG in infancy but 
tested negative in the IGRA, vaccination with H4:IC31 
was associated with 30.5% efficacy against sustained 
Mtb infection. This result was of statistical significance 
at the pre-​defined statistical threshold of an 80% CI 
(3.0–52.0%), but not at a more rigorous 95% CI (–15.8% 

Chemotherapy for active TB
Drug-​sensitive tuberculosis (TB) 
disease is typically treated with 
a 4-drug regimen of rifampicin, 
isoniazid, pyrazinamide and 
ethambutol for 2 months (the 
intensive phase of treatment), 
followed by isoniazid and 
rifampicin for 4 months (the 
continuation phase).

IFNγ release assay
(IGRA). A test for infection with 
Mycobacterium tuberculosis 
(Mtb) that measures IFNγ 
release by T cells after 
stimulation of blood or 
peripheral blood mononuclear 
cells with Mtb-​specific 
peptides. IGRA conversion is 
an efficacy outcome in clinical 
trials that test prevention of 
Mtb infection, defined as 
conversion to a positive test 
without reversion to negative 
status in the next 2 consecutive 
IGRA tests, 3 months apart 
(that is, 3 consecutive positive 
IGRA results).

BCG

V
ac

ci
ne

 e
ffi

ca
cy BCG +

subunit

Subunit

Sensitization
(via LTBI, BCG or NTMs) BCG vaccine efficacy

Fig. 2 | The effects of immunological sensitization to 
mycobacteria on vaccine efficacy. The hypothesized 
interaction between the magnitude of immune 
sensitization and vaccine efficacy by Mycobacterium  
bovis bacillus Calmette–Guérin (BCG) vaccination (red), 
adjuvanted protein subunit vaccines (orange) or a 
BCG-prime, subunit-​boost strategy (blue) is shown. 
According to this model, BCG, and other live whole 
mycobacterial vaccines, are not efficacious in individuals 
with substantial prior immunological sensitization 
owing to latent tuberculosis infection (LTBI), recent 
BCG vaccination or exposure to atypical non-​tuberculous 
mycobacteria (NTMs) from the environment. Subunit 
vaccination, by comparison, would be efficacious in 
such a pre-​sensitized population, as would a BCG-​
revaccination, subunit-​boost strategy. In persons with 
low or no mycobacterial sensitization, the efficacy of 
BCG vaccination is significantly increased, and the 
efficacy of subunit vaccination will be largely 
independent of the levels of sensitization, but the 
BCG-revaccination, subunit-​boost strategy may 
provide synergistic effects that result in enhanced 
vaccine efficacy.
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to 58.3%)11. Moreover, interim results of the ongo-
ing phase IIb trial of M72/AS01E, conducted in 3,575 
IGRA-​positive adults, clearly illustrate that booster vac-
cination with a subunit vaccine can protect against TB 
disease in highly sensitized individuals with Mtb infec-
tion. This trial, which was conducted in HIV-​negative 
adults from Kenya, Zambia and South Africa, most of 
whom received neonatal BCG, accrued 10 patients with 
microbiologically confirmed pulmonary TB into the  
M72/AS01E group and 22 patients into the placebo 
group, translating to an overall vaccine efficacy of 54.0% 
(95% CI 13.9–75.4%)12. An important consideration 
when interpreting the trial results of M72/AS01E is how 
the level of Mtb exposure and reinfection of trial parti
cipants may have influenced the efficacy of the subunit 
vaccine. A recent analysis of the incubation period of 
TB suggested that the vast majority of clinical TB cases 
occur early, within 1–2 years following Mtb infection or 
reinfection. This is different from reactivation of Mtb, 
which typically happens much later after a long period of 
latent infection3. The recent efficacy trial was conducted 
in settings with high Mtb infection rates where rein-
fection with Mtb is likely to be a frequent occurrence. 
Understanding whether the vaccine protected against 
reactivation disease or progression to disease following 
reinfection is likely to be important and will no doubt be 
the subject of investigation in coming years.

Whether the levels of efficacy observed in the 
H4:IC31–BCG and M72/AS01E trials are sufficient and 
persist long enough for programmatic implementation 
of the vaccines in their present form is an important 
question, especially because the reports from each trial 
followed trial participants for only 2 years. However, 
combined into a prime–boost strategy with BCG vac-
cination, novel subunit vaccines may promote a robust 
response that could significantly add to the efficacy 
of the BCG vaccine and compensate for its failures in 
sensitized populations. In accordance with the model 
in Fig.  2, induction of immunity by BCG is either 
blocked or masked by high levels of pre-​existing T cell-​
mediated immune responses. By contrast, comparison 
of H56:IC31 or M72/ASO1E vaccination in naive versus 
LTBI individuals indicated that these subunit vaccines 
can markedly boost BCG-​induced and Mtb-​primed 
immune responses79–81. Therefore, a combined BCG 
revaccination and/or subunit vaccine strategy may have 
great potential in adult and/or adolescent populations.

Conclusion and future perspectives
The large number of different vaccine candidates and 
their advanced stages in clinical development denote a 
unique and exciting phase in TB vaccine research. There 
are also a large number of novel vaccine candidates in 
preclinical development, including more recently devel-
oped vaccine formats such as DNA vaccines, new adju-
vants and delivery systems and combination vaccines. 
It is important that the most promising of these new can-
didates are advanced to efficacy studies in animals and 
clinical testing to augment the pipeline of TB vaccine 
candidates and concepts.

However, a notable limitation of the current clin-
ical development landscape is a lack of inter-​trial 

harmonization or standardization, which precludes 
a direct comparison of the immunological outcomes 
of different TB vaccine candidates. A recent analysis 
attempted to tackle this problem by comparing antigen-​
specific CD4+ and CD8+ T  cell responses induced 
by BCG and six of the novel TB vaccine candidates, 
including MVA85A, AERAS-402, H1:IC31, H56:IC31,  
M72/AS01E and ID93 + GLA-​SE. The investigators 
retrieved published data on antigen-​specific T cell 
responses from clinical trials completed in adolescents 
or adults at a single trial site in South Africa82. The 
results show that the magnitude of vaccine-​induced TH1 
cell-​polarized CD4+ T cell responses measured several 
months after vaccination was the T cell response feature 
that diverged the most between the different candidates. 
Unlike the response magnitude, co-​expression profiles of 
IFNγ, TNF and IL-2 by CD4+ T cells suggested a relative 
lack of functional diversity in responses induced by the 
different vaccine candidates (see Table 1). Interestingly, 
the analyses suggested that M72/AS01E induced the 
highest antigen-​specific memory CD4+ cell response 
among the candidates. Unfortunately, the study did not 
include results from whole cell or live vaccine candi-
dates, which are known to induce a more diverse and 
broader repertoire of immune responses.

Overall, the recent positive clinical trial data referred 
to above represent a very important milestone in interna-
tional efforts to develop a novel efficacious TB vaccine. 
These successes illustrate that TB vaccine research is 
on the right track and will be able to deliver a much-​
needed improved vaccine strategy that is so critical for 
controlling the global TB epidemic. It is critical that the 
field moves forward with urgency towards phase III 
licensure trials so that an impact on the epidemic can 
be achieved swiftly. These findings therefore signal 
the end of the ‘post-​MVA85A period’ of fundamental 
doubts about both the usefulness of the TB vaccine 
research strategy and the TB animal models in vaccine 
discovery83. The M72/ASO1E vaccine contains only two 
antigens, and the next generation of vaccines may be 
improved by adding more antigens to increase immune 
coverage and avoid the risk of escape. The efficacy signal 
observed with M72/ASO1E will likely also establish the 
M72/ASO1E-​induced protection as a minimum bench-
mark in preclinical animal models. As discussed above, 
many subunit vaccine candidates appear to induce a 
response that is typically characterized by early differ-
entiated CD4+ TCM and TEM cells, whereas it seems that 
both viral and live mycobacterial vectors promote a 
more differentiated CD4+ TEFF cell response27,52,54,82,84,85. 
It will therefore be important to agree on a standard set 
of parameters that would allow an accurate comparison 
between studies and vaccines to determine whether 
this is a reproducible pattern in clinical trials. Recent 
results of preclinical studies using a recombinant human 
cytomegalovirus encoding several Mtb T cell antigens 
have shown impressive protection in an NHP model, 
where prophylactic vaccination prevented infection in 
one-​third of experimentally infected rhesus macaques86. 
Because cytomegalovirus vectored vaccines establish a 
persistent lifelong infection and induce a high level of 
antigen-​specific CD4+ and CD8+ T cell responses, these 
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findings suggest that, in addition to T cell differentiation 
as discussed above, the sheer size of the pool of Mtb-​
specific CD4+ T cells has an impact on protection. This 
is also supported by the M72/ASO1E trial results, as this 
vaccine promotes a high frequency of antigen-​specific 
T cells. However, more is not always better, and there is a 
risk of less protection and insufficient immune memory 
or even of inflicting immunopathology with vaccines 
that induce very strong T cell responses, particularly 
when used in the postexposure setting in individuals 
with LTBI. With an efficacy signal in young adolescents 
and/or adults from both BCG revaccination and subunit 

vaccine studies, it is intriguing to speculate whether 
the combination of both, administered sequentially or 
simultaneously87, may pave the way for a vaccination 
strategy that protects both uninfected and infected peo-
ple while providing the possibility of a synergistic effect 
for inducing more diverse and broader-​ranging immune 
responses. If an additive effect can be demonstrated, the 
combination of BCG and subunit vaccines may repre-
sent a new strategy that elevates the efficacy signal into 
a range that triggers clinical implementation.
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